0000000000725265

AUTHOR

M. Del Río

showing 24 related works from this author

Measurement of the cosmic-ray energy spectrum above 2.5×1018  eV using the Pierre Auger Observatory

2020

We report a measurement of the energy spectrum of cosmic rays for energies above 2.5×10^18 eV based on 215,030 events recorded with zenith angles below 60°. A key feature of the work is that the estimates of the energies are independent of assumptions about the unknown hadronic physics or of the primary mass composition. The measurement is the most precise made hitherto with the accumulated exposure being so large that the measurements of the flux are dominated by systematic uncertainties except at energies above 5×10^19 eV. The principal conclusions are(1) The flattening of the spectrum near 5×10^18 eV, the so-called "ankle,"is confirmed.(2) The steepening of the spectrum at around 5×10^19…

cosmic ray; astroparticle detectors; cosmic ray spectraEnergy SpectrumSettore FIS/01 - Fisica SperimentaleUltra-high energy cosmic rays energy spectrum Cherenkov detectorsUHE Cosmic Rays
researchProduct

Deep-learning based reconstruction of the shower maximum X max using the water-Cherenkov detectors of the Pierre Auger Observatory

2021

The atmospheric depth of the air shower maximum $X_{\mathrm{max}}$ is an observable commonly used for the determination of the nuclear mass composition of ultra-high energy cosmic rays. Direct measurements of $X_{\mathrm{max}}$ are performed using observations of the longitudinal shower development with fluorescence telescopes. At the same time, several methods have been proposed for an indirect estimation of $X_{\mathrm{max}}$ from the characteristics of the shower particles registered with surface detector arrays. In this paper, we present a deep neural network (DNN) for the estimation of $X_{\mathrm{max}}$. The reconstruction relies on the signals induced by shower particles in the groun…

showers: energylongitudinal [showers]interaction: modelPhysics::Instrumentation and DetectorsAstronomyCalibration and fitting methods; Cluster finding; Data analysis; Large detector systems for particle and astroparticle physics; Particle identification methods; Pattern recognition01 natural sciencesHigh Energy Physics - ExperimentAugerHigh Energy Physics - Experiment (hep-ex)Particle identification methodscluster findingsurface [detector]ObservatoryLarge detector systemsInstrumentationMathematical PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEPhysicsPattern recognition cluster finding calibration and fitting methodsPhysicsSettore FIS/01 - Fisica Sperimentalemodel [interaction]DetectorAstrophysics::Instrumentation and Methods for AstrophysicsData analysicalibration and fitting methodsenergy [showers]AugerobservatoryPattern recognition cluster finding calibration and fitting methodastroparticle physicsAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomenaatmosphere [showers]airneural networkAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]Data analysisFOS: Physical sciences610Cosmic raydetector: fluorescencePattern recognition0103 physical sciencesddc:530High Energy Physicsddc:610[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]cosmic radiation: UHEstructureparticle physicsnetwork: performance010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Ciencias ExactasCherenkov radiationfluorescence [detector]Pierre Auger ObservatoryCalibration and fitting methodsmass spectrum [nucleus]showers: atmospheredetector: surfacehep-ex010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsCluster findingFísicaresolutioncalibrationComputational physicsperformance [network]Cherenkov counterAir showerLarge detector systems for particle and astroparticle physicExperimental High Energy PhysicsHigh Energy Physics::Experimentnucleus: mass spectrumshowers: longitudinalRAIOS CÓSMICOSEnergy (signal processing)astro-ph.IM
researchProduct

A search for point sources of EeV neutrons

2012

A thorough search of the sky exposed at the Pierre Auger Cosmic Ray Observatory reveals no statistically significant excess of events in any small solid angle that would be indicative of a flux of neutral particles from a discrete source. The search covers from −90◦ to +15◦ in declination using four different energy ranges above 1 EeV (1018 eV). The method used in this search is more sensitive to neutrons than to photons. The upper limit on a neutron flux is derived for a dense grid of directions for each of the four energy ranges. These results constrain scenarios for the production of ultrahigh energy cosmic rays in the Galaxy.

AstronomyEnergy fluxAstrophysics01 natural sciences7. Clean energyNeutron fluxObservatorycosmic rays – Galaxy: disk – methods: data analysisNeutron detection010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Gamma rayAstrophysics::Instrumentation and Methods for AstrophysicsASTRONOMYPierre Auger ObservatoryCOSMIC-RAYSRadiación cósmicaUltra High Energy Cosmic RayComputingMethodologies_DOCUMENTANDTEXTPROCESSINGMASSIVE BLACK-HOLEFísica nuclearPierre Auger Observatory high-energy neutron sources neutron flux limitAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayGalaxiaGalaxy: diskcosmic rays0103 physical scienceshigh-energy neutron sourcesNeutronCosmic-ray observatoryCiencias ExactasANISOTROPY010308 nuclear & particles physicsGAMMA-RAYSAnálisis de datosAstronomyFísicaAstronomy and AstrophysicsASTROFÍSICAneutron flux limitmethods: data analysisNÊUTRONSSpace and Planetary ScienceUltra High Energy Cosmic RaysExperimental High Energy Physics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]GALACTIC-CENTER
researchProduct

Constraints on the origin of cosmic rays above 10^18 eV from large-scale anisotropy searches in data of the Pierre Auger Observatory

