0000000000683353
AUTHOR
Lucia Rizzuto
Spontaneous emission of an atom in a dynamical photonic crystal
A structured environment such as a photonic crystal can strongly affect radiative properties of an atomic system, for example the spontaneous emission process. Recently there has been also an increasing interest on dynamical photonic crystal, that is photonic crystals whose dielectric properties change on time. We consider the spontaneous emission of an atom placed inside a photonic crystal with time-dependent properties (dynamical photonic crystal). We investigate the atomic spontaneous emission in two different regimes, weak and strong coupling, assuming a small, periodic and adiabatic perturbation of the crystal. In the weak coupling case, we analytically obtain the spontaneous emission …
Collective spontaneous emission of two entangled atoms near an oscillating mirror
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state and in the presence of an oscillating mirror. We assume that the two atoms, one in the ground state and the other in the excited state, are prepared in a correlated (symmetric or antisymmetric) {\em Bell}-type state. We also suppose that the perfectly reflecting plate oscillates adiabatically, with the field modes satisfying the boundary conditions at the mirror surface at any given instant, so that the time-dependence of the interaction Hamiltonian is entirely enclosed in the instantaneous atoms-wall distance. Using time-dependent perturbation …
Nonlocal field correlations and dynamical Casimir-Polder forces between one excited- and two ground-state atoms
The problem of nonlocality in the dynamical three-body Casimir-Polder interaction between an initially excited and two ground-state atoms is considered. It is shown that the nonlocal spatial correlations of the field emitted by the excited atom during the initial part of its spontaneous decay may become manifest in the three-body interaction. The observability of this new phenomenon is discussed.
Harmonic oscillator model for the atom-surface Casimir-Polder interaction energy
In this paper we consider a quantum harmonic oscillator interacting with the electromagnetic radiation field in the presence of a boundary condition preserving the continuous spectrum of the field, such as an infinite perfectly conducting plate. Using an appropriate Bogoliubov-type transformation we can diagonalize exactly the Hamiltonian of our system in the continuum limit and obtain non-perturbative expressions for its ground-state energy. From the expressions found, the atom-wall Casimir-Polder interaction energy can be obtained, and well-know lowest-order results are recovered as a limiting case. Use and advantage of this method for dealing with other systems where perturbation theory …
Optomechanical Rydberg-atom excitation via dynamic Casimir-Polder coupling
We study the optomechanical coupling of a oscillating effective mirror with a Rydberg atomic gas, mediated by the dynamical atom-mirror Casimir-Polder force. This coupling may produce a near-field resonant atomic excitation whose probability scales as $\propto (d^2\;a\;n^4\;t)^2/z_0^8$, where $z_0$ is the average atom-surface distance, $d$ the atomic dipole moment, $a$ the mirror's effective oscillation amplitude, $n$ the initial principal quantum number, and $t$ the time. We propose an experimental configuration to realize this system with a cold atom gas trapped at a distance $\sim 2\cdot10 \, \mu$m from a semiconductor substrate, whose dielectric constant is periodically driven by an ext…
Spectroscopy of Alkali Atoms in Solid Matrices of Rare Gases: Experimental Results and Theoretical Analysis
We present an experimental and theoretical investigation of the spectroscopy of dilute alkali atoms in a solid matrix of inert gases at cryogenic temperatures, specifically Rubidium atoms in a solid Argon or Neon matrix, and related aspects of the interaction energies between the alkali atoms and the atoms of the solid matrix. The system considered is relevant for matrix isolation spectroscopy, and it is at the basis of a recently proposed detector of cosmological axions, exploiting magnetic-type transitions between Zeeman sublevels of alkali atoms in a magnetic field, tuned to the axion mass, assumed in the meV range. Axions are one of the supposed constituents of the dark matter (DM) of t…
Reply to "Comment on 'Dispersion Interaction between Two Hydrogen Atoms in a Static Electric Field' "
