0000000000737014

AUTHOR

Kai Rajala

showing 18 related works from this author

An upper gradient approach to weakly differentiable cochains

2012

Abstract The aim of the present paper is to define a notion of weakly differentiable cochain in the generality of metric measure spaces and to study basic properties of such cochains. Our cochains are (sub)additive functionals on a subspace of chains, and a suitable notion of chains in metric spaces is given by Ambrosio–Kirchheimʼs theory of metric currents. The notion of weak differentiability we introduce is in analogy with Heinonen–Koskelaʼs concept of upper gradients of functions. In one of the main results of our paper, we prove continuity estimates for cochains with p-integrable upper gradient in n-dimensional Lie groups endowed with a left-invariant Finsler metric. Our result general…

Mathematics - Differential GeometryPure mathematics49Q15 46E35 53C65 49J52 30L99Applied MathematicsGeneral Mathematicsta111010102 general mathematicsMathematical analysisLie group01 natural sciencesMeasure (mathematics)Cohomology010101 applied mathematicsSobolev spaceMetric spaceMathematics - Analysis of PDEsDifferential Geometry (math.DG)Hausdorff dimensionMetric (mathematics)FOS: MathematicsDifferentiable function0101 mathematicsAnalysis of PDEs (math.AP)Mathematics
researchProduct

Bonnesenʼs inequality for John domains in Rn

2012

Abstract We prove sharp quantitative isoperimetric inequalities for John domains in R n . We show that the Bonnesen-style inequalities hold true in R n under the John domain assumption which rules out cusps. Our main tool is a proof of the isoperimetric inequality for symmetric domains which gives an explicit estimate for the isoperimetric deficit. We use the sharp quantitative inequalities proved in Fusco et al. (2008) [7] and Fuglede (1989) [4] to reduce our problem to symmetric domains.

Pure mathematicsJohn domainInequalitymedia_common.quotation_subjectMathematical analysisIsoperimetric dimensionQuasiconformal mapDomain (mathematical analysis)Quantitative isoperimetric inequalityMathematics::Metric GeometryIsoperimetric inequalityAnalysismedia_commonMathematicsJournal of Functional Analysis
researchProduct

Mappings of finite distortion: Removable singularities

2003

We show that certain small sets are removable for bounded mappings of finite distortion for which the distortion function satisfies a suitable subexponential integrability condition. We also give an example demonstrating the sharpness of this condition.

Distortion (mathematics)Distortion functionGeneral MathematicsBounded functionMathematical analysisGravitational singularityAlgebra over a fieldRemovable singularityMathematicsIsrael Journal of Mathematics
researchProduct

Lipschitz continuity of Cheeger-harmonic functions in metric measure spaces

2003

Abstract We use the heat equation to establish the Lipschitz continuity of Cheeger-harmonic functions in certain metric spaces. The metric spaces under consideration are those that are endowed with a doubling measure supporting a (1,2)-Poincare inequality and in addition supporting a corresponding Sobolev–Poincare-type inequality for the modification of the measure obtained via the heat kernel. Examples are given to illustrate the necessity of our assumptions on these spaces. We also provide an example to show that in the general setting the best possible regularity for the Cheeger-harmonic functions is Lipschitz continuity.

Pure mathematicsMathematical analysisLipschitz continuityModulus of continuityCheeger-harmonicConvex metric spaceUniform continuityMetric spaceLipschitz domainPoincaré inequalityheat kerneldoubling measureMetric mapLipschitz regularitylogarithmic Sobolev inequalityMetric differentialhypercontractivityAnalysisNewtonian spaceMathematicsJournal of Functional Analysis
researchProduct

Quasisymmetric Koebe uniformization with weak metric doubling measures

2020

We give a characterization of metric spaces quasisymmetrically equivalent to a finitely connected circle domain. This result generalizes the uniformization of Ahlfors 2-regular spaces by Merenkov and Wildrick. peerReviewed

Pure mathematicsMathematics - Complex VariablesMathematics::Complex VariablesGeneral MathematicsCharacterization (mathematics)metriset avaruudetDomain (mathematical analysis)funktioteoriaMetric spaceMetric (mathematics)FOS: MathematicsMathematics::Metric GeometrymittateoriaComplex Variables (math.CV)Uniformization (set theory)MathematicsIllinois Journal of Mathematics
researchProduct

A lower bound for the Bloch radius of 𝐾-quasiregular mappings

2004

We give a quantitative proof to Eremenko’s theorem (2000), which extends Bloch’s classical theorem to the class of n n -dimensional K K -quasiregular mappings.

Class (set theory)Pure mathematicsTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESApplied MathematicsGeneral MathematicsMathematicsofComputing_GENERALGeometryRadiusClassical theoremGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)Upper and lower boundsMathematicsProceedings of the American Mathematical Society
researchProduct

Quasiregular ellipticity of open and generalized manifolds

2014

We study the existence of geometrically controlled branched covering maps from \(\mathbb R^3\) to open \(3\)-manifolds or to decomposition spaces \(\mathbb {S}^3/G\), and from \(\mathbb {S}^3/G\) to \(\mathbb {S}^3\).