2012

A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10(18) eV at the Pierre Auger Observatory is reported. For the first time, these large-scale anisotropy searches are performed as a function of both the right ascension and the declination and expressed in terms of dipole and quadrupole moments. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Upper limits on dipole and quadrupole amplitudes are derived under the hypothesis that any cosmic ray anisotropy is dominated by such moments in this energy range. These upper limits provide constraints on the production of cosmic rays above 10(…

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]AstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysics01 natural sciencesMAGNETIC-FIELDScosmic raysObservatory0103 physical sciencesUltra-high-energy cosmic rayAnisotropyastroparticle physics – cosmic rays010303 astronomy & astrophysicsCiencias ExactasHigh Energy Astrophysical Phenomena (astro-ph.HE)Pierre Auger ObservatoryAstroparticle physicsPhysicsCOSMIC cancer database010308 nuclear & particles physicsOBSERVATÓRIOS[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsAstronomyastroparticle physicFísicaAstronomy and AstrophysicsRadiación cósmica13. Climate actionSpace and Planetary Scienceastroparticle physicsExperimental High Energy PhysicsQuadrupoleComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica de partículasFísica nuclearAstroparticle physicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Ultra-High Energy Neutrinos at the Pierre Auger Observatory

2013

The observation of ultrahigh energy neutrinos (UHE nu s) has become a priority in experimental astroparticle physics. UHE nu s can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going nu) or in the Earth crust (Earth-skimming nu), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversed a large amount of atmosphere). In this work we review the procedure and …

ultra high energy neutrino[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Physics::Instrumentation and DetectorsCiencias FísicasAstronomyFluxAstrophysics7. Clean energy01 natural sciencesAltas energíasAuger//purl.org/becyt/ford/1 [https]surface [detector]ObservatoryneutriniCosmic-rayscosmic rayHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsCascada atmosférica extensaOBSERVATÓRIOS[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicsneutrino; Augerlcsh:QC1-999AugercascadeUHE [neutrino]observatoryPhysics::Space PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearultra high energy neutrinosNeutrinoAstrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTASsignatureTAU-NEUTRINOSatmosphere [showers]FLUXNuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Article SubjectairAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayFísica de Partículas y CamposLIMITPartícules (Física nuclear)Ultra high energy cosmic rayAtmosphere[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Air-showersSEARCHNeutrino0103 physical sciencesddc:530010306 general physicsAstrophysiqueCiencias ExactasPierre Auger ObservatoryAstroparticle physicsSPECTRUM010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFísicaUltra high energy cosmic raystelescopes//purl.org/becyt/ford/1.3 [https]Ultrahigh Energyflux13. Climate actionenergy [neutrino]Pierre AugerExperimental High Energy PhysicsARRAYHigh Energy Physics::ExperimentAstroparticle physicslcsh:Physics
researchProduct

Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory

2013

To interpret the mean depth of cosmic ray air shower maximum and its dispersion, we parametrize those two observables as functions of the first two moments of the ln A distribution. We examine the goodness of this simple method through simulations of test mass distributions. The application of the parameterization to Pierre Auger Observatory data allows one to study the energy dependence of the mean ln A and of its variance under the assumption of selected hadronic interaction models. We discuss possible implications of these dependences in term of interaction models and astrophysical cosmic ray sources.

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Ciencias FísicasAstronomyAstrophysics::High Energy Astrophysical PhenomenaHadronFOS: Physical sciencesCosmic rayultra high energy cosmic rays01 natural sciencesultra high energy cosmic rayInterpretation (model theory)//purl.org/becyt/ford/1 [https]Nuclear physics0103 physical sciencesPARTICLES010306 general physicsDispersion (water waves)High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPierre Auger ObservatoryCOMPOSICIÓN DE MASAEXPERIMENTO AUGER010308 nuclear & particles physicsPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsObservableASTROFÍSICA//purl.org/becyt/ford/1.3 [https]RAYOS COSMICOSAstronomíaENERGY COSMIC-RAYSMODELDistribution (mathematics)Air showerParticlesUltra High Energy Cosmic RaysExperimental High Energy PhysicsSIMULATIONComputingMethodologies_DOCUMENTANDTEXTPROCESSINGEnergy cosmic-raysFísica nuclearcosmic ray experimentsAstrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTASSimulationcosmic ray experiments; ultra high energy cosmic raysModel
researchProduct

Design, upgrade and characterization of the silicon photomultiplier front-end for the AMIGA detector at the Pierre Auger Observatory