In their Comment on our Letter Dispersion Interaction between Two Hydrogen Atoms in a Static Electric Field, P. P. Abrantes et al. address one of the main points discussed in our Letter, that is, the possibility to manipulate interatomic interactions through an external static electric field. In our Letter, we have shown that the interaction between two ground-state atoms can be significantly modified, exploiting an external static electric field, and even turned from attractive to repulsive, depending on the strength of the external field and the geometrical configu- ration. In their Comment, Abrantes et al. point out that it is the electrostatic contribution between the electric dipoles i…
Vacuum fluctuations and radiation reaction contributions to the resonance dipole-dipole interaction between two atoms near a reflecting boundary
We investigate the resonance dipole-dipole interaction energy between two identical atoms, one in the ground state and the other in the excited state, interacting with the electromagnetic field in the presence of a perfectly reflecting plane boundary. The atoms are prepared in a correlated (symmetric or anti-symmetric) Bell-type state. Following a procedure due to Dalibard et. al. [J. Dalibard et. al., J. Phys. (Paris) {\bf 43}, 1617 (1982); {\bf 45}, 637 (1984)], we separate the contributions of vacuum fluctuations and radiation reaction (source) field to the resonance interaction energy between the two atoms, and show that only the source field contributes to the interatomic interaction, …
Resonant Interaction Energy between Two Identical Atoms in a Photonic Crystal
We consider the resonant interaction energy between two identical atoms, one in an excited state and the other in the ground state, placed inside a photonic crystal. We consider two different models of a photonic crystal: a one-dimensional crystal and an isotropic three-dimensional crystal. The two atoms, having the same orientation of their transition dipole moment, are supposed prepared in their entangled symmetrical state and interacting with the quantum electromagnetic field in the multipolar coupling scheme. We consider both the case of an atomic transition frequency outside the photonic band gap and the case of a transition frequency inside the gap. When the transition frequency is ou…
Vacuum Casimir energy densities and field divergences at boundaries
We consider and review the emergence of singular energy densities and field fluctuations at sharp boundaries or point-like field sources in the vacuum. The presence of singular energy densities of a field may be relevant from a conceptual point of view, because they contribute to the self-energy of the system. They should also generate significant gravitational effects. We first consider the case of the interface between a metallic boundary and the vacuum, and obtain the structure of the singular electric and magnetic energy densities at the interface through an appropriate limit from a dielectric to an ideal conductor. Then, we consider the case of a point-like source of the electromagneti…
Casimir-Polder interaction between an accelerated two-level system and an infinite plate
We investigate the Casimir-Polder interaction energy between a uniformly accelerated two-level system and an infinite plate with Dirichlet boundary conditions. Our model is a two-level atom interacting with a massless scalar field, with a uniform acceleration in a direction parallel to the plate. We consider the contributions of vacuum fluctuations and of the radiation reaction field to the atom-wall Casimir-Polder interaction, and we discuss their dependence on the acceleration of the atom. We show that, as a consequence of the noninertial motion of the two-level atom, a thermal term is present in the vacuum fluctuation contribution to the Casimir-Polder interaction. Finally we discuss the…
The bound state in the spectrum of the Lee–Friedrichs Hamiltonian
Abstract The spectrum of the Lee–Friedrichs Hamiltonian, describing a two-level system embedded in a continuum, is considered. An appropriate discretization of the field modes is performed before taking the continuum limit. It is shown that the existence of an eigenstate with negative energy (bound state) is related to the nonanalyticity of the Friedrichs spectral representation. This negative energy state is a dressed state and its physical properties are studied in some significant cases.