Mathematics - Complex VariablesApplied Mathematics010102 general mathematicsquasiregular mappingsdecomposition spacesGeometric Topology (math.GT)Metric Geometry (math.MG)01 natural sciencesCombinatoricsMathematics - Geometric Topologysemmes metricsComputational Theory and MathematicsMathematics - Metric Geometryquasiregular ellipticity0103 physical sciencesFOS: Mathematics30C65 (Primary) 30L10 (Secondary)010307 mathematical physicsBranched covering0101 mathematicsComplex Variables (math.CV)AnalysisMathematics
researchProduct

Wolfe's theorem for weakly differentiable cochains

2014

Abstract A fundamental theorem of Wolfe isometrically identifies the space of flat differential forms of dimension m in R n with the space of flat m -cochains, that is, the dual space of flat chains of dimension m in R n . The main purpose of the present paper is to generalize Wolfe's theorem to the setting of Sobolev differential forms and Sobolev cochains in R n . A suitable theory of Sobolev cochains has recently been initiated by the second and third author. It is based on the concept of upper norm and upper gradient of a cochain, introduced in analogy with Heinonen–Koskela's concept of upper gradient of a function.

Mathematics - Differential GeometryPure mathematicsDifferential form49Q15 46E35 53C65 49J52Mathematics::Algebraic Topology01 natural sciencesMathematics - Analysis of PDEs0103 physical sciencesFOS: MathematicsDifferentiable function0101 mathematicsflat cochainMathematicsFundamental theoremDual spaceta111polyhedral chain010102 general mathematicsCohomologySobolev spaceDifferential Geometry (math.DG)Norm (mathematics)010307 mathematical physicsgeometric integration theoryweakly differentiable cochainAnalysisAnalysis of PDEs (math.AP)
researchProduct

Mappings of finite distortion and asymmetry of domains

2013

We establish an anisotropic Bonnesen inequality for images of balls under homeomorphisms with exponentially integrable distortion. Mathematics Subject Classification (2000): 30C65, 46E35.

Distortion (mathematics)Mathematics Subject ClassificationIntegrable systemGeneral Mathematicsmedia_common.quotation_subjectta111Mathematical analysisMathematics::Metric GeometryAnisotropyAsymmetryMathematicsmedia_commonAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

Mappings of finite distortion: The Rickman-Picard theorem for mappings of finite lower order

2004

We show that an entire mappingf of finite distortion with finite lower order can omit at most finitely many points when the distortion function off is suitably controlled. The proof uses the recently established modulus inequalities for mappings of finite distortion [15] and comparison inequalities for the averages of the counting function. A similar technique also gives growth estimates for mappings having asymptotic values.

Distortion (mathematics)Distortion functionPure mathematicsPartial differential equationGeneral MathematicsMathematical analysisLower orderFunction (mathematics)AnalysisPicard theoremMathematicsJournal d'Analyse Mathématique
researchProduct

Surface families and boundary behavior of quasiregular mappings

2005

We study the boundary behavior of bounded quasiregular mappings f : Bn(0, 1) → Rn, n ≥ 3. We show that there exists a large family of cusps, with vertices on the boundary sphere S n−1 (0, 1), so that the images of these cusps under f have finite (n − 1)-measure. peerReviewed

Pure mathematicsGeneral MathematicsBounded functionMathematical analysisBoundary (topology)quasiregular mappingsSurface (topology)Mathematics30C65
researchProduct

Reciprocal lower bound on modulus of curve families in metric surfaces

2019

We prove that any metric space $X$ homeomorphic to $\mathbb{R}^2$ with locally finite Hausdorff 2-measure satisfies a reciprocal lower bound on modulus of curve families associated to a quadrilateral. More precisely, let $Q \subset X$ be a topological quadrilateral with boundary edges (in cyclic order) denoted by $\zeta_1, \zeta_2, \zeta_3, \zeta_4$ and let $\Gamma(\zeta_i, \zeta_j; Q)$ denote the family of curves in $Q$ connecting $\zeta_i$ and $\zeta_j$; then $\text{mod} \Gamma(\zeta_1, \zeta_3; Q) \text{mod} \Gamma(\zeta_2, \zeta_4; Q) \geq 1/\kappa$ for $\kappa = 2000^2\cdot (4/\pi)^2$. This answers a question concerning minimal hypotheses under which a metric space admits a quasiconfor…

General Mathematics010102 general mathematicsquasiconformal mappingModulusMetric Geometry (math.MG)uniformizationconformal modulusCoarea inequalitymetriset avaruudet01 natural sciencesUpper and lower boundsfunktioteoriaCombinatoricsMathematics - Metric Geometry30L100103 physical sciencesMetric (mathematics)FOS: Mathematics010307 mathematical physics0101 mathematicsReciprocalMathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

Uniformization with infinitesimally metric measures

2019

We consider extensions of quasiconformal maps and the uniformization theorem to the setting of metric spaces $X$ homeomorphic to $\mathbb R^2$. Given a measure $\mu$ on such a space, we introduce $\mu$-quasiconformal maps $f:X \to \mathbb R^2$, whose definition involves deforming lengths of curves by $\mu$. We show that if $\mu$ is an infinitesimally metric measure, i.e., it satisfies an infinitesimal version of the metric doubling measure condition of David and Semmes, then such a $\mu$-quasiconformal map exists. We apply this result to give a characterization of the metric spaces admitting an infinitesimally quasisymmetric parametrization.

