0000000000660293

AUTHOR

Nicola Amodio

showing 22 related works from this author

Non-Coding RNAs in Multiple Myeloma Bone Disease Pathophysiology

2020

Bone remodeling is uncoupled in the multiple myeloma (MM) bone marrow niche, resulting in enhanced osteoclastogenesis responsible of MM-related bone disease (MMBD). Several studies have disclosed the mechanisms underlying increased osteoclast formation and activity triggered by the various cellular components of the MM bone marrow microenvironment, leading to the identification of novel targets for therapeutic intervention. In this regard, recent attention has been given to non-coding RNA (ncRNA) molecules, that finely tune gene expression programs involved in bone homeostasis both in physiological and pathological settings. In this review, we will analyze major signaling pathways involved …

0301 basic medicinelcsh:QH426-470Bone diseasenon-coding RNAReviewBiologyBiochemistryBone remodeling03 medical and health sciences0302 clinical medicineOsteoclastmicroRNAGeneticsmedicinetumor microenvironmentMolecular BiologyMultiple myelomamiRNAlong non-coding RNAmedicine.diseaseNon-coding RNALong non-coding RNAmultiple myelomalcsh:Genetics030104 developmental biologymedicine.anatomical_structure030220 oncology & carcinogenesisCancer researchbone diseaseBone marrowNon-Coding RNA
researchProduct

Multiple Myeloma-Derived Extracellular Vesicles Induce Osteoclastogenesis through the Activation of the XBP1/IRE1α Axis

2020

Bone disease severely affects the quality of life of over 70% of multiple myeloma (MM) patients, which daily experience pain, pathological fractures, mobility issues and an increased mortality. Recent data have highlighted the crucial role of the endoplasmic reticulum-associated unfolded protein response (UPR) in malignant transformation and tumor progression

0301 basic medicineCancer ResearchCell signalingXBP1Cellular differentiationlcsh:RC254-282Article03 medical and health sciences0302 clinical medicineSettore BIO/13 - Biologia ApplicataTranscription factorChemistryEndoplasmic reticulumextracellular-vesiclesExtracellular vesiclelcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensCell biologymultiple myelomaUPR-related molecules030104 developmental biologyosteoclastsOncology030220 oncology & carcinogenesisUnfolded protein responsePhosphorylationbone diseaseCancers
researchProduct

miR-29b negatively regulates human osteoclastic cell differentiation and function: Implications for the treatment of multiple myeloma-related bone di…

2013

Skeletal homeostasis relies upon a fine tuning of osteoclast (OCLs)-mediated bone resorption and osteoblast (OBLs)-dependent bone formation. This balance is unsettled by multiple myeloma (MM) cells, which impair OBL function and stimulate OCLs to generate lytic lesions. Emerging experimental evidence is disclosing a key regulatory role of microRNAs (miRNAs) in the regulation of bone homeostasis suggesting the miRNA network as potential novel target for the treatment of MM-related bone disease. Here, we report that miR-29b expression decreases progressively during human OCL differentiation in vitro. We found that lentiviral transduction of miR-29b into OCLs, even in the presence of MM cells,…

Bone diseasePhysiologyCellular differentiationCathepsin KClinical BiochemistryGene ExpressionOsteoclastsOsteolysisMMP9Cathepsin KCells CulturedTartrate-resistant acid phosphataseTumorCulturedReceptor Activator of Nuclear Factor-kappa BGenes fosCell DifferentiationOsteoblastCell biologyIsoenzymesmultiple myelomamedicine.anatomical_structureMatrix Metalloproteinase 9osteoclastMatrix Metalloproteinase 2medicine.medical_specialtyfosCellsAcid PhosphataseBiologyCollagen Type IBone resorptionCell LineOsteoclastCell Line TumorInternal medicinemedicineHumansBone ResorptionOsteoblastsmicroRNA.NFATC Transcription FactorsTartrate-Resistant Acid PhosphatasemiR-29bCell Biologymedicine.diseaseActinsMicroRNAsEndocrinologyGenesAcid Phosphatase; Actins; Bone Resorption; Cathepsin K; Cell Differentiation; Cell Line Tumor; Cells Cultured; Collagen Type I; Gene Expression; Genes fos; Humans; Isoenzymes; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; MicroRNAs; Multiple Myeloma; NFATC Transcription Factors; Osteoblasts; Osteoclasts; Osteolysis; Receptor Activator of Nuclear Factor-kappa BJournal of Cellular Physiology
researchProduct