Energy level shifts of a uniformly accelerated atom in the presence of boundary conditions
We discuss the radiative level shifts of an atom moving with uniform acceleration near an infinite reflecting plate. We first consider the case of a two-level system interacting with a massless scalar field in the vacuum state. The acceleration of the two-level atom is supposed in a direction parallel to the conducting plate. We evaluate the contribution of vacuum fluctuations and of the radiation reaction field to the energy shift of the atomic levels, and discuss their behaviour as a function of the atomic acceleration and of the atom-plate distance. Then, we investigate the more general case of an hydrogen atom accelerating near a perfectly reflecting plate and interacting with the elect…
Nonequilibrium dressing in a cavity with a movable reflecting mirror
We consider a movable mirror coupled to a one-dimensional massless scalar field in a cavity. Both the field and the mirror's mechanical degrees of freedom are described quantum-mechanically, and they can interact each other via the radiation pressure operator. We investigate the dynamical evolution of mirror and field starting from a nonequilibrium initial state, and their local interaction which brings the system to a stationary configuration for long times. This allows us to study the time-dependent dressing process of the movable mirror interacting with the field, and its dynamics leading to a local equilibrium dressed configuration. Also, in order to explore the effect of the radiation …
Resonance Dipole-Dipole Interaction Between Two Accelerated Atoms in the Presence of a Reflecting Plane Boundary
We study the resonant dipole-dipole interaction energy between two uniformly accelerated identical atoms, one excited and the other in the ground state, prepared in a correlated {\em Bell-type} state, and interacting with the scalar field or the electromagnetic field nearby a perfectly reflecting plate. We suppose the two atoms moving with the same uniform acceleration, parallel to the plane boundary, and that their separation is constant during the motion. We separate the contributions of vacuum fluctuations and radiation reaction field to the resonance energy shift of the two-atom system, and show that Unruh thermal fluctuations do not affect the resonance interaction, which is exclusivel…
Vacuum local and global electromagnetic self-energies for a point-like and an extended field source
We consider the electric and magnetic energy densities (or equivalently field fluctuations) in the space around a point-like field source in its ground state, after having subtracted the spatially uniform zero-point energy terms, and discuss the problem of their singular behavior at the source's position. We show that the assumption of a point-like source leads, for a simple Hamiltonian model of the interaction of the source with the electromagnetic radiation field, to a divergence of the renormalized electric and magnetic energy density at the position of the source. We analyze in detail the mathematical structure of such singularity in terms of a delta function and its derivatives. We als…
Enhanced resonant force between two entangled identical atoms in a photonic crystal
We consider the resonant interaction energy and force between two identical atoms, one in an excited state and the other in the ground state, placed inside a photonic crystal. The atoms, having the same orientation of their dipole moment, are supposed prepared in their symmetrical state and interact with the quantum electromagnetic field. We consider two specific models of photonic crystals: a one-dimensional model and an isotropic model. We show that in both cases the resonant interatomic force can be strongly enhanced by the presence of the photonic crystal, as a consequence of the modified dispersion relation and density of states, in particular if the transition frequency of the atoms i…
Nonthermal effects of acceleration in the resonance interaction between two uniformly accelerated atoms
We study the resonance interaction between two uniformly accelerated identical atoms, one excited and the other in the ground state, prepared in a correlated (symmetric or antisymmetric) state and interacting with the scalar field or the electromagnetic field in the vacuum state. In this case (resonance interaction), the interatomic interaction is a second-order effect in the atom-field coupling. We separate the contributions of vacuum fluctuations and radiation reaction to the resonance energy shift of the system, and show that only radiation reaction contributes, while Unruh thermal fluctuations do not affect the resonance interaction. We also find that beyond a characteristic length scal…
van der Waals interactions between excited atoms in generic environments
We consider the the van der Waals force involving excited atoms in general environments, constituted by magnetodielectric bodies. We develop a dynamical approach studying the dynamics of the atoms and the field, mutually coupled. When only one atom is excited, our dynamical theory suggests that for large distances the van der Waals force acting on the ground-state atom is monotonic, while the force acting in the excited atom is spatially oscillating. We show how this latter force can be related to the known oscillating Casimir--Polder force on an excited atom near a (ground-state) body. Our force also reveals a population-induced dynamics: for times much larger that the atomic lifetime the …
Spontaneous emission of an atom near an oscillating mirror
We investigate the spontaneous emission of one atom placed near an oscillating reflecting plate. We consider the atom modeled as a two-level system, interacting with the quantum electromagnetic field in the vacuum state, in the presence of the oscillating mirror. We suppose that the plate oscillates adiabatically, so that the time-dependence of the interaction Hamiltonian is entirely enclosed in the time-dependent mode functions, satisfying the boundary conditions at the plate surface, at any given time. Using time-dependent perturbation theory, we evaluate the transition rate to the ground-state of the atom, and show that it depends on the time-dependent atom-plate distance. We also show t…
Effect of boundaries on vacuum field fluctuations and radiation-mediated interactions between atoms
In this paper we discuss and review several aspects of the effect of boundary conditions and structured environments on dispersion and resonance interactions involving atoms or molecules, as well as on vacuum field fluctuations. We first consider the case of a perfect mirror, which is free to move around an equilibrium position and whose mechanical degrees of freedom are treated quantum mechanically. We investigate how the quantum fluctuations of the mirror's position affect vacuum field fluctuations for both a one-dimensional scalar and electromagnetic field, showing that the effect is particularly significant in the proximity of the moving mirror. This result can be also relevant for poss…
Casimir-Polder forces, boundary conditions and fluctuations
We review different aspects of the atom-atom and atom-wall Casimir-Polder forces. We first discuss the role of a boundary condition on the interatomic Casimir-Polder potential between two ground-state atoms, and give a physically transparent interpretation of the results in terms of vacuum fluctuations and image atomic dipoles. We then discuss the known atom-wall Casimir-Polder force for ground- and excited-state atoms, using a different method which is also suited for extension to time-dependent situations. Finally, we consider the fluctuation of the Casimir-Polder force between a ground-state atom and a conducting wall, and discuss possible observation of this force fluctuation.