Characterization (mathematics)Space (mathematics)conformal modulus01 natural sciencesMeasure (mathematics)funktioteoriaCombinatoricsMathematics - Metric Geometry0103 physical sciencesFOS: Mathematics0101 mathematicsComplex Variables (math.CV)MathematicsMathematics - Complex VariablesMathematics::Complex Variables010102 general mathematicsquasiconformal mappingMetric Geometry (math.MG)metriset avaruudetmetric doubling measureMetric spaceDifferential geometryUniformization theoremMetric (mathematics)quasisymmetric mapping30L10 (Primary) 30C65 28A75 51F99 (Secondary)mittateoria010307 mathematical physicsGeometry and TopologyUniformization (set theory)
researchProduct

Mappings of finite distortion: Removable singularities for locally homeomorphic mappings

2004

Let f be a locally homeomorphic mapping of finite distortion in dimension larger than two. We show that when the distortion of f satisfies a certain subexponential integrability condition, small sets are removable. The smallness is measured by a weighted modulus.

Distortion (mathematics)Dimension (vector space)Applied MathematicsGeneral MathematicsMathematical analysisModulusGravitational singularityMathematicsProceedings of the American Mathematical Society
researchProduct

Invertibility of Sobolev mappings under minimal hypotheses

2010

Abstract We prove a version of the Inverse Function Theorem for continuous weakly differentiable mappings. Namely, a nonconstant W 1 , n mapping is a local homeomorphism if it has integrable inner distortion function and satisfies a certain differential inclusion. The integrability assumption is shown to be optimal.

Sobolev spaceInverse function theoremDiscrete mathematicsDistortion functionDifferential inclusionIntegrable systemApplied MathematicsLocal homeomorphismDifferentiable functionHomeomorphismMathematical PhysicsAnalysisMathematicsAnnales de l'Institut Henri Poincare (C) Non Linear Analysis
researchProduct

Quasispheres and metric doubling measures

2018

Applying the Bonk-Kleiner characterization of Ahlfors 2-regular quasispheres, we show that a metric two-sphere $X$ is a quasisphere if and only if $X$ is linearly locally connected and carries a weak metric doubling measure, i.e., a measure that deforms the metric on $X$ without much shrinking.

Pure mathematicsmetric spaces30L10 (Primary) 30C65 28A75 (Secondary)General MathematicsMathematicsofComputing_GENERALCharacterization (mathematics)01 natural sciencesMeasure (mathematics)Intrinsic metricfunktioteoria0103 physical sciencesFOS: MathematicsComplex Variables (math.CV)0101 mathematicsMathematicsDiscrete mathematicsMathematics - Complex VariablesApplied MathematicsInjective metric spaceta111010102 general mathematicsmetriset avaruudetcomplex analysisConvex metric spacemeasure theoryMetric (mathematics)mittateoria010307 mathematical physicsFisher information metricProceedings of the American Mathematical Society
researchProduct

Uniformization of two-dimensional metric surfaces

2014

We establish uniformization results for metric spaces that are homeomorphic to the Euclidean plane or sphere and have locally finite Hausdorff 2-measure. Applying the geometric definition of quasiconformality, we give a necessary and sufficient condition for such spaces to be QC equivalent to the Euclidean plane, disk, or sphere. Moreover, we show that if such a QC parametrization exists, then the dilatation can be bounded by 2. As an application, we show that the Euclidean upper bound for measures of balls is a sufficient condition for the existence of a 2-QC parametrization. This result gives a new approach to the Bonk-Kleiner theorem on parametrizations of Ahlfors 2-regular spheres by qu…

metric surfacesPure mathematicsMathematics - Complex VariablesGeneral Mathematics010102 general mathematicsPrimary 30L10 Secondary 30C65 28A75 51F99 52A38Hausdorff spaceMetric Geometry (math.MG)01 natural sciencesUpper and lower boundsMetric spaceMathematics - Metric GeometryBounded function0103 physical sciencesMetric (mathematics)Euclidean geometryFOS: MathematicsMathematics::Metric Geometry010307 mathematical physicsComplex Variables (math.CV)0101 mathematicsUniformization (set theory)ParametrizationMathematicsInventiones mathematicae
researchProduct

Mappings of finite distortion : removable singularities

2003

mathematical analysismatemaattinen analyysi
researchProduct