Targeting of multiple myeloma-related angiogenesis by miR-199a-5p mimics: in vitro and in vivo anti-tumor activity

2014

// Lavinia Raimondi 1 , Nicola Amodio 1 , Maria Teresa Di Martino 1 , Emanuela Altomare 1 , Marzia Leotta 1 , Daniele Caracciolo 1 , Annamaria Gulla 1 , Antonino Neri 2 , Simona Taverna 3 , Patrizia D’Aquila 4 , Riccardo Alessandro 3 , Antonio Giordano 5 , Pierosandro Tagliaferri 1 and Pierfrancesco Tassone 1,5 . 1 Department of Experimental and Clinical Medicine, Magna Graecia University and Medical Oncology Unit, T. Campanella Cancer Center, Salvatore Venuta University Campus, Catanzaro, Italy 2 Department of Medical Sciences University of Milan, Hematology1, IRCCS Policlinico Foundation, Milan, Italy 3 Department of Pathology and Forensic and Medical Biotechnology, Section of Biology and…

Pathologymedicine.medical_specialtyStromal cellAngiogenesisMultiple Myeloma; microRNA AngiogenesisBlotting WesternEnzyme-Linked Immunosorbent AssayMice SCIDIn Vitro TechniquesBiologyReal-Time Polymerase Chain ReactionTransfectionMicemiR-199-5pCell MovementMice Inbred NODSettore BIO/13 - Biologia ApplicataCell Line TumorCell AdhesionmedicineAnimalsHumansHypoxiaCell adhesionProtein kinase BCell ProliferationPlasma cell leukemiaNeovascularization PathologicmicroRNA AngiogenesisMicroRNATransfectionPlasma cell leukemiamedicine.diseaseXenograft Model Antitumor AssaysMolecular medicineCell HypoxiaMicroRNAsmedicine.anatomical_structureOncologyAngiogenesis; Hypoxia; Microenviroment; MicroRNA; miR-199-5p; MiRNA; Multiple myeloma; Plasma cell leukemiaCancer researchFemaleAngiogenesisBone marrowMicroenviromentMiRNAMultiple MyelomaResearch Paper
researchProduct

Circulating biomarkers in osteosarcoma: new translational tools for diagnosis and treatment.

2017

Osteosarcoma (OS) is a rare primary malignant bone tumour arising from primitive bone-forming mesenchymal cells, with high incidence in children and young adults, accounting for approximately 60% of all malignant bone tumours. Currently, long-term disease-free survival can be achieved by surgical treatment plus chemotherapy in approximately 60% of patients with localized extremity disease, and in 20-30% of patients with metastatic lung or bone disease. Diagnosis of primary lesions and recurrences is achieved by using radiological investigations and standard tissue biopsy, the latter being costly, painful and hardly repeatable for patients. Therefore, despite some recent advances, novel biom…

0301 basic medicineOncologymedicine.medical_specialtyBone diseasemedicine.medical_treatmentDiseaseReviewBiomarkers; Blood serum; Liquid biopsy; Osteosarcoma; Personalized medicine; Oncology03 medical and health sciences0302 clinical medicineBlood serumInternal medicineosteosarcomamedicineLiquid biopsyChemotherapyliquid biopsybusiness.industrybiomarkersBiomarkerpersonalized medicinemedicine.disease3. Good health030104 developmental biologyblood serumOncology030220 oncology & carcinogenesisOsteosarcomaCancer biomarkersPersonalized medicinebusinessOncotarget
researchProduct

miR-22 suppresses DNA ligase III addiction in multiple myeloma

2019

Multiple myeloma (MM) is a hematologic malignancy characterized by high genomic instability. Here we provide evidence that hyper-activation of DNA ligase III (LIG3) is crucial for genomic instability and survival of MM cells. LIG3 mRNA expression in MM patients correlates with shorter survival and even increases with more advanced stage of disease. Knockdown of LIG3 impairs MM cells viability in vitro and in vivo, suggesting that neoplastic plasmacells are dependent on LIG3-driven repair. To investigate the mechanisms involved in LIG3 expression, we investigated the post-transcriptional regulation. We identified miR-22-3p as effective negative regulator of LIG3 in MM. Enforced expression of…