Resonance energy transfer between two atoms in a conducting cylindrical waveguide
We consider the energy transfer process between two identical atoms placed inside a perfectly conducting cylindrical waveguide. We first introduce a general analytical expression of the energy transfer amplitude in terms of the electromagnetic Green's tensor; we then evaluate it in the case of a cylindrical waveguide made of a perfect conductor, for which analytical forms of the Green's tensor exist. We numerically analyse the energy transfer amplitude when the radius of the waveguide is such that the transition frequency of both atoms is below the lower cutoff frequency of the waveguide, so that the resonant photon exchange is strongly suppressed. We consider both cases of atomic dipoles p…
Dynamical Casimir-Polder force between an excited atom and a conducting wall
We consider the dynamical atom-surface Casimir-Polder force in the non-equilibrium configuration of an atom near a perfectly conducting wall, initially prepared in an excited state with the field in its vacuum state. We evaluate the time-dependent Casimir-Polder force on the atom, and find that it shows an oscillatory behavior from attractive to repulsive both in time and in space. We also investigate the asymptotic behavior in time of the dynamical force and of related local field quantities, showing that the static value of the force, as obtained by a time-independent approach, is recovered for times much larger than the timescale of the atomic self-dressing, but smaller than the atomic d…
Tuning the collective decay of two entangled emitters by means of a nearby surface
We consider the radiative properties of a system of two identical correlated atoms interacting with the electromagnetic field in its vacuum state in the presence of a generic dielectric environment. We suppose that the two emitters are prepared in a symmetric or antisymmetric superposition of one ground state and one excited state and we evaluate the transition rate to the collective ground state, showing distinctive cooperative radiative features. Using a macroscopic quantum electrodynamics approach to describe the electromagnetic field, we first obtain an analytical expression for the decay rate of the two entangled two-level atoms in terms of the Green's tensor of the generic external en…
Causality, non-locality and three-body Casimir–Polder energy between three ground-state atoms
The problem of relativistic causality in the time-dependent three-body Casimir–Polder interaction energy between three atoms, initially in their bare ground-state, is discussed. It is shown that the non-locality of the spatial correlations of the electromagnetic field emitted by the atoms during their dynamical self-dressing may become manifest in the dynamical three-body Casimir–Polder interaction energy between the three atoms.
Effects of a uniform acceleration on atom–field interactions
We review some quantum electrodynamical effects related to the uniform acceleration of atoms in vacuum. After discussing the energy level shifts of a uniformly accelerated atom in vacuum, we investigate the atom-wall Casimir-Polder force for accelerated atoms, and the van der Waals/Casimir-Polder interaction between two accelerated atoms. The possibility of detecting the Unruh effect through these phenomena is also discussed in detail.
Dynamical Casimir-Polder energy between an excited- and a ground-state atom.
We consider the Casimir-Polder interaction between two atoms, one in the ground state and the other in its excited state. The interaction is time-dependent for this system, because of the dynamical self-dressing and the spontaneous decay of the excited atom. We calculate the dynamical Casimir-Polder potential between the two atoms using an effective Hamiltonian approach. The results obtained and their physical meaning are discussed and compared with previous results based on a time-independent approach which uses a non-normalizable dressed state for the excited atom.
