0000000000464927

AUTHOR

Esa Tuovinen

Particle Detectors made of High Resistivity Czochralski Grown Silicon

We describe the fabrication process of fullsize silicon microstrip detectors processed on silicon wafers grown by magnetic Czochralski method. Defect analysis by DLTS spectroscopy as well as minority carrier lifetime measurements by µPCD method are presented. The electrical and detection properties of the Czochralski silicon detectors are comparable to those of leading commercial detector manufacturers. The radiation hardness of the Czochralski silicon detectors was proved to be superior to the devices made of traditional Float Zone silicon material.

research product

Radiation hardness of Czochralski silicon, Float Zone silicon and oxygenated Float Zone silicon studied by low energy protons

Abstract We processed pin-diodes on Czochralski silicon (Cz-Si), standard Float Zone silicon (Fz-Si) and oxygenated Fz-Si. The diodes were irradiated with 10, 20, and 30 MeV protons. Depletion voltages and leakage currents were measured as a function of the irradiation dose. Additionally, the samples were characterized by TCT and DLTS methods. The high-resistivity Cz-Si was found to be more radiation hard than the other studied materials.

research product

Results of proton irradiations of large area strip detectors made on high-resistivity Czochralski silicon

Abstract We have processed full-size strip detectors on Czochralski grown silicon wafers with resistivity of about 1.2 kΩ cm. Wafers grown with Czochralski method intrinsically contain high concentrations of oxygen, and thus have potential for high radiation tolerance. Detectors and test diodes were irradiated with 10 MeV protons. The 1-MeV neutron equivalent irradiation doses were 1.6×1014 and 8.5×1013 cm−2 for detectors, and up to 5.0×1014 cm−3 for test diodes. After irradiations, depletion voltages and leakage currents were measured. Czochralski silicon devices proved to be significantly more radiation hard than the reference devices made on traditional detector materials.

research product

Search forBs0→μ+μ−andB0→μ+μ−Decays with CDF II

A search has been performed for B{sub s}{sup 0} {yields} {mu}{sup +}{mu}{sup -} and B{sup 0} {yields} {mu}{sup +}{mu}{sup -} decays using 7 fb{sup -1} of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron collider. The observed number of B{sup 0} candidates is consistent with background-only expectations and yields an upper limit on the branching fraction of {Beta}(B{sup 0} {yields} {mu}{sup +}{mu}{sup -}) < 6.0 x 10{sup -9} at 95% confidence level. We observe an excess of B{sub s}{sup 0} candidates. The probability that the background processes alone could produce such an excess or larger is 0.27%. The probability that the combination of background and the expe…

research product

Measurement of thett¯production cross section inpp¯collisions ats=1.96  TeVusing soft electronb-tagging

The authors present a measurement of the t{bar t} production cross section using events with one charged lepton and jets from p{bar p} collisions at a center-of-mass energy of 1.96 TeV. A b-tagging algorithm based on the probability of displaced tracks coming from the event interaction vertex is applied to identify b quarks from top decay. Using 318 pb{sup -1} of data collected with the CDF II detector, they measure the t{bar t} production cross section in events with at least one restrictive (tight) b-tagged jet and obtain 8.9{sub -1.0}{sup +1.0}(stat.){sub -1.0}{sup +1.1}(syst.) pb. The cross section value assumes a top quark mass of m{sub t} is presented in the paper. This result is cons…

research product

Silicon detectors for the sLHC

In current particle physics experiments, silicon strip detectors are widely used as part of the inner tracking layers. A foreseeable large-scale application for such detectors consists of the luminosity upgrade of the Large Hadron Collider (LHC), the super-LHC or sLHC, where silicon detectors with extreme radiation hardness are required. The mission statement of the CERN RD50 Collaboration is the development of radiation-hard semiconductor devices for very high luminosity colliders. As a consequence, the aim of the RandD programme presented in this article is to develop silicon particle detectors able to operate at sLHC conditions. Research has progressed in different areas, such as defect …

research product

Observation of the rare B(s)(0) + decay from the combined analysis of CMS and LHCb data.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported licence.-- et al.

research product

The effect of oxygenation on the radiation hardness of silicon studied by surface photovoltage method

The effect of oxygenation on the radiation hardness of silicon detectors was studied. Oxygen-enriched and standard float-zone silicon pin-diodes and oxidized samples were processed and irradiated with 15-MeV protons. After the irradiations, the surface photovoltage (SPV) method was applied to extract minority carrier diffusion lengths of the silicon samples. Adding oxygen to silicon was found to improve the radiation hardness of silicon. The effect was visible in minority carrier diffusion lengths as well as in reverse bias leakage currents. The suitability of SPV method for characterizing irradiated silicon samples was proved.

research product

Annealing study of oxygenated and non-oxygenated float zone silicon irradiated with protons

Abstract Introducing oxygen into the silicon material is believed to improve the radiation hardness of silicon detectors. In this study, oxygenated and non-oxygenated silicon samples were processed and irradiated with 15 MeV protons. In order to speed up the defect reactions after the exposure to particle radiation, the samples were heat treated at elevated temperatures. In this way, the long-term stability of silicon detectors in hostile radiation environment could be estimated. Current–voltage measurements and Surface Photovoltage (SPV) method were used to characterize the samples.

research product

Radiation-hard semiconductor detectors for SuperLHC

An option of increasing the luminosity of the Large Hadron Collider (LHC) at CERN to 10^35 cm^(- 2) s(- 1) has been envisaged to extend the physics reach of the machine. An efficient tracking down to a few centimetres from the interaction point will be required to exploit the physics potential of the upgraded LHC. As a consequence, the semiconductor detectors close to the interaction region will receive severe doses of fast hadron irradiation and the inner tracker detectors will need to survive fast hadron fluences of up to above 1016 cm 2. The CERN-RD50 project ''Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders'' has been established in 2002 to explore…

research product