0301 basic medicineGenome instabilityCancer ResearchmiR-22 LIG3DNA repairDNA damageDNA repairApoptosisLIG3ArticleDNA Ligase ATP03 medical and health sciences0302 clinical medicinemicroRNABiomarkers TumorTumor Cells CulturedHumansPoly-ADP-Ribose Binding ProteinsCell ProliferationmiRNAchemistry.chemical_classificationRegulation of gene expressionGene knockdownDNA ligaseLeukemiamicroRNAChemistryHematologyPrognosisXenograft Model Antitumor AssaysGene Expression Regulation Neoplasticmultiple myelomaMicroRNAs030104 developmental biologyOncology030220 oncology & carcinogenesisCancer researchpharmacologyDNA DamageLeukemia
researchProduct

Distinct signalling mechanisms are involved in the dissimilar myocardial and coronary effects elicited by quercetin and myricetin, two red wine flavo…

2011

Abstract Background and Aims: Moderate red wine consumption associates with lower incidence of cardiovascular diseases. Attention to the source of this cardioprotection was focused on flavonoids, the non-alcoholic component of the red wine, whose intake inversely correlates with adverse cardiovascular events. We analysed whether two red wine flavonoids, quercetin and myricetin, affect mammalian basal myocardial and coronary function. Methods and results: Quercetin and myricetin effects were evaluated on isolated and Langendorff perfused rat hearts under both basal conditions and a- and b-adrenergic stimulation. The intracellular signalling involved in the effects of these flavonoids was ana…

MaleVasoreactivityOctoxynolEndocrinology Diabetes and MetabolismMedicine (miscellaneous)WineVasodilationIn Vitro TechniquesPharmacologySettore BIO/09 - FisiologiaAntioxidantsNitric oxideContractilitychemistry.chemical_compoundFlavonolsAnimalsheterocyclic compoundsRats WistarFlavonoidsCardioprotectionchemistry.chemical_classificationAnalysis of VarianceNutrition and DieteticsChemistryMyocardiumMyricetinfood and beveragesHeartNitric oxideRatsVasodilationBiochemistryInotropismMyricetinQuercetinMyocardial contractilityCardiology and Cardiovascular MedicineQuercetinSignal Transduction
researchProduct

Selective targeting of IRF4 by synthetic microRNA-125b-5p mimics induces anti-multiple myeloma activity in vitro and in vivo

2015

Interferon regulatory factor 4 (IRF4) is an attractive therapeutic target in multiple myeloma (MM). We here report that expression of IRF4 mRNA inversely correlates with microRNA (miR)-125b in MM patients. Moreover, we provide evidence that miR-125b is downregulated in TC2/3 molecular MM subgroups and in established cell lines. Importantly, constitutive expression of miR-125b-5p by lentiviral vectors or transfection with synthetic mimics impaired growth and survival of MM cells and overcame the protective role of bone marrow stromal cells in vitro. Apoptotic and autophagy-associated cell death were triggered in MM cells on miR-125b-5p ectopic expression. Importantly, we found that the anti-…

MaleCancer ResearchStromal cellApoptosisBiologyMiceRNA interferenceDownregulation and upregulationIn vivoIRF4Cell Line TumormicroRNAAutophagymedicineAnimalsHumansGenes Tumor SuppressorCell ProliferationmicroRNACell growthHematologyTransfectionMolecular biologymultiple myelomaMicroRNAsmedicine.anatomical_structureOncologyInterferon Regulatory FactorsCancer researchOriginal ArticleEctopic expressionBone marrow
researchProduct

miR-21 antagonism abrogates Th17 tumor promoting functions in multiple myeloma

2020

Multiple myeloma (MM) is tightly dependent on inflammatory bone marrow microenvironment. IL-17 producing CD4+ T cells (Th17) sustain MM cells growth and osteoclasts-dependent bone damage. In turn, Th17 differentiation relies on inflammatory stimuli. Here, we investigated the role of miR-21 in Th17-mediated MM tumor growth and bone disease. We found that early inhibition of miR-21 in naive T cells (miR-21i-T cells) impaired Th17 differentiation in vitro and abrogated Th17-mediated MM cell proliferation and osteoclasts activity. We validated these findings in NOD/SCID-g-NULL mice, intratibially injected with miR-21i-T cells and MM cells. A Pairwise RNAseq and proteome/phosphoproteome analysis…