Electromagnetic field fluctuations near a point-like and an extended field source
We investigate the field fluctuations near a point-like and an extended field source, such as an atom or a polarisable body, and discuss the problem of their singular behaviour at the position of the source. We consider a point-like source interacting with the electromagnetic field, in its dressed ground-state and investigate the local and global properties of the electric and magnetic energy densities in the space around the point-like source, after that the zero-point energy has been subtracted. We show that the assumption of a point-like source leads to a divergence of the renormalized electric and magnetic energy densities at the position of the source. We investigate in detail the math…
Nonlocal properties of dynamical three-body Casimir-Polder forces
We consider the three-body Casimir-Polder interaction between three atoms during their dynamical self-dressing. We show that the time-dependent three-body Casimir-Polder interaction energy displays nonlocal features related to quantum properties of the electromagnetic field and to the nonlocality of spatial field correlations. We discuss the measurability of this intriguing phenomenon and its relation with the usual concept of stationary three-body forces.
Non-Hermitian Hamiltonian for a Modulated Jaynes-Cummings Model with PT Symmetry
We consider a two-level system such as a two-level atom, interacting with a cavity field mode in the rotating wave approximation, when the atomic transition frequency or the field mode frequency is periodically driven in time. We show that in both cases, for an appropriate choice of the modulation parameters, the state amplitudes in a generic $n${-}excitation subspace obey the same equations of motion that can be obtained from a \emph{static} non-Hermitian Jaynes-Cummings Hamiltonian with ${\mathcal PT}$ symmetry, that is with an imaginary coupling constant. This gives further support to recent results showing the possible physical interest of ${\mathcal PT}$ symmetric non-Hermitian Hamilto…
Resonance interaction energy between two accelerated identical atoms in a coaccelerated frame and the Unruh effect
We investigate the resonance interaction energy between two uniformly accelerated identical atoms, interacting with the scalar field or the electromagnetic field in the vacuum state, in the reference frame coaccelerating with the atoms. We assume that one atom is excited and the other in the ground state, and that they are prepared in their correlated symmetric or antisymmetric state. Using perturbation theory, we separate, at the second order in the atom-field coupling, the contributions of vacuum fluctuations and radiation reaction field to the energy shift of the interacting system. We show that only the radiation reaction term contributes to the resonance interaction between the two ato…
Van der Waals and resonance interactions between accelerated atoms in vacuum and the Unruh effect
We discuss different physical effects related to the uniform acceleration of atoms in vacuum, in the framework of quantum electrodynamics. We first investigate the van der Waals/Casimir-Polder dispersion and resonance interactions between two uniformly accelerated atoms in vacuum. We show that the atomic acceleration significantly affects the van der Waals force, yielding a different scaling of the interaction with the interatomic distance and an explicit time dependence of the interaction energy. We argue how these results could allow for an indirect detection of the Unruh effect through dispersion interactions between atoms. We then consider the resonance interaction between two accelerat…
Effective Hamiltonians in Nonrelativistic Quantum Electrodynamics
In this paper, we consider some second-order effective Hamiltonians describing the interaction of the quantum electromagnetic field with atoms or molecules in the nonrelativistic limit. Our procedure is valid only for off-energy-shell processes, specifically virtual processes such as those relevant for ground-state energy shifts and dispersion van der Waals and Casimir-Polder interactions, while on-energy-shell processes are excluded. These effective Hamiltonians allow for a considerable simplification of the calculation of radiative energy shifts, dispersion, and Casimir-Polder interactions, including in the presence of boundary conditions. They can also provide clear physical insights int…
Spatial correlations of field observables in two half-spaces separated by a movable perfect mirror
We consider a system of two cavities separated by a reflecting boundary of finite mass that is free to move, and bounded to its equilibrium position by a harmonic potential. This yields an effective mirror-field interaction, as well as an effective interaction between the field modes mediated by the movable boundary. Two massless scalar fields are defined in each cavity. We consider the second-order interacting ground state of the system, that contains virtual excitations of both mirror's degrees of freedom and of the scalar fields. We investigate the correlation functions between field observables in the two cavities, and find that the squared scalar fields in the two cavities, in the inte…
Dynamical Casimir-Polder interaction between an atom and surface plasmons
We investigate the time-dependent Casimir-Polder potential of a polarizable two-level atom placed near a surface of arbitrary material, after a sudden change in the parameters of the system. Different initial conditions are taken into account. For an initially bare ground-state atom, the time-dependent Casimir-Polder energy reveals how the atom is "being dressed" by virtual, matter-assisted photons. We also study the transient behavior of the Casimir-Polder interaction between the atom and the surface starting from a partially dressed state, after an externally induced change in the atomic level structure or transition dipoles. The Heisenberg equations are solved through an iterative techni…
