0000000000855091
AUTHOR
Vincent Laude
Notice of Removal: Stochastic generation of the phononic band structure of lossy and infinite crystals
The concept of the band structure is central to the field of phononic crystals. Indeed, capturing the dispersion of Bloch waves — the eigenmodes of propagation in periodic media — gives invaluable information on allowed propagation modes, their phase and group velocities, local resonances, and band gaps. Band structures are usually obtained by solving an eigenvalue problem defined on a closed and bounded domain, which results in a discrete spectrum. There are at least two cases, however, that cannot be reduced to a simple eigenvalue problem: first, when materials showing dispersive loss are present and second, when the unit-cell extends beyond any bound, as in the case of phononic crystal o…
Surface-Wave Coupling to Single Phononic Subwavelength Resonators
International audience; We propose to achieve manipulation of mechanical vibrations at the micron scale by exploiting the interaction of individual, isolated mechanical resonators with surface acoustic waves. We experimentally investigate a sample consisting of cylindrical pillars individually grown by focused-ion-beam-induced deposition on a piezoelectric substrate, exhibiting different geometrical parameters and excited by a long-wavelength surface elastic wave. The mechanical displacement is strongly confined in the resonators, as shown by field maps obtained by laser scanning interferometry. A tenfold displacement field enhancement compared to the vibration at the surface is obtained, r…
Phononic crystals: Harnessing the propagation of sound, elastic waves, and phonons
Comptes Rendus Physique - In Press.Proof corrected by the author Available online since jeudi 3 mars 2016
Two Methods to Broaden the Bandwidth of a Nonlinear Piezoelectric Bimorph Power Harvester
We propose two methods to broaden the operation bandwidth of a nonlinear pinned–pinned piezoelectric bimorph power harvester. The energy-scavenging structure consists of a properly poled and electroded flexible bimorph with a metallic layer in the middle, and is subjected to flexural vibration. Nonlinear effects at large deformations near resonance are considered by taking the in-plane extension of the bimorph into account. The resulting output powers are multivalued and exhibit jump phenomena. Two methods to broaden the operation bandwidth are proposed: The first method is to extend the operation frequency to the left single-valued region through optimal design. The second method is to exc…
Multiple low-frequency broad band gaps generated by a phononic crystal of periodic circular cavity sandwich plates
Abstract We propose a new type of phononic crystal (PnC) composed of a periodic alternation of circular cavity sandwich plates. In the low-frequency regime, the crystal can modulate the propagation of flexural waves. Governing equations are deduced basing on the classical theory of coupled extensional and flexural vibrations of plates. The dispersion relation of the infinite PnC is calculated by combining the transfer matrix method with Bloch theory. The dynamic response of the PnC with finite unit cells is further studied with finite element analysis. An experiment is carried out to demonstrate the performance of the PnC in vibration isolation. Numerical results and experimental results bo…
Observation of topological gravity-capillary waves in a water wave crystal
The discovery of topological phases of matter, initially driven by theoretical advances in quantum condensed matter physics, has been recently extended to classical wave systems, reaching out to a wealth of novel potential applications in signal manipulation and energy concentration. Despite the fact that many realistic wave media (metals at optical frequencies, polymers at ultrasonic frequencies) are inherently dispersive, topological wave transport in photonic and phononic crystals has so far been limited to ideal situations and proof-of-concept experiments involving dispersionless media. Here, we report the first experimental demonstration of topological edge states in a classical water …
Guidance of surface elastic waves along a linear chain of pillars
International audience; The propagation of surface elastic waves, or surface phonons, is considered along a linear and periodic chain of cylindrical pillars sitting on a semi-infinite solid substrate. A variety of guided modes, some of them exhibiting a very low group velocity, are shown to exist at frequencies close to the resonance frequencies of the pillars. Although the pillar diameter is typically smaller than half the relevant wavelength, lateral radiation on the surface is found to be canceled. Surface guidance is explained by the hybridization of the resonating pillars with the continuum of elastic waves of the substrate.