2021

The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargue. We are very grateful to the following agencies and organizations for financial support: Argentina -Comision Nacional de Energia Atomica; Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET); Gobierno de la Provincia de Mendoza; Municipalidad de Malargue; NDM Holdings and Valle Las Lenas; in gratitude for their continuing cooperation over land access; Australia -the Australian Research Council; Braz…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsAstronomyPerformance of High Energy Physics Detector01 natural sciences7. Clean energyEtc)030218 nuclear medicine & medical imaging0302 clinical medicineFront-end electronics for detector readoutAPDsInstrumentationphysics.ins-detPhoton detectors for UVMathematical PhysicsInstrumentation et méthodes en physiqueEBCCDsVisible and IR photons (solid-state) (PIN diodes APDs Si-PMTs G-APDs CCDs EBCCDs EMCCDs CMOS imagers etc)electronicsSettore FIS/01 - Fisica SperimentaleCalibration and fitting methods; Performance of High Energy Physics Detectors; Photon detectors for UVPhoton detectors for UV visible and IR photons (solid-state) (PIN diodes APDs Si-PMTs G-APDs CCDs EBCCDs EMCCDs CMOS imagers etc)Astrophysics::Instrumentation and Methods for AstrophysicsSi-PMTsInstrumentation and Detectors (physics.ins-det)charged particleAPDs; Calibration and fitting methods; Performance of High Energy Physics Detectors; Photon detectors for UV; CCDs; Cluster finding; CMOS imagers; EBCCDs; EMCCDs; Etc); Front-end electronics for detector readout; Pattern recognition; G-APDs; Si-PMTs; Visible and IR photons (solid-state) (PIN diodesAugerobservatorydensity [muon]Pattern recognition cluster finding calibration and fitting methodG-APDsChristian ministryupgradeddc:620Astrophysics - Instrumentation and Methods for Astrophysicsperformanceatmosphere [showers]Land accessCherenkov counter: waterairAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]FOS: Physical sciencesVisible and IR photons (solid-state) (PIN diodes03 medical and health sciencesPolitical sciencePattern recognition0103 physical sciencesmuon: densityFront-end electronics for detector readout; Pattern recognitionphotomultiplier: siliconHigh Energy Physicscosmic radiation: UHE[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]ddc:610CMOS imagersInstrumentation and Methods for Astrophysics (astro-ph.IM)Engineering & allied operationsscintillation counterCalibration and fitting methodsshowers: atmosphere010308 nuclear & particles physicswater [Cherenkov counter]Cluster findingAutres mathématiquesCCDsEMCCDsResearch councilefficiencyExperimental High Energy Physicssilicon [photomultiplier]Performance of High Energy Physics DetectorsHigh Energy Physics::ExperimentHumanitiesRAIOS CÓSMICOSastro-ph.IM
researchProduct

A 3-Year Sample of Almost 1,600 Elves Recorded Above South America by the Pierre Auger Cosmic-Ray Observatory

2020

The time and location of the 1,598 verified and reconstructed elves, used for the analysis showcased in this paper, are publicly available on the website of the Pierre Auger Observatory (https://www.auger.org/ index.php/science/data). We wish to thank the World Wide Lightning Location Network (http://wwlln.net), a collaboration among over 50 universities and institutions, for providing the lightning location data used in this paper. We acknowledge Robert Marshall for providing one of the most advanced elve simulations to the public, a key tool in understanding the elves observed by the Pierre Auger Observatory. The successful installation, commissioning, and operation of the Pierre Auger Ob…

010504 meteorology & atmospheric sciencesAstronomyField of view010502 geochemistry & geophysics01 natural sciences7. Clean energyAugerlcsh:QB1-991ObservatoryultravioletStormddc:550UHE Cosmic Raystime resolutionCosmic-ray observatoryPhysicslcsh:QE1-996.5astro-ph.GeologyAugerwidth [beam]IonosphereField of viewGeologylcsh:AstronomyUHE [cosmic radiation]Environmental Science (miscellaneous)horizonLightningddc:530High Energy PhysicsIonosphereCosmic-ray observatory0105 earth and related environmental sciencesfluorescence [detector]backgroundFísicaAstronomyStormsensitivityLightningopticslcsh:GeologyElves UV fluorescence detectorsThunderstorm13. Climate actionExperimental High Energy PhysicsnetworkThunderstormGeneral Earth and Planetary SciencesElvesObservatory
researchProduct

Measurement of the Proton-Air Cross Section ats=57  TeVwith the Pierre Auger Observatory

2012

We report a measurement of the proton-air cross section for particle production at the center-of-mass energy per nucleon of 57 TeV. This is derived from the distribution of the depths of shower maxima observed with the Pierre Auger Observatory: systematic uncertainties are studied in detail. Analyzing the tail of the distribution of the shower maxima, a proton-air cross section of [505 +/- 22(stat)(-36)(+28)(syst)] mb is found.

Pierre Auger ObservatoryPhysicsProton010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaHadronAstrophysics::Instrumentation and Methods for AstrophysicsGeneral Physics and Astronomy01 natural scienceslaw.inventionAugerNuclear physicsCross section (physics)law0103 physical sciencesHigh Energy Physics::ExperimentFermilabNuclear Experiment010306 general physicsNucleonColliderPhysical Review Letters
researchProduct

The FRAM robotic telescope for atmospheric monitoring at the Pierre Auger Observatory

2021

FRAM (F/Photometric Robotic Atmospheric Monitor) is a robotic telescope operated at the Pierre Auger Observatory in Argentina for the purposes of atmospheric monitoring using stellar photometry. As a passive system which does not produce any light that could interfere with the observations of the fluorescence telescopes of the observatory, it complements the active monitoring systems that use lasers. We discuss the applications of stellar photometry for atmospheric monitoring at optical observatories in general and the particular modes of operation employed by the Auger FRAM. We describe in detail the technical aspects of FRAM, the hardware and software requirements for a successful operati…