Dynamical Casimir-Polder potentials in non-adiabatic conditions
In this paper we review different aspects of the dynamical Casimir¿Polder potential between a neutral atom and a perfectly conducting plate under nonequilibrium conditions. In order to calculate the time evolution of the atom¿wall Casimir¿Polder potential, we solve the Heisenberg equations describing the dynamics of the coupled system using an iterative technique. Different nonequilibrium initial states are considered, such as bare and partially dressed states. The partially dressed states considered are obtained by a sudden change of a physical parameter of the atom or of its position relative to the conducting plate. Experimental feasibility of detecting the considered dynamical effects i…
Vacuum field correlations and three-body Casimir-Polder potential with one excited atom
The three-body Casimir-Polder potential between one excited and two ground-state atoms is evaluated. A physical model based on the dressed field correlations of vacuum fluctuations is used, generalizing a model previously introduced for three ground-state atoms. Although the three-body potential with one excited atom is already known in the literature, our model gives new insights on the nature of non-additive Casimir-Polder forces with one or more excited atoms.
Spatial correlations of vacuum fluctuations and the Casimir-Polder potential
We calculate the Casimir-Polder intermolecular potential using an effective Hamiltonian recently introduced. We show that the potential can be expressed in terms of the dynamical polarizabilities of the two atoms and the equal-time spatial correlation of the electric field in the vacuum state. This gives support to an interesting physical model recently proposed in the literature, where the potential is obtained from the classical interaction between the instantaneous atomic dipoles induced and correlated by the vacuum fluctuations. Also, the results obtained suggest a more general validity of this intuitive model, for example when external boundaries or thermal fields are present.
Field fluctuations near a conducting plate and Casimir-Polder forces in the presence of boundary conditions
We consider vacuum fluctuations of the quantum electromagnetic field in the presence of an infinite and perfectly conducting plate. We evaluate how the change of vacuum fluctuations due to the plate modifies the Casimir-Polder potential between two atoms placed near the plate. We use two different methods to evaluate the Casimir-Polder potential in the presence of the plate. They also give new insights on the role of boundary conditions in the Casimir-Polder interatomic potential, as well as indications for possible generalizations to more complicated boundary conditions.
Exceptional points in a non-Hermitian extension of the Jaynes-Cummings Hamiltonian
We consider a generalization of the non-Hermitian \({\mathcal PT}\) symmetric Jaynes-Cummings Hamiltonian, recently introduced for studying optical phenomena with time-dependent physical parameters, that includes environment-induced decay. In particular, we investigate the interaction of a two-level fermionic system (such as a two-level atom) with a single bosonic field mode in a cavity. The states of the two-level system are allowed to decay because of the interaction with the environment, and this is included phenomenologically in our non-Hermitian Hamiltonian by introducing complex energies for the fermion system. We focus our attention on the occurrence of exceptional points in the spec…
Dispersion Interaction between Two Hydrogen Atoms in a Static Electric Field
We consider the dispersion interaction between two ground-state hydrogen atoms, interacting with the quantum electromagnetic field in the vacuum state, in the presence of an external static electric field, both in the nonretarded and in the retarded Casimir-Polder regime. We show that the presence of the external field strongly modifies the dispersion interaction between the atoms, changing its space dependence. Moreover, we find that, for specific geometrical configurations of the two atoms with respect to the external field and/or the relative orientation of the fields acting on the two atoms, it is possible to change the character of the dispersion force, turning it from attractive to re…
Dynamical Casimir-Polder interaction between an atom and a real surface
We discuss the dynamical (i.e. time-dependent) Casimir-Polder force between a neutral atom and a real surface of arbitrary material, under non-equilibrium conditions. More specifically, we consider a polarisable neutral atom placed near a surface with arbitrary dielectric properties and we investigate the dynamical dressing and the consequent dynamical Casimir-Polder potential after the non-adiabatic (sudden) change of parameters involved in the atom-field coupling, such as the atomic transition frequency or the transition dipole moment. Using time-dependent perturbation theory and the matter-assisted field approach, we discuss how the physical properties of the real surface can influence t…
Dynamical Casimir-Polder interaction between a chiral molecule and a surface
We develop a dynamical approach to study the Casimir-Polder force between a initially bare molecule and a magnetodielectric body at finite temperature. Switching on the interaction between the molecule and the field at a particular time, we study the resulting temporal evolution of the Casimir-Polder interaction. The dynamical self-dressing of the molecule and its population-induced dynamics are accounted for and discussed. In particular, we find that the Casimir-Polder force between a chiral molecule and a perfect mirror oscillates in time with a frequency related to the molecular transition frequency, and converges to the static result for large times.
