0000000000797800
AUTHOR
Frédérique De Fornel
Measured and predicted light attenuation in dense coastal upslope fog at 650, 850, and <inline-formula><math display="inline" overflow="scroll"><mrow><mn>950</mn><mspace width="0.3em" /><mi>nm</mi></mrow></math></inline-formula> for free-space optics applications
Free-space optics FSO has gained considerable importance in this decade of demand for high-bandwidth transmission capabilities. FSO can provide the last mile solution, but the availability and reliability issues concerned with it have received increasing attention and need thorough investigation. In this work, we present our results on fog attenu- ation measurement and prediction at wavelengths 650, 850, and 950 nm with peak values up to 500 dB/km. For the attenuation measurement, optical wavelengths are transmitted over the same path of fog in free air to a receiver, measuring the power at every wavelength. The measure- ment of fog attenuation was performed at the France Telecom RD free-sp…
Formation and properties of localized modes near photonic band edges
International audience
Properties of silicon integrated photonic lenses: bandwidth, chromatic aberration, and polarization dependence
We analyze the properties of silicon integrated photonic lenses based on scattering optical elements. The devices have been inverse- designed by combining genetic algorithms and the multiple scattering theory. These lenses are able to focus an infrared plane wave front on a position freely determined during the design stage. The nanofabricated silicon integrated lenses have proved effective over a large range of wave- lengths, measured to be of the order of 100 nm. The lenses show chromatic aberration, with a displacement of the position of the focus mea- sured to be higher than 1.5 μm when the wavelength varies from 1500 to 1600 nm. Moreover, we analyze the polarization of the focused beam…
Evanescent light scattering: The validity of the dipole approximation
In near-field optics the very concept of dipole is often used to represent either an elementary source or a scattering center. The most simple and widely used example is that of a small spherical particle whose polarizability is assumed to conform to the Clausius-Mossotti relation. While in conventional, far-field optics this approximation is known to be valid provided that the object is much smaller than the wavelength, its extension to near-field optics requires some precautions. Indeed, in the case of the scattering, by a spherical object, of an evanescent field generated, for instance, by total internal reflection or by a surface polariton, the strong-field gradient may increase the con…
Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color
International audience; Using a scanning near-field optical microscope operating with a hyperspectral detection scheme, we report the direct observation of the mirage effect within an on-chip integrated artificial material made of a two dimensional graded photonic crystal. The light rainbow due to the material dispersion is quantified experimentally and quantitatively compared to three dimensional plane wave assisted Hamiltonian optics predictions of light propagation.
Unguided plasmon-mode resonance in optically excited thin film: exact modal description of Kretschmann–Raether experiment
With the aim of studying electromagnetic surface wave resonance, we rigorously solve the homogeneous and inhomogeneous problem associated with an optically excited thin metallic film. We then demonstrate unambiguously that the excited eigenmode engendering plasmonic resonance in the so-called Kretschmann–Raether configuration is an unguided mode (i.e., with an anti-evanescent structure). This result, challenging the classical interpretation of the outgoing wave condition applied to surface waves, permits a quantitative interpretation of the attenuated total reflection curves.
Interface engineering for improved light transmittance through photonic crystal flat lenses
In this paper, we present photonic crystal flat lenses with interfaces engineered to improve the light transmittance thanks to a broad angles impedance matching. The interface engineering consists in the realization of antireflection gratings on the edges of the lenses which are designed to reduce the propagative waves reflectivity over a wide range of incident angles. The fabricated structures were measured in optical near-field and a four times enhancement of the light transmission efficiency is reported.
Tunable optical lattices in the near-field of a few-mode nanophotonic waveguide
Due to the action of the scattering force, particles that are optically trapped at the surface of a waveguide are propelled in the direction of the light propagation. In this work, we demonstrate an original approach for creating tunable periodic arrays of optical traps along a few-mode silicon nanophotonic waveguide. We show how the near-field optical forces at the surface of the waveguide are periodically modulated when two guided modes with different propagation constants are simultaneously excited. The phenomenon is used to achieve stable trapping of a large number of dielectric particles or bacteria along a single waveguide. By controlling the light coupling conditions and the laser wa…
Field propagator of a dressed junction: Fluorescence lifetime calculations in a confined geometry
The study of the fluorescence phenomenon by near-field optical techniques requires one to describe precisely the spontaneous emission change occurring when the fluorescing particle is placed in a complex optical environment. For this purpose, the field susceptibility (also called the field propagator) of a planar junction formed by a cavity bounded by two semi-infinite bodies with arbitrary optical constant is derived within the framework of linear-response theory. The field propagator associated with the junction is then modified in a self-consistent manner to account for the presence of any arbitrary object inside the junction. As a first illustration the alteration of the fluorescence li…
Silicon-microring into a fiber laser cavity for high-repetition-rate pulse train generation
International audience; In 1997, Yoshida et al. inserted a Fabry-Perot filter in a modulation instability fiber laser cavity [1], the free spectral range (FSR) of the Fabry-Perot fixed the RF to 115 GHz; however the pulsed laser was poorly stable. Since then, lasers of increasing performance have been demonstrated using variants of this method. In 2012, Peccianti et al., demonstrated the first fiber laser harmonically mode-locked by integrated high-finesse microresonator [2]. The doped silica, on-chip microresonator provided both high spectral selectivity and nonlinearity, thus promoting the dynamics pulsed at 200 GHz. By using a silicon microring resonator (SMRR), this approach lead to the…
Real space observation of two-dimensional Bloch wave interferences in a negative index photonic crystal cavity
We report here the direct observation of two-dimensional (2D) Bloch wave interferences in a negative index photonic crystal by using optical near-field microscopy techniques. The photonic crystal is formed by a defectless honeycomb lattice of air holes etched in III-V semiconductor slab. A scanning near-field optical microscope is used to visualize spatially, as well as spectrally, the light distribution inside the photonic crystal. The recorded near-field spectra and maps presented here unambiguously demonstrate the Bloch wave interferences within the photonic crystal. Then, the spectral and spatial evolution of these interferences allows us to recover experimentally the 2D band diagram of…
From Measurement to Control of Electromagnetic Waves using a Near‐field Scanning Optical Microscope
Near-Field Distribution of Optical Transmission of Periodic Sub-wavelength Holes in a Metal Film
Applications of near-field optics to the characterization of optoelectronics components
In the race towards purely optical communications, the necessity of producing integrated components is linked to the requirement for the precise characteriza-tion of optoelectronic components. Near-field detection techniques meet this requirement, AFM (Atomic Force Microscopy), for instance, can provide the topography of a given sample. In conjunction with these new tools, several different kinds of near-field optical microscopes (NFOM) have appeared. They enable the characteriza-tion of the components with a resolution better than that imposed by the Rayleigh criterion. This is primarily due to the fact that they are sensitive to the evanescent waves. This document presents several areas r…
Accelerated aging and life tests of optical fibers
The reliability of the network optical fibers is a critical issue for telecommunications.New investigations methods have been developed within a cooperative program supported by France Telecom. They include low coherence interferometry and optical near field microscopy in association with classical analysis tools such as Scanning Electron Microscopy and Shear Force Microscopy. One aim of the study is the localization and the characterization of the defects from which failure originates. The aging effect has been investigated in silica fibers immersed in desionized water at 65 oc and 85 "C for different times: from 3 to 12 months
Suppression of radiative losses of surface polaritons on nanostructured thin metal films
The strong electromagnetic coupling between surface plasmon polariton modes on opposite interfaces of a finite thickness periodically nanostructured metal film has been studied. Surface polariton dispersion and associated electromagnetic field distributions have been analyzed. It was shown that at a frequency that corresponds to the crossing of film Bloch modes of different symmetries, the radiative losses of surface polaritons that are related to the polaritons' coupling to light during propagation on the structured surface are suppressed.
On-chip periodic arrays of optical traps based on the superposition of guided modes in silicon waveguides
Since the pioneering work of Kawata and Tani [1], photonic waveguides have long been regarded as efficient optical conveyor belts for potential lab-on-a-chip applications. Indeed, near-field optical forces arising at the surface of such waveguides lead to efficient on-chip guided propulsion of micro- and even nanoparticles [2], as well as cells and bacteria in liquid solutions [3]. However, achieving stable and precisely controlled optical trapping of particles at the surface of a waveguide has been made possible only recently, and even then, it still requires complex photonic electro-optic tools to produce and handle on-chip standing waves [4].
Sub-wavelength imaging of light confinement and propagation in SOI based photonic crystal devices
A light source is coupled into photonic crystal devices and a near field optical probe is used to observe the electromagnetic field propagation and distribution at a sub-wavelength scale. Bloch modes are clearly observed.
Far- and near-field characterization of a photonic-crystal-based microcavity on silicon-on-insulator
International audience
Near-field observation of subwavelength confinement of photoluminescence by a photonic crystal microcavity
We present a direct, room-temperature near-field optical study of light confinement by a subwavelength defect microcavity in a photonic crystal slab containing quantum-well sources. The observations are compared with three-dimensional finite-difference time-domain calculations, and excellent agreement is found. Moreover, we use a subwavelength cavity to study the influence of a near-field probe on the imaging of localized optical modes. © 2006 Optical Society of America.
Extraordinary tuning of a nanocavity by a near-field probe
Abstract We report here an experimental observation of an extraordinary near-field interaction between a local probe and a small-volume solid-state nanocavity. We directly compare the normally observed near-field interaction regime driven by the perturbation theory and then report the extraordinary interaction regime. Subsequently, we show that the cavity can take up to 2 min to recover from this interaction after removing the probe and that leads to an extraordinary blue-shift of the cavity resonance wavelength (∼15 nm) which depends on the probe motion above the cavity and not the position. The reasons for this effect are not fully understood yet but we try to give some explanations.
Bloch mode coupling investigation in silicon-on-insulator W1 photonic crystal waveguide
We report in this paper the study of a W1 photonic crystal waveguide which supports two Bloch modes having different parity. A monomode ridge waveguide etched in a Silicon-On-Insulator substrate and connecting to the photonic crystal waveguide allows us to excite the even Bloch mode. Transmission measurements, performed on a broad spectral range, evidence the even mode propagation along the defect line and experimental spectrum is discussed in light of band diagram and FDTD calculations. Then spectrally resolved near-field patterns obtained by using a scanning near field optical microscope in collection mode for wavelengths inside and outside the multimode region of the photonic crystal wav…
Bloch Modes Coupling in Photonic Crystal Waveguides
We investigate the properties of Bloch modes inside a photonic crystal waveguide. By using simultaneously a near field optical microscope and a transmittance setup, we demonstrate that Bloch modes having different parity are coupled.
Dispersion engineering for photonic crystal based nanophotonic devices
International audience
Optical near-field microscopy of light focusing through a photonic crystal flat lens
We report here the direct observation by using a scanning near-field microscopy technique of the light focusing through a photonic crystal flat lens designed and fabricated to operate at optical frequencies. The lens is fabricated using a III-V semiconductor slab, and we directly visualize the propagation of the electromagnetic waves by using a scanning near-field optical microscope. We directly evidence spatially, as well as spectrally, the focusing operating regime of the lens. At last, in light of the experimental scanning near-field optical microscope pictures, we discuss the lens ability to focus light at a subwavelength scale.
Near-Field Distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film
Recent experimental discovery of the enhanced optical transmission through metal films with periodic subwavelength holes has given rise to a considerable interest in the optical properties of such structures due to their possible numerous applications in optics and optoelectronics as well as rich physics behind the phenomenon of the transmission enhancement [1–4]. The transmission of a subwavelength aperture is very low and proportional to the fourth power of the ratio of its diameter and light wavelength. However, if a metal film is perforated with a periodic array of such holes, the optical transmission can be significantly enhanced [1]. Being normalized to the total area of the illuminat…
A near-field actuated optical nanocavity
International audience; We demonstrate here that switching and tuning of a nanocavity resonance can be achieved by approaching a sub-micrometer tip inside its evanescent near-field. The resonance energy is tuned over a wide spectral range (Δλ/λ~10-3) without significant deterioration of the cavity peak-transmittance and of the resonance linewidth. Such a result is achieved by taking benefits from a weak tip-cavity interaction regime in which the tip behaves as a pure optical path length modulator.