AstronomyLarge detector systems for particle and astroparticle physics; Optics; Photon detectors for UV visible and IR photons (solid-state) (PIN diodes APDs Si-PMTs G-APDs CCDs EBCCDs EMCCDs CMOS imagers etc); Real-time monitoringReal-time monitoring01 natural sciencesAugerSuccessful operationObservatoryopticalAPDshardwareAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsInstrumentationPhoton detectors for UVMathematical PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEEBCCDsSettore FIS/01 - Fisica SperimentalePhoton detectors for UV visible and IR photons (solid-state) (PIN diodes APDs Si-PMTs G-APDs CCDs EBCCDs EMCCDs CMOS imagers etc)Astrophysics::Instrumentation and Methods for AstrophysicsSi-PMTsAugerobservatoryRobotic telescopeG-APDsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaSciences exactes et naturellesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesprogrammingdetector: fluorescencePhotometry (optics)0103 physical sciencesddc:610[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]High Energy Physicsvisible and IR photons (solid-state) (PIN diodesCMOS imagersInstrumentation and Methods for Astrophysics (astro-ph.IM)Astrophysics::Galaxy AstrophysicsRemote sensingetc)fluorescence [detector]Pierre Auger Observatory010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsActive monitoringOpticsCCDslasermonitoringEMCCDsLarge detector systems for particle and astroparticle physicatmosphereExperimental High Energy PhysicsOpticEnvironmental science[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]RAIOS CÓSMICOSastro-ph.IM
researchProduct

Search for point-like sources of ultra-high energy neutrinos at the pierre auger observatory and improved limit on the diffuse flux of tau neutrinos

2012

The surface detector array of the Pierre Auger Observatory can detect neutrinos with energy Eν between 1017 eV and 1020 eV from point-like sources across the sky south of +55º and north of −65º declinations. A search has been performed for highly inclined extensive air showers produced by the interaction of neutrinos of all flavors in the atmosphere (downward-going neutrinos), and by the decay of tau leptons originating from tau neutrino interactions in Earth’s crust (Earth-skimming neutrinos). No candidate neutrinos have been found in data up to 2010 May 31. This corresponds to an equivalent exposure of ∼3.5 years of a full surface detector array for the Earth-skimming channel and ∼2 years…

Physics::Instrumentation and DetectorsSolar neutrinoAstronomyAstrophysics01 natural sciences7. Clean energyneutrinoTelescopiosTau neutrinoastroparticle physics; cosmic rays; neutrinos; telescopes010303 astronomy & astrophysicsGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)cosmic rayPhysics[PHYS]Physics [physics]High Energy Astrophysical Phenomena (astro-ph.HE)[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]neutrinosCOSMIC-RAYSCosmic neutrino backgroundastroparticle physicsMeasurements of neutrino speedFísica nuclearNeutrinoAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Radiación CósmicaAstrophysics::High Energy Astrophysical PhenomenaTELESCÓPIOSFOS: Physical sciencesAstroparticle physiccosmic rays0103 physical sciencesDETECTORCiencias ExactasPierre Auger Observatory010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFísicaAstronomy and AstrophysicstelescopesSolar neutrino problem13. Climate actionSpace and Planetary ScienceExperimental High Energy PhysicsHigh Energy Physics::ExperimentAstroparticle physics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Lepton
researchProduct

Morphology and thermal behavior of dicyanate ester-polyetherimide semi-IPNS cured at different conditions

2000

A high-temperature thermosetting bisphenol-A dicyanate, BADCy was modified with polyetherimide, PEI, at various compositions. Phase separation and rheokinetics through curing were studied by optical microscopy, dynamic and isothermal differential scanning calorimetry, and rheological measurements. The PEI phase separated at the early stages of curing, well before gelation, and did not affect the polycyclotrimerization kinetics. The phase structure and thermal properties of the final network were investigated as a function of the PEI content and cure temperature. For this purpose, dynamic mechanical analysis, scanning electron microscopy studies, and thermogravimetrical analysis were carried…

Polymers and PlasticsChemistrySpinodal decompositionThermosetting polymerGeneral ChemistryDynamic mechanical analysisPolyetherimideIsothermal processSurfaces Coatings and Filmschemistry.chemical_compoundDifferential scanning calorimetryChemical engineeringPolymer chemistryMaterials ChemistryThermal stabilityCuring (chemistry)Journal of Applied Polymer Science
researchProduct

Large-scale distribution of arrival directions of cosmic rays detected above 1018 eV at the Pierre Auger Observatory

2012

A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 1018 eV at the Pierre Auger Observatory is presented. This search is performed as a function of both declination and right ascension in several energy ranges above 1018 eV, and reported in terms of dipolar and quadrupolar coefficients. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Assuming that any cosmic-ray anisotropy is dominated by dipole and quadrupole moments in this energy range, upper limits on their amplitudes are derived. These upper limits allow us to test the origin of cosmic rays above 1018 eV from stationary Galactic …