Lamb shift of a uniformly accelerated hydrogen atom in the presence of a conducting plate
We investigate the effects of acceleration on the energy-level shifts of a hydrogen atom interacting with the electromagnetic field and in the presence of an infinite perfectly conducting plate. We consider the contributions of vacuum fluctuations and of the radiation reaction field to the Lamb shift, and we discuss their dependence from the acceleration of the atom. We show that, because of the presence of the boundary, both vacuum field fluctuations and radiation reaction field contributions are affected by atomic acceleration. In particular, the effect of the vacuum field fluctuations on the energy-level shifts is not equivalent to that of a thermal field. We also discuss the dependence …
Energy-level shifts of a uniformly accelerated atom between two reflecting plates
We discuss the radiative level shifts of a uniformly accelerated atom moving between two infinite reflecting plates and interacting with a massless scalar field in the vacuum state. The atom, supposed to be a two-level system, accelerates in a direction parallel to the conducting plates. We evaluate separately the contributions of vacuum fluctuations and radiation reaction field to the energy shift of the atomic levels, and discuss their dependence on acceleration, atomic position and cavity length.
Control of spontaneous emission of a single quantum emitter through a time-modulated photonic-band-gap environment
We consider the spontaneous emission of a two-level quantum emitter, such as an atom or a quantum dot, in a modulated time-dependent environment with a photonic band gap. An example of such an environment is a dynamical photonic crystal or any other environment with a bandgap whose properties are modulated in time, in the effective mass approximation. After introducing our model of dynamical photonic crystal, we show that it allows new possibilities to control and tailor the physical features of the emitted radiation, specifically its frequency spectrum. In the weak coupling limit and in an adiabatic case, we obtain the emitted spectrum and we show the appearance of two lateral peaks due to…
Time-dependent resonance interaction energy between two entangled atoms under nonequilibrium conditions
We consider the time-dependent resonance interaction energy between two identical atoms, one in the ground state and the other in an excited state, and interacting with the vacuum electromagnetic field, during a nonequilibrium situation such as the dynamical atomic self-dressing process. We suppose the two atoms prepared in a correlated, symmetric or antisymmetric, state. Since the atoms start from a nonequilibrium conditions, their interaction energy is time dependent. We obtain, at second order in the atom-field coupling, an analytic expression for the time-dependent resonance interaction energy between the atoms. We show that this interaction vanishes when the two atoms are outside the l…
Resonance interaction energy between two entangled atoms in a photonic bandgap environment
We consider the resonance interaction energy between two identical entangled atoms, where one is in the excited state and the other in the ground state. They interact with the quantum electromagnetic field in the vacuum state and are placed in a photonic-bandgap environment with a dispersion relation quadratic near the gap edge and linear for low frequencies, while the atomic transition frequency is assumed to be inside the photonic gap and near its lower edge. This problem is strictly related to the coherent resonant energy transfer between atoms in external environments. The analysis involves both an isotropic three-dimensional model and the one-dimensional case. The resonance interaction…