0000000000614189
AUTHOR
Andrew L. Sternberg
Failure Estimates for SiC Power MOSFETs in Space Electronics
Silicon carbide (SiC) power metal-oxide-semiconductor field effect transistors (MOSFETs) are space-ready in terms of typical reliability measures. However, single event burnout (SEB) due to heavy-ion irradiation often occurs at voltages 50% or lower than specified breakdown. Failure rates in space are estimated for burnout of 1200 V devices based on the experimental data for burnout and the expected heavy-ion linear energy transfer (LET) spectrum in space. peerReviewed
Parasitic Bipolar Action in SiC Power MOSFETs Demonstrated by Two-Photon Laser Experiment
A two-photon absorption technique is explored for Silicon carbide power MOSFETs and power junction barrier Schottky diodes using a pulsed laser. The similarities in design between the specific MOSFETs and diodes tested permit using mechanisms existing in the different structures as explanation for observed current variation with laser position. The diode shows variation in average current with change in laser depth only, whereas the MOSFET shows variation both with shifts in depth and shifts in position across the striped geometry of the device. The variation is explained to be due to bipolar amplification of the charge carriers generated in the MOSFET when a pulse focus includes a channel …
Enhanced Charge Collection in SiC Power MOSFETs Demonstrated by Pulse-Laser Two-Photon Absorption SEE Experiments
A two-photon absorption technique is used to understand the mechanisms of single-event effects (SEEs) in silicon carbide power metal–oxide–field-effect transistors (MOSFETs) and power junction barrier Schottky diodes. The MOSFETs and diodes have similar structures enabling the identification of effects associated specifically with the parasitic bipolar structure that is present in the MOSFETs, but not the diodes. The collected charge in the diodes varies only with laser depth, whereas it varies with depth and lateral position in the MOSFETs. Optical simulations demonstrate that the variations in collected charge observed are from the semiconductor device structure and not from metal/passiva…
Unifying Concepts for Ion-Induced Leakage Current Degradation in Silicon Carbide Schottky Power Diodes
The onset of ion-induced reverse leakage current in SiC Schottky diodes is shown to depend on material properties, ion linear energy transfer (LET), and bias during irradiation, but not the voltage rating of the parts. This is demonstrated experimentally for devices from multiple manufacturers with voltage ratings from 600 to 1700 V. Using a device with a higher breakdown voltage than required in the application does not provide increased robustness related to leakage current degradation, compared to using a device with a lower voltage rating.
Estimating Terrestrial Neutron-Induced SEB Cross-Sections and FIT Rates for High-Voltage SiC Power MOSFETs
Cross sections and failure in time rates for neutron-induced single-event burnout (SEB) are estimated for SiC power MOSFETs using a method based on combining results from heavy ion SEB experimental data, 3-D TCAD prediction of sensitive volumes, and Monte Carlo radiation transport simulations of secondary particle production. The results agree well with experimental data and are useful in understanding the mechanisms for neutron-induced SEB data.
Single-Event Burnout Mechanisms in SiC Power MOSFETs
Heavy ion-induced single-event burnout (SEB) is investigated in high-voltage silicon carbide power MOSFETs. Experimental data for 1200-V SiC power MOSFETs show a significant decrease in SEB onset voltage for particle linear energy transfers greater than 10 MeV/cm 2 /mg, above which the SEB threshold voltage is nearly constant at half of the rated maximum operating voltage for these devices. TCAD simulations show a parasitic bipolar junction transistor turn-on mechanism, which drives the avalanching of carriers and leads to runaway drain current, resulting in SEB. peerReviewed
Ion-Induced Energy Pulse Mechanism for Single-Event Burnout in High-Voltage SiC Power MOSFETs and Junction Barrier Schottky Diodes
Heavy-ion data suggest that a common mechanism is responsible for single-event burnout (SEB) in 1200-V power MOSFETs and junction barrier Schottky (JBS) diodes. Similarly, heavy-ion data suggest a common mechanism is also responsible for leakage current degradation in both devices. This mechanism, based on ion-induced, highly localized energy pulses, is demonstrated in simulations and shown to be capable of causing degradation and SEB for both the MOSFETs and JBS diodes.