[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Radiación CósmicaAstronomyMilky WayAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysicsEXTENSIVE AIR-SHOWERSSURFACE DETECTOR01 natural sciencesGALACTIC MAGNETIC-FIELDSAuger[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]cosmic raysObservatory0103 physical sciencesastroparticle physics; cosmic raysAnisotropy010303 astronomy & astrophysicsGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)Ciencias ExactasHigh Energy Astrophysical Phenomena (astro-ph.HE)Astroparticle physicsPhysicsPierre Auger ObservatoryANISOTROPY010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyFísicaAstronomy and AstrophysicsENERGY-SPECTRUMUltra-High Energy Cosmic Rays Pierre Auger Observatory Large Scale AnisotropiesSpace and Planetary Scienceastroparticle physicsExperimental High Energy PhysicsROTATIONARRAYFísica nuclearAstroparticle physicsRight ascensionAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Calibration of the underground muon detector of the Pierre Auger Observatory

2021

To obtain direct measurements of the muon content of extensive air showers with energy above $10^{16.5}$ eV, the Pierre Auger Observatory is currently being equipped with an underground muon detector (UMD), consisting of 219 10 $\mathrm{m^2}$-modules, each segmented into 64 scintillators coupled to silicon photomultipliers (SiPMs). Direct access to the shower muon content allows for the study of both of the composition of primary cosmic rays and of high-energy hadronic interactions in the forward direction. As the muon density can vary between tens of muons per m$^2$ close to the intersection of the shower axis with the ground to much less than one per m$^2$ when far away, the necessary bro…

muon: showersdata acquisitionPhysics::Instrumentation and DetectorsAstronomyDetector alignment and calibration methods (lasers sources particle-beams)primary [cosmic radiation]Particle detectors7. Clean energy01 natural sciencesEtc)030218 nuclear medicine & medical imaging0302 clinical medicinecalibration [detector]ObservatoryAPDsdetector: calibrationatmosphere [muon]InstrumentationPhoton detectors for UVshowers [muon]Mathematical PhysicsPhoton detectors for UV visible and IR photons (solid-state) (PIN diodes APDsSi-PMTs G-APDs CCDs EBCCDs EMCCDs CMOS imagers etc)Particle-beams)Physicsenergy: highdetector [muon]EBCCDsPhysicselectronicsSettore FIS/01 - Fisica SperimentalePhoton detectors for UV visible and IR photons (solid-state) (PIN diodes APDs Si-PMTs G-APDs CCDs EBCCDs EMCCDs CMOS imagers etc)Astrophysics::Instrumentation and Methods for AstrophysicsSourcesSi-PMTsdetector: alignmentAugermuon: atmosphereobservatorydensity [muon]G-APDshigh [energy]Particle detectorAstrophysics - Instrumentation and Methods for Astrophysicsatmosphere [showers]Detector alignment and calibration methods (lasers sourcesparticle-beams)FOS: Physical sciencesCosmic rayScintillatorParticle detectorVisible and IR photons (solid-state) (PIN diodes03 medical and health sciencesOpticsSilicon photomultipliermuon: density0103 physical sciencesCalibrationddc:530photomultiplier: silicon[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]ddc:610High Energy PhysicsCMOS imagersInstrumentation and Methods for Astrophysics (astro-ph.IM)scintillation counterParticle detectors; Detector alignment and calibration methods (lasers sources particle-beams); Photon detectors for UV visible and IR photons (solid-state) (PIN diodes APDs Si-PMTs G-APDs CCDs EBCCDs EMCCDs CMOS imagers etc); Performance of High Energy Physics DetectorsPierre Auger ObservatoryMuonshowers: atmosphere010308 nuclear & particles physicsbusiness.industrymuon: detectorCCDscosmic radiation: primaryDetector alignment and calibration methods (lasersEMCCDsanalog-to-digital converterAPDs; CCDs; CMOS imagers; Detector alignment and calibration methods (lasers; EBCCDs; EMCCDs; Etc); G-APDs; Particle detectors; Particle-beams); Performance of High Energy Physics Detectors; Photon detectors for UV; Si-PMTs; Sources; Visible and IR photons (solid-state) (PIN diodesExperimental High Energy Physicssilicon [photomultiplier]Performance of High Energy Physics DetectorsHigh Energy Physics::Experimentphoton: detectorbusinessalignment [detector]RAIOS CÓSMICOSdetector [photon]astro-ph.IM
researchProduct

Reconstruction of events recorded with the surface detector of the Pierre Auger Observatory

2020

Cosmic rays arriving at Earth collide with the upper parts of the atmosphere, thereby inducing extensive air showers. When secondary particles from the cascade arrive at the ground, they are measured by surface detector arrays. We describe the methods applied to the measurements of the surface detector of the Pierre Auger Observatory to reconstruct events with zenith angles less than 60 using the timing and signal information recorded using the water-Cherenkov detector stations. In addition, we assess the accuracy of these methods in reconstructing the arrival directions of the primary cosmic ray particles and the sizes of the induced showers.