Guiding and splitting Lamb waves in coupled-resonator elastic waveguides
Abstract We investigate experimentally Lamb wave propagation in coupled-resonator elastic waveguides (CREWs) formed by a chain of cavities in a two-dimensional phononic crystal slab with cross holes. Wide complete bandgaps, extending from 53 to 88 kHz, are first measured in a finite phononic crystal slab sample. A straight waveguide and a wave splitting circuit with 90° bends are then designed, fabricated and measured. Elastic Lamb waves are excited by a piezoelectric patch attached to one side of the phononic slab and detected using a scanning vibrometer. Strongly confined guiding and splitting at waveguide junctions are clearly observed for several guided waves. Numerical simulations are …
Acoustic Topological Circuitry in Square and Rectangular Phononic Crystals
International audience; We systematically engineer a series of square and rectangular phononic crystals to create experimental realizations of complex topological phononic circuits. The exotic topological transport observed is wholly reliant upon the underlying structure which must belong to either a square or rectangular lattice system and not to any hexagonal-based structure. The phononic system chosen consists of a periodic array of square steel bars which partitions acoustic waves in water over a broadband range of frequencies (∼0.5MHz). An ultrasonic transducer launches an acoustic pulse which propagates along a domain wall, before encountering a nodal point, from which the acoustic si…
Thermal cloaking of complex objects with the neutral inclusion and the coordinate transformation methods
We explore the cloaking of a complex shape by either the neutral inclusion or the transformation thermodynamics (TT) methods. Thin cloaks are built and the heat cloaking efficiency is investigated for both the steady-state and the transient regimes. We show that the neutral inclusion cloak is more efficient in both regimes, though it has the drawback that the thermal conductivity of the cloaked shape must be known. In practice, the neutral inclusion method is more flexible and easier to implement than the coordinate transformation method, especially for complex shapes.We explore the cloaking of a complex shape by either the neutral inclusion or the transformation thermodynamics (TT) methods…
Acousto-optic cavity coupling in 2D phoxonic crystal with combined convex and concave holes
International audience; A two-dimensional cross-like phoxonic crystal (PxC) model is proposed, which exhibits simultaneously large complete photonic crystal (PtC) and phononic crystal (PnC) bandgaps. The most salient trait of the structure is the wide range of geometrical parameters compatible with large complete bandgaps. After geometrical optimization, photonic and phononic bandgaps with gap-to-midgap ratios of 11.5% and 90.7% are obtained, respectively. These values are close to the best topology-optimized reported values but are obtained with simple shapes compatible with nanoscale fabrication technology. These characteristics make the convex–concave topology a promising candidate for P…
Low-frequency band gap in cross-like holey phononic crystal strip
International audience; A silicon-based cross-like holey phononic crystal (PnC) strip is proposed for the control of elastic waves in the field of micro-electro-mechanical systems (MEMS). The goal is to obtain a broad bandgap at low frequencies with a lightweight structure. In this respect, the effects of varying the in-plane and the out-of-plane geometry parameters are discussed. After design, a gap-to-midgap ratio of 47% is obtained with an intermediate filling fraction of the solid material and a small thickness of the strip. The band gap can be moved to an extremely low frequency range while keeping the strip significantly smaller than previously reported PnC strips. The transmission pr…
3034461.pdf
Supplemental document
Ultra-Wide Band Gap in Two-Dimensional Phononic Crystal with Combined Convex and Concave Holes
A phononic crystal with an ultra‐wide band gap is proposed, whose unit cell consists of a cross‐like concave hole in the center and four square convex holes at the corners. The dispersion relations, modal kinetic energy ratio, and eigenmodes at edges of the band gaps are investigated by using the finite element method. The influence of the geometrical parameters of the convex and concave holes on the band gaps is further analyzed. After optimization, an ultra‐wide band gap with gap‐to‐midgap ratio of 156.0% is achieved, with the filling fraction keeping a relative small value. Numerical results illustrate that the combination of convex and concave holes is a practicable direction for struct…
Reconfigurable waveguides defined by selective fluid filling in two-dimensional phononic metaplates
Abstract We investigate two-dimensional phononic metaplates consisting of a periodic array of cups on a thin epoxy plate that is perforated with periodic cross holes. The cups are individually filled with water or remain empty, in view of creating reconfigurable phononic waveguides. Phononic band gaps exist for empty or filled epoxy cups, leading to waveguides defined with either positive or negative contrast. Straight and 90° bent waveguides are considered experimentally. Lamb waves are excited by a piezoelectric patch glued onto the metaplate and are imaged using a scanning laser vibrometer. Experimental results are compared to a three-dimensional finite element model of fluid–structure i…
Experimental observations of topologically guided water waves within non-hexagonal structures
International audience; We investigate symmetry-protected topological water waves within a strategically engineered square lattice system. Thus far, symmetry protected topological modes in hexagonal systems have primarily been studied in electromagnetism and acoustics, i.e., dispersionless media. Herein, we show experimentally how crucial geometrical properties of square structures allow for topological transport that is ordinarily forbidden within conventional hexagonal structures. We perform numerical simulations that take into account the inherent dispersion within water waves and devise a topological insulator that supports symmetry-protected transport along the domain walls. Our measur…
3034461.pdf
Supplemental document
Extraordinary nonlinear transmission modulation in a doubly resonant acousto-optical structure
International audience; Acousto-optical modulators usually rely on coherent diffraction of light by a moving acoustic wave, leading to bulky devices with a long interaction length. We propose a subwavelength acousto-optical structure that instead relies on a double resonance to achieve strong modulation at near-infrared wavelengths. A periodic array of metal ridges on a piezoelectric substrate defines cavities that create a resonant dip in the optical transmission spectrum. The ridges simultaneously support large flexural vibrations when resonantly excited by a radio-frequency signal, effectively deforming the cavities and leading to strongly nonlinear acousto-optical modulation. The nano-o…
spectres.mp4
The movie shows the temporal evolution of the optical transmission spectrum through a nanophotonic periodic structure that is being deformed as a function of time by an acoustic resonance at 500 MHz. The vibrating pillars are made of silver and the piezoelectric substrate is made of lithium niobate. The period of the structure is 640 nm.
lfixe.mp4
The movie shows the temporal evolution of the optical transmission through a nanophotonic periodic structure that is being deformed as a function of time by an acoustic resonance at 500 MHz. The optical wavelength is fixed. The vibrating pillars are made of silver and the piezoelectric substrate is made of lithium niobate. The period of the structure is 640 nm.
spectres.mp4
The movie shows the temporal evolution of the optical transmission spectrum through a nanophotonic periodic structure that is being deformed as a function of time by an acoustic resonance at 500 MHz. The vibrating pillars are made of silver and the piezoelectric substrate is made of lithium niobate. The period of the structure is 640 nm.
lfixe.mp4
The movie shows the temporal evolution of the optical transmission through a nanophotonic periodic structure that is being deformed as a function of time by an acoustic resonance at 500 MHz. The optical wavelength is fixed. The vibrating pillars are made of silver and the piezoelectric substrate is made of lithium niobate. The period of the structure is 640 nm.