0301 basic medicineMaleCancer ResearchBone diseaseApoptosisBone NeoplasmsNodMice SCIDBone NeoplasmT-Lymphocytes RegulatoryTh17 Cell03 medical and health sciencesMice0302 clinical medicineDownregulation and upregulationgammopathiesMice Inbred NODmedicineTumor Cells CulturedTumor MicroenvironmentBiomarkers TumorAnimalsHumansMultiple myelomaCell ProliferationChemistryCell growthAnimalApoptosiHematologymedicine.diseasePrognosisXenograft Model Antitumor AssaysIn vitroGene Expression Regulation NeoplasticMicroRNAs030104 developmental biologymedicine.anatomical_structureOncology030220 oncology & carcinogenesisCase-Control StudiesCancer researchTh17 CellsBone marrowAntagonismCase-Control StudieMultiple Myeloma
researchProduct

miR-29s: A family of epi-miRNAs with therapeutic implications in hematologic malignancies

2015

A wealth of studies has highlighted the biological complexity of hematologic malignancies and the role of dysregulated signal transduction pathways. Along with the crucial role of genetic abnormalities, epigenetic aberrations are nowadays emerging as relevant players in cancer development, and significant research efforts are currently focusing on mechanisms by which histone post-translational modifications, DNA methylation and noncoding RNAs contribute to the pathobiology of cancer. As a consequence, these studies have provided the rationale for the development of epigenetic drugs, such as histone deacetylase inhibitors and demethylating compounds, some of which are currently in advanced p…

ReviewTumor initiationhematologic malignancieEpigenesis GeneticmicroRNAmedicineAnimalsHumansMolecular Targeted TherapyEpigeneticsmiR-29cbiologymiR-29abusiness.industrymiR-29bCancerDNA Methylationhematologic malignanciesmedicine.diseasemultiple myelomaMicroRNAsHistoneOncologyHematologic NeoplasmsDNA methylationImmunologyCancer researchbiology.proteinHistone deacetylaseSignal transductionbusiness
researchProduct

Receptor identification and physiological characterisation of glucagon-like peptide-2 in the rat heart.

2010

Abstract Background and aims The anorexigenic glucagon-like peptide (GLP)-2 is produced by intestinal L cells and released in response to food intake. It affects intestinal function involving G-protein-coupled receptors. To verify whether GLP-2 acts as a cardiac modulator in mammals, we analysed, in the rat heart, the expression of GLP-2 receptors and the myocardial and coronary responses to GLP-2. Methods and results GLP-2 receptors were detected on ventricular extracts by quantitative real-time polymerase chain reaction (Q-RT-PCR) and Western blotting. Cardiac GLP-2 effects were analysed on Langendorff perfused hearts. Intracellular GLP-2 signalling was investigated on Langendorff perfuse…

Maleendocrine systemmedicine.medical_specialtyCardiotonic AgentsNitric Oxide Synthase Type IIIMAP Kinase Signaling SystemG proteinEndocrinology Diabetes and MetabolismBlotting WesternMedicine (miscellaneous)Enzyme-Linked Immunosorbent AssayStimulationIn Vitro TechniquesBiologyReal-Time Polymerase Chain Reactionglucagon-like peptides-2 gut peptides cardiac performanceSettore BIO/09 - FisiologiaGlucagon-Like Peptide-1 Receptorchemistry.chemical_compoundInternal medicineCyclic AMPCyclic GMP-Dependent Protein KinasesGlucagon-Like Peptide 2Receptors GlucagonmedicineAnimalsCyclic adenosine monophosphatePhosphorylationRats WistarReceptorNutrition and Dieteticsdigestive oral and skin physiologyHeartPeptide FragmentsRatsPhospholambanEndocrinologyGene Expression RegulationchemistryInotropismGlucagon-Like Peptide-2 ReceptorCardiology and Cardiovascular MedicinecGMP-dependent protein kinasehormones hormone substitutes and hormone antagonistsIntestinal L CellsSignal Transduction
researchProduct

Inhibition of miR-21 restores RANKL/OPG ratio in multiple myeloma-derived bone marrow stromal cells and impairs the resorbing activity of mature oste…

2015

// Maria Rita Pitari 1 , Marco Rossi 1 , Nicola Amodio 1 , Cirino Botta 1 , Eugenio Morelli 1 , Cinzia Federico 1 , Annamaria Gulla 1 , Daniele Caracciolo 1 , Maria Teresa Di Martino 1 , Mariamena Arbitrio 2 , Antonio Giordano 3, 4 , Pierosandro Tagliaferri 1 , Pierfrancesco Tassone 1, 4 1 Department of Experimental and Clinical Medicine and T. Campanella Cancer Center, Magna Graecia University, S. Venuta University Campus, Catanzaro, Italy 2 ISN-CNR, Roccelletta di Borgia, Catanzaro, Italy 3 Department of Human Pathology and Oncology, University of Siena, Siena, Italy 4 Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology,…

Bone diseaseMessengerOsteoclastsTumor Microenvironment3' Untranslated RegionsMultiple myelomaTumorbiologyMesenchymal Stromal CellsRANKLProtein Inhibitors of Activated STATUp-Regulationmedicine.anatomical_structureOncologyRANKLmiRNAsmiR-21MiRNAMultiple MyelomaMiR-21; MiRNAs; Multiple myeloma bone disease; OPG; RANKL; 3' Untranslated Regions; Bone Marrow Cells; Bone Resorption; Cell Adhesion; Cell Line Tumor; Coculture Techniques; HEK293 Cells; Humans; Interleukin-6; Lentivirus; Mesenchymal Stromal Cells; MicroRNAs; Molecular Chaperones; Multiple Myeloma; Osteoclasts; Osteoprotegerin; Protein Inhibitors of Activated STAT; RANK Ligand; RNA Messenger; STAT3 Transcription Factor; Stromal Cells; Tumor Microenvironment; Up-Regulation; OncologyResearch Papermusculoskeletal diseasesSTAT3 Transcription FactorStromal cellBone Marrow CellsBone resorptionCell LineOsteoprotegerinCell Line TumormedicineCell AdhesionHumansRNA MessengerBone Resorptionbusiness.industryInterleukin-6LentivirusRANK LigandOsteoprotegerinMesenchymal Stem Cellsmedicine.diseaseMolecular medicineCoculture TechniquesMicroRNAsmultiple myeloma bone diseaseHEK293 CellsImmunologyCancer researchbiology.proteinRNAOPGBone marrowStromal CellsbusinessMolecular ChaperonesOncotarget
researchProduct

Replacement of miR-155 Elicits Tumor Suppressive Activity and Antagonizes Bortezomib Resistance in Multiple Myeloma

2019

Aberrant expression of microRNAs (miRNAs) has been associated to the pathogenesis of multiple myeloma (MM). While miR-155 is considered a therapeutic target in several malignancies, its role in MM is still unclear. The analysis of miR-155 expression indicates its down-regulation in MM patient-derived as compared to healthy plasma cells, thus pointing to a tumor suppressor role in this malignancy. On this finding, we investigated miR-155 replacement as a potential anti-tumor strategy in MM. The miR-155 enforced expression triggered anti-proliferative and pro-apoptotic effects in vitro. Given the lower miR-155 levels in bortezomib-resistant as compared to sensitive MM cells, we analyzed the p…

0301 basic medicineCancer Researchlcsh:RC254-282ArticlemiR-155PathogenesismiR-15503 medical and health sciences0302 clinical medicineIn vivomicroRNAmedicineMultiple myelomamiRNAmicroRNABortezomibbusiness.industrybortezomiblcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmedicine.diseaseIn vitromultiple myeloma030104 developmental biologyOncologyProteasome030220 oncology & carcinogenesisCancer researchbusinessmedicine.drugCancers
researchProduct

A 13 mer LNA-i-miR-221 Inhibitor Restores Drug Sensitivity in Melphalan-Refractory Multiple Myeloma Cells.

2016

Abstract Purpose: The onset of drug resistance is a major cause of treatment failure in multiple myeloma. Although increasing evidence is defining the role of miRNAs in mediating drug resistance, their potential activity as drug-sensitizing agents has not yet been investigated in multiple myeloma. Experimental Design: Here we studied the potential utility of miR-221/222 inhibition in sensitizing refractory multiple myeloma cells to melphalan. Results: miR-221/222 expression inversely correlated with melphalan sensitivity of multiple myeloma cells. Inhibition of miR-221/222 overcame melphalan resistance and triggered apoptosis of multiple myeloma cells in vitro, in the presence or absence of…

0301 basic medicineMelphalanCancer ResearchStromal cellApoptosisDrug resistancePharmacologyArticle03 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicinemyeloma microRNA mir-221 melphalanimmune system diseasesIn vivohemic and lymphatic diseasesCell Line TumorProto-Oncogene ProteinsmedicineAnimalsHumansMelphalanMultiple myelomaNOD miceCell Proliferationbusiness.industryCancermedicine.diseaseXenograft Model Antitumor AssaysGene Expression Regulation NeoplasticMicroRNAs030104 developmental biologyOncologychemistryDrug Resistance Neoplasm030220 oncology & carcinogenesisGrowth inhibitionMultidrug Resistance-Associated ProteinsbusinessApoptosis Regulatory ProteinsMultiple Myelomamedicine.drugClinical cancer research : an official journal of the American Association for Cancer Research
researchProduct

Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation

2015

Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs differentiation. We show that MM cells produce exosomes which are actively internalized by Raw264.7 cell line, a cellular model of osteoclast formation. MM cell-derived exosomes positively modulate pre-…

Pathologymedicine.medical_specialtyCellular differentiationCellOsteoclastsMMP9BiologyExosomesMiceOsteoclastMultiple myelomaSettore BIO/13 - Biologia ApplicatamedicineCathepsin KAnimalsHumansExosomes Multiple MyelomaMultiple myelomaTumor microenvironmentMicroscopy ConfocalBone FormationCell Differentiationmedicine.diseaseMicrovesiclesRAW 264.7 Cellsmedicine.anatomical_structureOncologyTumor microenvironmentCancer researchOsteoclastExosomes Multiple Myeloma; Osteoclasts; Bone FormationResearch PaperSignal Transduction
researchProduct

Emerging insights on the biological impact of extracellular vesicle-associated ncRNAs in multiple Myeloma

2020

Increasing evidence indicates that extracellular vesicles (EVs) released from both tumor cells and the cells of the bone marrow microenvironment contribute to the pathobiology of multiple myeloma (MM). Recent studies on the mechanisms by which EVs exert their biological activity have indicated that the non-coding RNA (ncRNA) cargo is key in mediating their effect on MM development and progression. In this review, we will first discuss the role of EV-associated ncRNAs in different aspects of MM pathobiology, including proliferation, angiogenesis, bone disease development, and drug resistance. Finally, since ncRNAs carried by MM vesicles have also emerged as a promising tool for early diagnos…

0301 basic medicineBone diseaselcsh:QH426-470AngiogenesisReviewBiologyBiochemistry03 medical and health sciences0302 clinical medicineMultiple myelomaGeneticsmedicineNon-coding RNAMolecular BiologyMultiple myelomaRNAbiomarkersBiological activityExtracellular vesicleBiomarkermedicine.diseaseNon-coding RNAlcsh:Genetics030104 developmental biologymedicine.anatomical_structure030220 oncology & carcinogenesisDrug resistanceCancer researchBone marrowprogressionExtracellular vesicleextracellular vesicles
researchProduct

MiR-29b antagonizes the pro-inflammatory tumor-promoting activity of multiple myeloma-educated dendritic cells

2017

Dendritic cells (DCs) have a key role in regulating tumor immunity, tumor cell growth and drug resistance. We hypothesized that multiple myeloma (MM) cells might recruit and reprogram DCs to a tumor-permissive phenotype by changes within their microRNA (miRNA) network. By analyzing six different miRNA-profiling data sets, miR-29b was identified as the only miRNA upregulated in normal mature DCs and significantly downregulated in tumor-associated DCs. This finding was validated in primary DCs co-cultured in vitro with MM cell lines and in primary bone marrow DCs from MM patients. In DCs co-cultured with MM cells, enforced expression of miR-29b counteracted pro-inflammatory pathways, includin…

STAT3 Transcription Factor0301 basic medicineCancer Researchdendritic cellDown-RegulationInflammationMice SCIDBiologyMice03 medical and health sciences0302 clinical medicineDownregulation and upregulationBone MarrowCell Line Tumorhemic and lymphatic diseasesmicroRNAmedicineAnimalsHumanstumor immunologyMultiple myelomaCell ProliferationInflammationmicroRNA.Cell growthNF-kappa BDendritic CellsHematologySTAT3 Transcription Factormedicine.diseaseNFKB1Up-RegulationGene Expression Regulation Neoplasticmultiple myelomaMicroRNAs030104 developmental biologymedicine.anatomical_structureOncologyCancer researchOriginal ArticleFemaleBone marrowTh17medicine.symptom030215 immunology
researchProduct

Additional file 5: of Trabectedin triggers direct and NK-mediated cytotoxicity in multiple myeloma

2019

Figure S4. A Western blot showing expression levels of anti-apoptotic proteins BCL-2 and MCL-1 in U266 and MM1S treated with different doses of trabectedin. B Representative dot plot of apoptosis induction and ROS production in U266 and MM1S cells after trabectedin-treatment respect to control, in presence or absence of ascorbic acid. C Western blot reporting protein expression of cell-cycle and DNA-damage regulators (p21, p-Chk2, RAD51 and gH2AX) in OPM2 cell line, after trabectedin treatment. D Representative immunohistochemistry showing gamma-h2ax foci (in brown) in the nuclei of U266 cells growth in matrigel-based spheroids, after 2.5 nM trabectedin treatment. E Surface expression of MI…

immune system diseaseshemic and lymphatic diseases
researchProduct

Additional file 3: of Trabectedin triggers direct and NK-mediated cytotoxicity in multiple myeloma

2019

Figure S2. A Dot plots reporting pro-apoptotic activity of trabectedin after 24 h treatment in primary myeloma cells from three different patients. On the right, histogram reporting the % of viable cells. B Western blot images of a panel of 12 MM cell lines representing proteins belonging to NER pathway, which not exhibited a pattern associated with response to trabectedin. C Expression of the genes belonging to the NER pathway obtained by interrogating 2 different publicly available datasets (GSE68379 and GSE6205) including several MM cell lines used in our in vitro experiments. Cell lines segregate, in an unsupervised hierarchical clustering, accordingly to their response to trabectedin. …

researchProduct

Additional file 4: of Trabectedin triggers direct and NK-mediated cytotoxicity in multiple myeloma

2019

Figure S3. A GSEA results according to clueGO grouped by functions dependent on upregulated or downregulated genes. B Genes belonging to NER pathway resulted to be upregulated following trabectedin treatment in U266. Below, western blot to confirm DDB2 upregulation in 2 different cell lines. (PDF 974 kb)

researchProduct

Additional file 2: of Trabectedin triggers direct and NK-mediated cytotoxicity in multiple myeloma

2019

Figure S1. A Meta-analysis of 4 different GEP datasets of MM comparing the expression levels of genes belonging to different DNA-repair pathways (BER, MMR, HR, c-NHEJ, a-NHEJ, FA) in PCs from MM patients with PCs from healthy donors. B For each panel: on the left, forest plot showing the results of the multivariate COX regression analysis performed on all genes included in the specific DNA repair system. On the right, Kaplan-Meyer curve report results of prognostic system in which patients were divided into “low” and “high” risk group, according to the expression of genes identified by previous multivariate analysis. (PDF 605 kb)

researchProduct

Additional file 1: of Trabectedin triggers direct and NK-mediated cytotoxicity in multiple myeloma

2019

Table S1. List of genes included in DNA repair systems. (XLSX 11 kb)

researchProduct