Physics::Instrumentation and DetectorsAstronomyprimary [cosmic radiation]01 natural sciences030218 nuclear medicine & medical imagingAugerHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)0302 clinical medicinesurface [detector]Observatory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Data Processing; Large detector systems for particle and astroparticle physics; Large detector-systems performance; Performance of High Energy Physics DetectorsInstrumentationMathematical PhysicsData Processing; Large detector systems for particle and astroparticle physics; Largedetector-systems performance; Performance of High Energy Physics DetectorsLarge detector-systems performanceHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HEInstrumentation et méthodes en physiqueData ProcessingDetectorAstrophysics::Instrumentation and Methods for AstrophysicsAugercascadeobservatoryCascadeLargedetector-systems performanceddc:620Astrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomenaatmosphere [showers]airAstrophysics::High Energy Astrophysical PhenomenawaterFOS: Physical sciencesCosmic rayAtmosphere03 medical and health sciencesOptics0103 physical sciencesHigh Energy Physics14. Life underwater[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]ddc:610Instrumentation and Methods for Astrophysics (astro-ph.IM)ZenithEngineering & allied operationsPierre Auger Observatoryshowers: atmosphere010308 nuclear & particles physicsbusiness.industryhep-exdetector: surfaceLarge detector systems for particle and astroparticle physicsAutres mathématiquescosmic radiation: primaryCherenkov counterExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicHigh Energy Physics::ExperimentPerformance of High Energy Physics Detectorsbusiness[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]RAIOS CÓSMICOSastro-ph.IM
researchProduct

Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Observatory.

2012

The Pierre Auger Observatory is exploring the potential of the radio detection technique to study extensive air showers induced by ultra-high energy cosmic rays. The Auger Engineering Radio Array (AERA) addresses both technological and scientific aspects of the radio technique. A first phase of AERA has been operating since September 2010 with detector stations observing radio signals at frequencies between 30 and 80 MHz. In this paper we present comparative studies to identify and optimize the antenna design for the final configuration of AERA consisting of 160 individual radio detector stations. The transient nature of the air shower signal requires a detailed description of the antenna s…

Ciencias Astronómicas[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AstronomyAstrophysics::High Energy Astrophysical Phenomenashowers: atmosphere | cosmic radiation: UHE | polarization: effect | Auger | radio wave: emission | radio wave: detector | galaxy | background | reflection | noise | detector: networkFOS: Physical sciencesCosmic ray01 natural sciencesSignalKASCADEMHZOpticsSIGNALS0103 physical sciencesTransient responseTime domain010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)InstrumentationMathematical Physics[PHYS]Physics [physics]PhysicsPierre Auger ObservatorySPECTRUMLarge detector systems for particle and astroparticle physics010308 nuclear & particles physicsbusiness.industryPhysicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsFísica[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]ATMOSFERA (MONITORAMENTO)Air showerAntennaExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGRADIATIONAntennasFísica nuclearAntenna (radio)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Instrumentation and Methods for Astrophysicsbusiness
researchProduct

Measurement of the Fluctuations in the Number of Muons in Extensive Air Showers with the Pierre Auger Observatory

2021

The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargue. We are very grateful to the following agencies and organizations for financial support: Argentina-Comision Nacional de Energia Atomica, Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Gobierno de la Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas; in gratitude for their continuing cooperation over land access; Australia-the Australian Research Council; Brazil…

interaction: modelPhysics::Instrumentation and DetectorsAstronomyHadronGeneral Physics and AstronomyUltra-high energy cosmic rays muons properties hadronic models01 natural sciencescosmic ray; particle interaction; astroparticle detectorsAugerHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ironsurface [detector]Observatory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]cosmic rayPhysics4. EducationPhysicsSettore FIS/01 - Fisica Sperimentalemeasured [fluctuation]model [interaction]Astrophysics::Instrumentation and Methods for Astrophysicsmodel: hadronicfluctuation: measured3. Good healthAugerobservatoryparticle interactionSciences exactes et naturellesatmosphere [showers]model [particle]airCherenkov counter: waterAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]FOS: Physical sciencesCosmic raydetector: fluorescenceNuclear physicsastroparticle detectorscosmic raysmuon0103 physical sciencescalorimeterddc:53014. Life underwatercosmic radiation: UHEHigh Energy Physicsdistribution functionelectromagnetic component010306 general physicsAstrophysiquePierre Auger Observatoryfluorescence [detector]Muonshowers: atmospherehep-exdetector: surfacewater [Cherenkov counter]particle: modelSmall deviationsFísicaASTROFÍSICAAir showerExperimental High Energy PhysicsElementary Particles and Fieldshadronic [model]High Energy Physics::Experiment
researchProduct

A search for anisotropy in the arrival directions of ultra high energy cosmic rays recorded at the Pierre Auger Observatory

2012

Observations of cosmic ray arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Véron-Cetty Véron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2pt–L, 2pt+ and 3pt methods, each giving a different measure of selfclustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energy resolutions. If the sources of UHECRs follow the same large scale structu…

HIRES STEREO[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]AstronomySMALL-SCALE ANISOTROPYAstrophysics01 natural sciencesAltas energíasCosmic Rays ShowerCosmologyUltra-high-energy cosmic rayAnisotropy010303 astronomy & astrophysicsmedia_commonPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)[PHYS]Physics [physics]BL-LACERTAEAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryRadiación cósmicaFísica nuclearOBJECTSAstrophysics - High Energy Astrophysical Phenomenacosmic ray experiments; ultra high energy cosmic raysACTIVE GALACTIC NUCLEIActive galactic nucleusmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic raysearch for anisotropyultra high energy cosmic raysCosmic Ray[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]0103 physical sciences010306 general physicsCiencias ExactasPierre Auger ObservatorySPECTRUMAstronomyFísicaAstronomy and AstrophysicsASTROFÍSICAUniverseGalaxyExperimental High Energy Physicsanisotrpycosmic ray experiments[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cosmologyJournal of Cosmology and Astroparticle Physics
researchProduct

The energy spectrum of cosmic rays beyond the turn-down around 1017 eV as measured with the surface detector of the Pierre Auger Observatory

2021

The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support: Argentina – Comisión Nacional de Energía Atómica; Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Gobierno de la Provincia de Mendoza; Municipalidad de Malargüe; NDM Holdings and Valle Las Leñas; in gratitude for their continuing cooperation over land access; Australia – the Australian Research Council; Be…

Physics and Astronomy (miscellaneous)AstronomyAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]FOS: Physical sciencesFluxCosmic rayAstrophysics7. Clean energy01 natural sciencesdetector: fluorescenceAugercosmic rayssurface [detector]Observatory0103 physical sciencescalorimeterddc:530High Energy Physicscosmic radiation: UHEspectrum [cosmic radiation]010303 astronomy & astrophysicsEngineering (miscellaneous)Engineering & allied operationsHigh Energy Astrophysical Phenomena (astro-ph.HE)fluorescence [detector]Pierre Auger ObservatoryPhysicsastro-ph.HEcosmic radiation: energy spectrumcosmic radiation: spectrumdetector: surface010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleDetectorAstrophysics::Instrumentation and Methods for AstrophysicsAugerCalorimeterfluxobservatoryspectralddc:620[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical Phenomenaenergy spectrum [cosmic radiation]Energy (signal processing)RAIOS CÓSMICOSultra-high energy cosmic rays energy spectrum features.
researchProduct

Extraction of the Muon Signals Recorded with the Surface Detector of the Pierre Auger Observatory Using Recurrent Neural Networks

2021

The Pierre Auger Observatory, at present the largest cosmic-ray observatory ever built, is instrumented with a ground array of 1600 water-Cherenkov detectors, known as the Surface Detector (SD). The SD samples the secondary particle content (mostly photons, electrons, positrons and muons) of extensive air showers initiated by cosmic rays with energies ranging from $10^{17}~$eV up to more than $10^{20}~$eV. Measuring the independent contribution of the muon component to the total registered signal is crucial to enhance the capability of the Observatory to estimate the mass of the cosmic rays on an event-by-event basis. However, with the current design of the SD, it is difficult to straightfo…

PhotonPhysics::Instrumentation and DetectorsAstronomyElectron01 natural sciencesHigh Energy Physics - ExperimentAugerHigh Energy Physics - Experiment (hep-ex)mass [cosmic radiation]surface [detector]Observatory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]photon: cosmic radiationInstrumentationMathematical PhysicsPhysicsAGASAPhysicsSettore FIS/01 - Fisica SperimentaleDetectorcosmic radiation [photon]Astrophysics::Instrumentation and Methods for AstrophysicsMonte Carlo [numerical calculations]electromagnetic [showers]Augerobservatorycosmic radiation [electron]Analysis and statistical methodsnumerical calculations: Monte CarloAnalysis and statistical methodperformancepositron: cosmic radiationatmosphere [showers]Cherenkov detectordata analysis methodAnalysis and statistical methods; Calibration and fitting methods; Cherenkov detectors; Cluster finding; Large detector systems for particle and astroparticle physics; Pattern recognitionCherenkov counter: waterairneural networkAstrophysics::High Energy Astrophysical Phenomena610FOS: Physical sciencesCosmic raycosmic radiation [positron]cosmic radiation: massCalibration and fitting methodNuclear physicsstatistical analysisPattern recognition0103 physical sciencesshowers: electromagneticddc:530ddc:610High Energy Physics010306 general physicsZenithPierre Auger ObservatoryCalibration and fitting methodscosmic radiation [muon]Muonshowers: atmosphere010308 nuclear & particles physicsdetector: surfacehep-exLarge detector systems for particle and astroparticle physicswater [Cherenkov counter]Cherenkov detectorsCluster findingelectron: cosmic radiationRecurrent neural networkmuon: cosmic radiationLarge detector systems for particle and astroparticle physicExperimental High Energy PhysicsHigh Energy Physics::ExperimentRAIOS CÓSMICOSexperimental results
researchProduct

Measurement of the cosmic ray energy spectrum using hybrid events of the Pierre Auger Observatory

2012

The energy spectrum of ultra-high energy cosmic rays above 10$^{18}$ eV is measured using the hybrid events collected by the Pierre Auger Observatory between November 2005 and September 2010. The large exposure of the Observatory allows the measurement of the main features of the energy spectrum with high statistics. Full Monte Carlo simulations of the extensive air showers (based on the CORSIKA code) and of the hybrid detector response are adopted here as an independent cross check of the standard analysis (Phys. Lett. B 685, 239 (2010)). The dependence on mass composition and other systematic uncertainties are discussed in detail and, in the full Monte Carlo approach, a region of confiden…

FLUORESCENCE DETECTORAstronomyAstrophysics::High Energy Astrophysical PhenomenaMonte Carlo methodenergy spectrumFOS: Physical sciencesGeneral Physics and AstronomyFluxCosmic rayEXTENSIVE AIR-SHOWERSSURFACE DETECTOR01 natural sciencesCosmic RayAugerPierre Auger Observatory ; Monte Carlo simulations ; ultra-high energy cosmic raysHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Observatory0103 physical sciencesRECONSTRUCTIONFermilab010306 general physicsUHE Cosmic Rays Monte Carlo Energy SpectrumTRIGGERNuclear PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPierre Auger ObservatoryPACS: 96.50.S 96.50.sb 96.50.sd 98.70.Sa010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Pierre Auger Observatory; Monte Carlo simulations; ultra-high energy cosmic raysPhysicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryPROFILES[PHYS.PHYS.PHYS-SPACE-PH]Physics [physics]/Physics [physics]/Space Physics [physics.space-ph]Experimental High Energy PhysicsSIMULATIONComputingMethodologies_DOCUMENTANDTEXTPROCESSINGARRAYFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaRAIOS CÓSMICOS
researchProduct

Data-driven estimation of the invisible energy of cosmic ray showers with the Pierre Auger Observatory

2019

The determination of the primary energy of extensive air showers using the fluorescence detection technique requires an estimation of the energy carried away by particles that do not deposit all their energy in the atmosphere. This estimation is typically made using Monte Carlo simulations and thus depends on the assumed primary particle mass and on model predictions for neutrino and muon production. In this work we present a new method to obtain the invisible energy from events detected by the Pierre Auger Observatory. The method uses measurements of the muon number at ground level, and it allows us to significantly reduce the systematic uncertainties related to the mass composition and th…

Primary energyAstronomyAstrophysics::High Energy Astrophysical PhenomenaMonte Carlo methodHadronFOS: Physical sciencesCosmic rayultra high energy cosmic rays01 natural sciencesNuclear physicscosmic rays0103 physical sciencesExperiments in gravityddc:530High Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)DETECTORPierre Auger ObservatoryPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Muon010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsGénéralitésDETETORESMODEL13. Climate actioncosmic rays detectors ultra high energy cosmic raysExperimental High Energy Physicscosmic rays detectorsNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cosmologyEnergy (signal processing)Physical Review D
researchProduct

Studies on the response of a water-Cherenkov detector of the Pierre Auger Observatory to atmospheric muons using an RPC hodoscope

2020

Extensive air showers, originating from ultra-high energy cosmic rays, have been successfully measured through the use of arrays of water-Cherenkov detectors (WCDs). Sophisticated analyses exploiting WCD data have made it possible to demonstrate that shower simulations, based on different hadronic-interaction models, cannot reproduce the observed number of muons at the ground. The accurate knowledge of the WCD response to muons is paramount in establishing the exact level of this discrepancy. In this work, we report on a study of the response of a WCD of the Pierre Auger Observatory to atmospheric muons performed with a hodoscope made of resistive plate chambers (RPCs), enabling us to selec…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsAstronomy01 natural sciences030218 nuclear medicine & medical imaginglaw.invention0302 clinical medicinelawObservatoryatmosphere [muon]Instrumentationphysics.ins-detMathematical PhysicsLarge detector-systems performancePhysicsInstrumentation et méthodes en physiquePerformance of high energy physics detectorsData reduction methods; Large detector systems for particle and astroparticle physics; Large detector-systems performance; Performance of high energy physics detectorsDetectorSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicsresistive plate chamberInstrumentation and Detectors (physics.ins-det)trajectory [muon]Augerobservatorymuon: atmosphereAstrophysics - Instrumentation and Methods for AstrophysicsData reduction methodsatmosphere [showers]Cherenkov detectorairCherenkov counter: waterAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]FOS: Physical sciencesCosmic raymuon: trajectoryNuclear physics03 medical and health sciencesHodoscopeData reduction method0103 physical sciencesCalibrationHigh Energy Physicsddc:610cosmic radiation: UHE[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Instrumentation and Methods for Astrophysics (astro-ph.IM)ZenithCiencias ExactasPierre Auger Observatoryshowers: atmosphere010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicswater [Cherenkov counter]hodoscopeFísicaAutres mathématiquesstabilitycalibrationData reduction methods Large detector systems for particle and astroparticle physics Large detector-systems performance Performance of High Energy Physics DetectorsExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicHigh Energy Physics::ExperimentRAIOS CÓSMICOSastro-ph.IM
researchProduct

Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

2012

Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargüe and averaged monthly models, the utility of the GDAS data is shown.

AstronomyAtmospheric modelAtmospheric monitoringAtmospheric sciencesCosmic Rays Shower01 natural scienceslaw.inventionData assimilationlawcosmic rays; extensive air showers; atmospheric monitoring; atmospheric modelsDEPENDENCEATMOSFERA (OBSERVAÇÃO)TEMPERATUREPhysics::Atmospheric and Oceanic PhysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)[PHYS]Physics [physics]Cascada atmosférica extensaOPTICAL DEPTH[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryAtmospheric temperatureRadiación cósmicaAtmosphere of EarthComputingMethodologies_DOCUMENTANDTEXTPROCESSINGRadiosondeFísica nuclearREFRACTIVE-INDEXAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]MeteorologyAtmospheric MonitoringAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic Rays ShowersEXTENSIVE AIR-SHOWERSCosmic RayAtmósferaWeather stationAtmospheric models0103 physical sciencesExtensive air showers010306 general physicsCosmic raysDETECTORCiencias ExactasPierre Auger ObservatoryAtmospheric models010308 nuclear & particles physicsFísicaAstronomy and Astrophysics13. Climate actionExperimental High Energy PhysicsEMISSION[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct