0000000000959623

AUTHOR

T. Fuchs

showing 44 related works from this author

Pion generalized dipole polarizabilities by virtual Compton scatteringπe→πeγ

2001

We present a calculation of the cross section and the event generator of the reaction $\ensuremath{\pi}e\ensuremath{\rightarrow}\ensuremath{\pi}e\ensuremath{\gamma}.$ This reaction is sensitive to the pion generalized dipole polarizabilities, namely, the longitudinal electric ${\ensuremath{\alpha}}_{L}{(q}^{2}),$ the transverse electric ${\ensuremath{\alpha}}_{T}{(q}^{2}),$ and the magnetic $\ensuremath{\beta}{(q}^{2})$ which, in the real-photon limit, reduce to the ordinary electric and magnetic polarizabilities $\overline{\ensuremath{\alpha}}$ and $\overline{\ensuremath{\beta}},$ respectively. The calculation of the cross section is done in the framework of chiral perturbation theory at $…

PhysicsNuclear and High Energy PhysicsDipoleParticle physicsPionChiral perturbation theoryCompton scatteringBeta (velocity)Nuclear theoryEvent generatorPhysical Review C
researchProduct

Measurement of the cosmic ray energy spectrum with IceTop-73

2013

Physical review / D 88(4), 042004 (2013). doi:10.1103/PhysRevD.88.042004

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsFOS: Physical sciencesAstronomyCosmic rayddc:500.2Astrophysics53001 natural sciencesPower lawICECUBEIceCubeIceCube Neutrino ObservatoryAir showerPhysics and AstronomyObservatory0103 physical sciencesEnergy spectrumARRAYddc:530Astrophysics - High Energy Astrophysical Phenomena010306 general physicsphysics
researchProduct

Search for relativistic magnetic monopoles with IceCube

2012

We present the first results in the search for relativistic magnetic monopoles with the IceCube detector, a subsurface neutrino telescope located in the South Polar ice cap containing a volume of 1 km$^{3}$. This analysis searches data taken on the partially completed detector during 2007 when roughly 0.2 km$^{3}$ of ice was instrumented. The lack of candidate events leads to an upper limit on the flux of relativistic magnetic monopoles of $\Phi_{\mathrm{90%C.L.}}\sim 3\e{-18}\fluxunits$ for $\beta\geq0.8$. This is a factor of 4 improvement over the previous best experimental flux limits up to a Lorentz boost $\gamma$ below $10^{7}$. This result is then interpreted for a wide range of mass …

FLUXSELECTIONAMANDANuclear and High Energy PhysicsParticle physicsProton decayCherenkov detectorPhysics beyond the Standard ModelAstrophysics::High Energy Astrophysical PhenomenaMagnetic monopoleFOS: Physical sciencesddc:500.201 natural scienceslaw.inventionIceCube Neutrino ObservatoryPhysics::GeophysicsIceCubelaw0103 physical sciencesGrand Unified Theoryddc:530NEUTRINO TELESCOPE010306 general physicsCherenkov radiationPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsFIELDS85-05Physics and AstronomyNeutrino detectorAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Power counting in baryon chiral perturbation theory including vector mesons

2003

It is demonstrated that using a suitable renormalization condition one obtains a consistent power counting in manifestly Lorentz-invariant baryon chiral perturbation theory including vector mesons as explicit degrees of freedom.

PhysicsNuclear and High Energy PhysicsParticle physicsChiral perturbation theoryNuclear TheoryMesonHigh Energy Physics::LatticeNuclear TheoryHigh Energy Physics::PhenomenologyDegrees of freedom (statistics)FOS: Physical sciencesPower (physics)Nuclear Theory (nucl-th)RenormalizationBaryonHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Chiral symmetry breakingNuclear theoryPhysics Letters B
researchProduct

Constraints on ultra-high-energy cosmic ray sources from a search for neutrinos above 10 PeV with IceCube

2016

We report constraints on the sources of ultra-high-energy cosmic ray (UHECR) above $10^{9}$ GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high energy neutrino-induced events which have deposited energies from $\sim 10^6$ GeV to above $10^{11}$ GeV. Two neutrino-induced events with an estimated deposited energy of $(2.6 \pm 0.3) \times 10^6$ GeV, the highest neutrino energies observed so far, and $(7.7 \pm 2.0) \times 10^5$ GeV were detected. The atmospheric background-only hypothesis of detecting these events is rejected at 3.6$\sigma$. The hypothesis that the observed events are of cosmogenic origin is also rejected at $>$99% CL because of…

FLUXSELECTIONFERMI-LATActive galactic nucleusCosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaGeneral Physics and AstronomyFOS: Physical sciencesCosmic rayAstrophysicsParameter space7. Clean energy01 natural sciencesCOSMOGENIC NEUTRINOS; TRACK RECONSTRUCTION; FERMI-LAT; BURSTS; SPECTRUM; MODEL; FLUX; TELESCOPES; SELECTION; EMISSIONPulsar0103 physical sciencesTRACK RECONSTRUCTIONBURSTSddc:550Ultrahigh energy010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)SPECTRUM010308 nuclear & particles physicsStar formationCOSMOGENIC NEUTRINOSAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyMODELPhysics and Astronomy13. Climate actionTELESCOPESHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaEMISSIONEnergy (signal processing)Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The spectrum of allergic (cross-)sensitivity in clinical patch testing with 'para amino' compounds

2002

Background: Allergic contact sensitization to ‘para amino’ compounds is frequent and the spectrum of cross-reactivity between members of this chemical group is variable. Methods: A retrospective analysis of clinical patch test data obtained with a special test series in the centres of the Information Network of Departments of Dermatology (IVDK) between 1995 and 1999. Results: In the 638 patients tested with the above test panel positive reactions were observed most often to p-aminoazobenzene (16.2%), p-phenylenediamine (14.1%), p-toluylenediamine (10.0%), followed by 4,4′-diaminodiphenylmethane (8.5%), Disperse Orange 3 (8.4%) and p-aminophenol (3.1%). Among the 544 patients tested with p-p…

medicine.medical_specialtyAllergyConcordanceCross sensitivityStatistics as TopicImmunologyCross ReactionsPhenylenediaminesAminophenolsmedicine.disease_causeCross-reactivity030207 dermatology & venereal diseases03 medical and health scienceschemistry.chemical_compoundSulfanilamide0302 clinical medicineGermanySulfanilamidesmedicineHumansImmunology and AllergyAminesRetrospective Studiesbusiness.industryPatch testp-PhenylenediamineAllergensPatch Testsmedicine.diseaseDermatology3. Good healthchemistryP-Aminoazobenzenep-Aminoazobenzene030220 oncology & carcinogenesisDermatitis Allergic ContactImmunologybusiness4-Aminobenzoic AcidContact dermatitisAllergy
researchProduct

Cosmic ray composition and energy spectrum from 1–30 PeV using the 40-string configuration of IceTop and IceCube

2012

Astroparticle physics 42, 15 - 32 (2013). doi:10.1016/j.astropartphys.2012.11.003

Knee regionAstrophysicsTracking (particle physics)01 natural sciencesParticle identificationIceCubeTRACKINGWATERCherenkovNeutrino energyNEUTRINO TELESCOPEUltra-high-energy cosmic rayHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSEADetectorAstrophysics::Instrumentation and Methods for AstrophysicsLIGHTComposition; Cosmic rays; Energy spectrum; IceCube; IceTop; Knee regionddc:540IceTopPARTICLE IDENTIFICATIONAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsIceCube detectorCompositionAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayddc:500.2IceCube Neutrino ObservatorySEARCHESAccelerationcosmic raysdE/dx0103 physical sciences010306 general physicsDETECTORInstrumentation and Methods for Astrophysics (astro-ph.IM)Cherenkov radiationTruncated meanMuon energy010308 nuclear & particles physicsAstronomyAstronomy and Astrophysics540Physics and AstronomycompositionEnergy SpectrumTEVEnergy spectrum
researchProduct

Axial, induced pseudoscalar, and pion-nucleon form factors in manifestly Lorentz-invariant chiral perturbation theory

2006

We calculate the nucleon form factors G_A and G_P of the isovector axial-vector current and the pion-nucleon form factor G_piN in manifestly Lorentz-invariant baryon chiral perturbation theory up to and including order O(p^4). In addition to the standard treatment including the nucleon and pions, we also consider the axial-vector meson a_1 as an explicit degree of freedom. This is achieved by using the reformulated infrared renormalization scheme. We find that the inclusion of the axial-vector meson effectively results in one additional low-energy coupling constant that we determine by a fit to the data for G_A. The inclusion of the axial-vector meson results in an improved description of t…

PhysicsCoupling constantNuclear and High Energy PhysicsParticle physicsChiral perturbation theoryIsovectorMesonNuclear TheoryHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyNuclear TheoryForm factor (quantum field theory)Order (ring theory)FOS: Physical sciencesNuclear Theory (nucl-th)PionNucleonNuclear Experiment
researchProduct

Astrophysical neutrinos and cosmic rays observed by IceCube

2018

The core mission of the IceCube neutrino observatory is to study the origin and propagation of cosmic rays. IceCube, with its surface component IceTop, observes multiple signatures to accomplish this mission. Most important are the astrophysical neutrinos that are produced in interactions of cosmic rays, close to their sources and in interstellar space. IceCube is the first instrument that measures the properties of this astrophysical neutrino flux and constrains its origin. In addition, the spectrum, composition, and anisotropy of the local cosmic-ray flux are obtained from measurements of atmospheric muons and showers. Here we provide an overview of recent findings from the analysis of Ic…

Atmospheric ScienceAstrophysics::High Energy Astrophysical PhenomenaAerospace EngineeringCosmic rayAstrophysicsPhysics and Astronomy(all)7. Clean energy01 natural sciencesIceCube Neutrino ObservatoryIceCubecosmic raysObservatory0103 physical sciencesNeutrinos010303 astronomy & astrophysicsCosmic raysPhysicsMuon010308 nuclear & particles physicsGamma rayAstrophysics::Instrumentation and Methods for AstrophysicsneutrinosAstronomyAstronomy and AstrophysicsGeophysicsCosmic rays; IceCube; Neutrinos; Aerospace Engineering; Space and Planetary ScienceNeutrino detector13. Climate actionSpace and Planetary SciencePhysique des particules élémentairesGeneral Earth and Planetary SciencesNeutrinoNeutrino astronomy
researchProduct

Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data

2014

A search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2012 provided the first evidence for a high-energy neutrino flux of extraterrestrial origin. Results from an analysis using the same methods with a third year (2012-2013) of data from the complete IceCube detector are consistent with the previously reported astrophysical flux in the 100 TeV - PeV range at the level of $10^{-8}\, \mathrm{GeV}\, \mathrm{cm}^{-2}\, \mathrm{s}^{-1}\, \mathrm{sr}^{-1}$ per flavor and reject a purely atmospheric explanation for the combined 3-year data at $5.7 \sigma$. The data are consistent with expectations for equal fluxes of all three neutrino flavors and with isotrop…

FLUXACTIVE GALACTIC NUCLEICosmology and Nongalactic Astrophysics (astro-ph.CO)TELESCOPESolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaGeneral Physics and AstronomyFOS: Physical sciencesAstrophysics01 natural sciences7. Clean energyIceCubeIceCube Neutrino ObservatoryHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)SEARCH0103 physical sciencesddc:550010303 astronomy & astrophysicsGAMMA-RAY BURSTSPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsGlashow resonanceHigh Energy Physics::PhenomenologyASTRONOMYAstronomySolar neutrino problemBLAZARSPhysics and AstronomyNeutrino detector13. Climate actionLEPTONSJETSMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrinoNeutrino astronomyEMISSIONAstrophysics - High Energy Astrophysical PhenomenaphysicsAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review Letters
researchProduct

First Observation of PeV-Energy Neutrinos with IceCube

2013

We report on the observation of two neutrino-induced events which have an estimated deposited energy in the IceCube detector of 1.04 $\pm$ 0.16 and 1.14 $\pm$ 0.17 PeV, respectively, the highest neutrino energies observed so far. These events are consistent with fully contained particle showers induced by neutral-current $\nu_{e,\mu,\tau}$ ($\bar\nu_{e,\mu,\tau}$) or charged-current $\nu_{e}$ ($\bar\nu_{e}$) interactions within the IceCube detector. The events were discovered in a search for ultra-high energy neutrinos using data corresponding to 615.9 days effective livetime. The expected number of atmospheric background is $0.082 \pm 0.004 \text{(stat)}^{+0.041}_{-0.057} \text{(syst)}$. T…

SELECTIONParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)ATMOSPHERIC MUONAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Physics and AstronomyFluxCosmic rayddc:500.201 natural sciencesCHARMIceCube Neutrino Observatory0103 physical sciencesddc:550SCATTERING010303 astronomy & astrophysicsCharged currentHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSPECTRUMNeutral current010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyICEGlashow resonancePERFORMANCE3. Good healthPhysics and AstronomyHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaSYSTEMAstrophysics - Cosmology and Nongalactic AstrophysicsBar (unit)
researchProduct

The IceCube realtime alert system

2016

Following the detection of high-energy astrophysical neutrinos in 2013, their origin is still unknown. Aiming for the identification of an electromagnetic counterpart of a rapidly fading source, we have implemented a realtime analysis framework for the IceCube neutrino observatory. Several analyses selecting neutrinos of astrophysical origin are now operating in realtime at the detector site in Antarctica and are producing alerts to the community to enable rapid follow-up observations. The goal of these observations is to locate the astrophysical objects responsible for these neutrino signals. This paper highlights the infrastructure in place both at the South Pole detector site and at IceC…

HIGH-ENERGY NEUTRINOSTELESCOPEAstrophysics::High Energy Astrophysical PhenomenaMulti-messenger astronomy; Neutrino astronomy; Neutrino detectors; Transient sources; Astronomy and AstrophysicspoleFOS: Physical sciences01 natural sciencesIceCubelaw.inventionIceCube Neutrino ObservatoryTelescopeSEARCHESCORE-COLLAPSE SUPERNOVAElawObservatory0103 physical sciencesMulti-messenger astronomysiteNeutrino detectors010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsbackgroundEvent (computing)Astrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstronomy and AstrophysicsPERFORMANCEsensitivityTransient sourcesobservatoryIdentification (information)electromagneticPhysics and AstronomyNeutrino detectorNeutrino astronomyddc:540High Energy Physics::ExperimentNeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsFOLLOW-UPAstroparticle Physics
researchProduct

Neutrino oscillation studies with IceCube-DeepCore

2016

IceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle and performance, the method used to make…

Physics::Instrumentation and DetectorsSolar neutrinopoleinteraction [neutrino nucleon]PINGU01 natural sciences7. Clean energyneutrino nucleon: interactionIceCubeenergy: thresholdAstronomi astrofysik och kosmologineutrino: atmosphereAstronomy Astrophysics and Cosmologydetector [neutrino]Physicsneutrino: energy spectrumoscillation [neutrino]Astrophysics::Instrumentation and Methods for Astrophysicsatmosphere [neutrino]threshold [energy]mass difference [neutrino]Cosmic neutrino backgroundneutrino: detectorNeutrino detectorPhysique des particules élémentairesMeasurements of neutrino speedNeutrinoperformanceNuclear and High Energy PhysicsParticle physicsAstrophysics::High Energy Astrophysical Phenomenaneutrino: mass differenceddc:500.2530neutrino: energySOUTH-POLE0103 physical sciencesddc:530010306 general physicsNeutrino oscillation010308 nuclear & particles physicsICEenergy spectrum [neutrino]Solar neutrino problemneutrino: mixing anglePhysics and Astronomyenergy [neutrino]High Energy Physics::Experimentneutrino: oscillationNeutrino astronomyMATTERSYSTEMmixing angle [neutrino]experimental results
researchProduct

PINGU: a vision for neutrino and particle physics at the South Pole

2017

The Precision IceCube Next Generation Upgrade (PINGU) is a proposed low-energy in-fill extension to the IceCube Neutrino Observatory. With detection technology modeled closely on the successful IceCube example, PINGU will provide a 6Mton effective mass for neutrino detection with an energy threshold of a few GeV. With an unprecedented sample of over 60,000 atmospheric neutrinos per year in this energy range, PINGU will make highly competitive measurements of neutrino oscillation parameters in an energy range over an order of magnitude higher than long-baseline neutrino beam experiments. PINGU will measure the mixing parameters $\theta_{\rm 23}$ and $\Delta m^2_{\rm 32}$, including the octan…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsmixing [neutrino]atmospheric neutrinos; IceCube Neutrino Observatory; neutrino oscillations; PINGU; Nuclear and High Energy Physicspole7. Clean energy01 natural sciencesPINGUIceCube Neutrino ObservatoryIceCubeHigh Energy Physics - ExperimentObservatoryPhysicssolar [WIMP]precision measurementAstrophysics::Instrumentation and Methods for Astrophysicsoscillation [neutrino]solar [dark matter]atmosphere [neutrino]threshold [energy]mass difference [neutrino]atmospheric neutrinosobservatoryHigh Energy Physics - PhenomenologyUpgradeNeutrino detectorupgradeNeutrinoKM3NETperformanceParticle physicsNuclear and High Energy Physicssupernova [neutrino]particle identification [neutrino/tau]Astrophysics::High Energy Astrophysical PhenomenaSUPERNOVA DETECTIONIceCube Neutrino Observatory0103 physical sciencesOSCILLATIONSmass: low [dark matter]unitarityddc:530010306 general physicsNeutrino oscillationneutrino oscillations010308 nuclear & particles physicsAstronomysensitivityKM3NeTPhysics and Astronomymass [neutrino]beam [neutrino]High Energy Physics::ExperimentgalaxyATMOSPHERIC NEUTRINOSMATTERSYSTEMLeptonmixing angle [neutrino]experimental results
researchProduct

Probing the origin of cosmic-rays with extremely high energy neutrinos using the IceCube Observatory

2013

We have searched for extremely high energy neutrinos using data taken with the IceCube detector between May 2010 and May 2012. Two neutrino induced particle shower events with energies around 1 PeV were observed, as reported previously. In this work, we investigate whether these events could originate from cosmogenic neutrinos produced in the interactions of ultra-high energy cosmic-rays with ambient photons while propagating through intergalactic space. Exploiting IceCube's large exposure for extremely high energy neutrinos and the lack of observed events above 100 PeV, we can rule out the corresponding models at more than 90% confidence level. The model independent quasi-differential 90% …

FLUXSELECTIONFERMI-LATNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)PhotonRadio galaxyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayddc:500.2AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsLIMIT01 natural sciencesIceCubeHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Particle showerObservatory0103 physical sciencesddc:530010306 general physicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSPECTRUMRange (particle radiation)COSMOGENIC NEUTRINOS010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyPERFORMANCECOMPONENTMODELPhysics and Astronomy13. Climate actionIntergalactic travelHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaSYSTEMAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review D
researchProduct

Measurement of Atmospheric Neutrino Oscillations at 6–56 GeV with IceCube DeepCore

2018

We present a measurement of the atmospheric neutrino oscillation parameters using three years of data from the IceCube Neutrino Observatory. The DeepCore infill array in the center of IceCube enables the detection and reconstruction of neutrinos produced by the interaction of cosmic rays in Earth's atmosphere at energies as low as ∼5 GeV. That energy threshold permits measurements of muon neutrino disappearance, over a range of baselines up to the diameter of the Earth, probing the same range of L/Eν as long-baseline experiments but with substantially higher-energy neutrinos. This analysis uses neutrinos from the full sky with reconstructed energies from 5.6 to 56 GeV. We measure Δm322=2.31…

interaction [cosmic radiation]Physics::Instrumentation and DetectorsSolar neutrinoGeneral Physics and Astronomy01 natural sciences7. Clean energyHigh Energy Physics - ExperimentIceCubeSubatomär fysikHigh Energy Physics - Experiment (hep-ex)ObservatorySubatomic PhysicsTOOLPhysicsoscillation [neutrino]Astrophysics::Instrumentation and Methods for Astrophysicsatmosphere [neutrino]threshold [energy]mass difference [neutrino]ddc:observatoryNeutrino detectorPhysique des particules élémentairesAstrophysics::Earth and Planetary AstrophysicsNeutrinoParticle physicscosmic radiation [neutrino]acceleratorAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesddc:500.2Physics and Astronomy(all)IceCube Neutrino ObservatoryPhysics and Astronomy (all)0103 physical sciencesneutrino/muddc:530energy: high [neutrino]010306 general physicsNeutrino oscillationAstroparticle physics010308 nuclear & particles physicsICEHigh Energy Physics::PhenomenologyAstronomySolar neutrino problemPhysics and Astronomy13. Climate actionmass [neutrino]High Energy Physics::ExperimentSYSTEMmixing angle [neutrino]experimental resultsPhysical Review Letters
researchProduct

Search for sterile neutrino mixing using three years of IceCube DeepCore data

2017

Physical review / D 95(11), 112002(2017). doi:10.1103/PhysRevD.95.112002

FLUXSterile neutrinoParticle physicsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciences01 natural sciences530High Energy Physics - ExperimentOSCILLATION EXPERIMENTSHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesTRACK RECONSTRUCTIONddc:530010306 general physicsNeutrino oscillationPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstronomySolar neutrino problemLINE-EXPERIMENT-SIMULATORMODELHigh Energy Physics - PhenomenologyNeutrino detectorPhysics and AstronomyMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrino astronomyNeutrino
researchProduct

Search for Galactic PeV gamma rays with the IceCube Neutrino Observatory

2013

Gamma-ray induced air showers are notable for their lack of muons, compared to hadronic showers. Hence, air shower arrays with large underground muon detectors can select a sample greatly enriched in photon showers by rejecting showers containing muons. IceCube is sensitive to muons with energies above ~500 GeV at the surface, which provides an efficient veto system for hadronic air showers with energies above 1 PeV. One year of data from the 40-string IceCube configuration was used to perform a search for point sources and a Galactic diffuse signal. No sources were found, resulting in a 90% C.L. upper limit on the ratio of gamma rays to cosmic rays of 1.2 x 10^(-3)for the flux coming from …

Nuclear and High Energy PhysicsTELESCOPEPoint sourcePhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysicsddc:500.201 natural sciences7. Clean energyIceCube Neutrino ObservatoryIceCubeHESS0103 physical sciencesddc:530MILAGRO010306 general physics010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMuonGamma rayAstrophysics::Instrumentation and Methods for AstrophysicsPLANEGalactic planeAir showerPhysics and Astronomy13. Climate actionDISCOVERYMilagroMOLECULAR CLOUDSTEVRADIATIONHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical PhenomenaEMISSION
researchProduct

Searches for small-scale anisotropies from neutrino point sources with three years of IceCube data

2015

Recently, IceCube found evidence for a diffuse signal of astrophysical neutrinos in an energy range of $60\,\mathrm{TeV}$ to the $\mathrm{PeV}$-scale. The origin of those events, being a key to understanding the origin of cosmic rays, is still an unsolved question. So far, analyses have not succeeded to resolve the diffuse signal into point-like sources. Searches including a maximum-likelihood-ratio test, based on the reconstructed directions and energies of the detected down- and up-going neutrino candidates, were also performed on IceCube data leading to the exclusion of bright point sources. In this paper, we present two methods to search for faint neutrino point sources in three years o…

J.2Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayScale (descriptive set theory)AstrophysicsIceCubelaw.inventionTelescopelawPoint (geometry)Anisotropyastro-ph.HE2pt-correlationHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsHigh Energy Physics::Phenomenology2pt-correlation; Astrophysical neutrinos; Extraterrestrial neutrinos; IceCube; Multipole analysis; Point sourcesAstrophysics::Instrumentation and Methods for AstrophysicsPoint sourcesAstronomyAstronomy and AstrophysicsMultipole analysis3. Good health85-05Astrophysical neutrinosddc:540Extraterrestrial neutrinosHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaMultipole expansionGamma-ray burstAstroparticle Physics
researchProduct

The IceProd framework: distributed data processing for the IceCube neutrino observatory

2015

IceCube is a one-gigaton instrument located at the geographic South Pole, designed to detect cosmic neutrinos, identify the particle nature of dark matter, and study high-energy neutrinos themselves. Simulation of the IceCube detector and processing of data require a significant amount of computational resources. This paper presents the first detailed description of IceProd, a lightweight distributed management system designed to meet these requirements. It is driven by a central database in order to manage mass production of simulations and analysis of data produced by the IceCube detector. IceProd runs as a separate layer on top of other middleware and can take advantage of a variety of c…

FOS: Computer and information sciencesMonitoringComputer scienceComputer Networks and CommunicationsDistributed computingData managementReal-time computingDistributed managementcomputer.software_genre01 natural sciencesData managementIceCube Neutrino ObservatoryTheoretical Computer ScienceIceCubeArtificial Intelligence0103 physical sciences010306 general physicsData processingData management; Distributed computing; Grid computing; Monitoring010308 nuclear & particles physicsbusiness.industryDistributed computingGrid computingComputer Science - Distributed Parallel and Cluster ComputingHardware and ArchitectureMiddleware (distributed applications)MiddlewareGrid computingParticleDistributed Parallel and Cluster Computing (cs.DC)Neutrinoddc:004businesscomputerSoftware
researchProduct

Renormalization of relativistic baryon chiral perturbation theory and power counting

2003

We discuss a renormalization scheme for relativistic baryon chiral perturbation theory which provides a simple and consistent power counting for renormalized diagrams. The method involves finite subtractions of dimensionally regularized diagrams beyond the standard $\bar{\rm MS}$ scheme of chiral perturbation theory to remove contributions violating the power counting. This is achieved by a suitable renormalization of the parameters of the most general effective Lagrangian. In addition to simplicity our method has the benefit that it can be easily applied to multiloop diagrams. As an application we discuss the mass and the scalar form factor of the nucleon and compare the results with the e…

PhysicsNuclear and High Energy PhysicsParticle physicsChiral perturbation theoryNuclear Theory010308 nuclear & particles physicsHigh Energy Physics::LatticeFOS: Physical sciences01 natural sciencesBaryonRenormalizationNuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Regularization (physics)0103 physical sciencesEffective lagrangianFunctional renormalization group010306 general physicsNucleonNuclear theoryMathematical physics
researchProduct

Observation of the cosmic-ray shadow of the Moon with IceCube

2013

We report on the observation of a significant deficit of cosmic rays from the direction of the Moon with the IceCube detector. The study of this "Moon shadow" is used to characterize the angular resolution and absolute pointing capabilities of the detector. The detection is based on data taken in two periods before the completion of the detector: between April 2008 and May 2009, when IceCube operated in a partial configuration with 40 detector strings deployed in the South Pole ice, and between May 2009 and May 2010 when the detector operated with 59 strings. Using two independent analysis methods, the Moon shadow has been observed to high significance (> 6 sigma) in both detector config…

Nuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysics01 natural sciencesNEUTRINO TELESCOPESPosition (vector)SEARCH0103 physical sciencesShadowAngular resolutionddc:530ARRIVAL DIRECTIONS010303 astronomy & astrophysicsDETECTORAnalysis methodHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsANISOTROPY010308 nuclear & particles physicsDetectorSUNAstronomyANGULAR RESOLUTIONEarth's magnetic fieldDeflection (physics)Physics and AstronomyAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube

2015

The IceCube Neutrino Observatory was designed primarily to search for high-energy (TeV--PeV) neutrinos produced in distant astrophysical objects. A search for $\gtrsim 100$~TeV neutrinos interacting inside the instrumented volume has recently provided evidence for an isotropic flux of such neutrinos. At lower energies, IceCube collects large numbers of neutrinos from the weak decays of mesons in cosmic-ray air showers. Here we present the results of a search for neutrino interactions inside IceCube's instrumented volume between 1~TeV and 1~PeV in 641 days of data taken from 2010--2012, lowering the energy threshold for neutrinos from the southern sky below 10 TeV for the first time, far bel…

HIGH-ENERGY NEUTRINOSNuclear and High Energy PhysicsParticle physicsAMANDAMesonSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaINDUCED CASCADESFOS: Physical sciencesCosmic rayAstrophysicsFLUX PREDICTIONS01 natural sciencesIceCube Neutrino ObservatoryIceCubeObservatorySEARCH0103 physical sciencesddc:530Blazar010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsASTRONOMYPERFORMANCEBLAZARSPROMPT LEPTONSGAMMA-RAYPhysics and AstronomyHigh Energy Physics::ExperimentNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical PhenomenaphysicsPhysical Review D
researchProduct

Characterization of the atmospheric muon flux in IceCube

2015

Muons produced in atmospheric cosmic ray showers account for the by far dominant part of the event yield in large-volume underground particle detectors. The IceCube detector, with an instrumented volume of about a cubic kilometer, has the potential to conduct unique investigations on atmospheric muons by exploiting the large collection area and the possibility to track particles over a long distance. Through detailed reconstruction of energy deposition along the tracks, the characteristics of muon bundles can be quantified, and individual particles of exceptionally high energy identified. The data can then be used to constrain the cosmic ray primary flux and the contribution to atmospheric …

Prompt leptonsleptonAtmospheric muons; Cosmic rays; Prompt leptons; Astronomy and AstrophysicsPhysics::Instrumentation and DetectorsHadronAtmospheric muonsprimary [cosmic radiation]PROTON01 natural sciencesIceCubesurface [detector]atmosphere [muon]NEUTRINO TELESCOPEproduction [muon]PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)ELEMENTAL GROUPSDetectormodel [interaction]Astrophysics::Instrumentation and Methods for AstrophysicsCOSMIC-RAY MUONSENERGY-SPECTRUMvector mesonstatisticsINTRINSIC CHARMddc:540Physique des particules élémentaireshigh [energy]Astrophysics - High Energy Astrophysical Phenomenaatmosphere [showers]Atmosperic muonsexceptionalairflux [muon]Astrophysics::High Energy Astrophysical Phenomenaspectrum [multiplicity]energy spectrumFOS: Physical sciencesCosmic rayatmosphere [cosmic radiation]Nuclear physicscosmic rays0103 physical sciencesARRIVAL DIRECTIONSVector meson010306 general physicsCosmic raysZenithANISOTROPYMuon010308 nuclear & particles physicsAstronomy and AstrophysicsSpectral componenttracksMODELPhysics and Astronomy13. Climate actionTEVspectralHigh Energy Physics::ExperimenthadronLepton
researchProduct

Search for neutrino-induced particle showers with IceCube-40

2013

We report on the search for neutrino-induced particle-showers, so-called cascades, in the IceCube-40 detector. The data for this search was collected between April 2008 and May 2009 when the first 40 IceCube strings were deployed and operational. Three complementary searches were performed, each optimized for different energy regimes. The analysis with the lowest energy threshold (2 TeV) targeted atmospheric neutrinos. A total of 67 events were found, consistent with the expectation of 41 atmospheric muons and 30 atmospheric neutrino events. The two other analyses targeted a harder, astrophysical neutrino flux. The analysis with an intermediate threshold of 25 TeV lead to the observation of…

SELECTIONAMANDANuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayCASCADESSCATTERINGddc:530High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSPECTRUMMuonICEHigh Energy Physics::PhenomenologySolar neutrino problemMODELPhysics and AstronomyNeutrino detector13. Climate actionMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaEvent (particle physics)SYSTEM
researchProduct

Measurement of the Atmospheric ve flux in IceCube

2012

We report the first measurement of the atmospheric electron neutrino flux in the energy range between approximately 80 GeV and 6 TeV, using data recorded during the first year of operation of IceCube's DeepCore low energy extension. Techniques to identify neutrinos interacting within the DeepCore volume and veto muons originating outside the detector are demonstrated. A sample of 1029 events is observed in 281 days of data, of which 496 $\pm$ 66(stat.) $\pm$ 88(syst.) are estimated to be cascade events, including both electron neutrino and neutral current events. The rest of the sample includes residual backgrounds due to atmospheric muons and charged current interactions of atmospheric muo…

DEEPCOREParticle physicsAMANDAPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaGeneral Physics and Astronomyddc:500.201 natural sciences7. Clean energyHigh Energy Physics - ExperimentNuclear physicsSEARCH0103 physical sciencesddc:550010306 general physicsNeutrino oscillationDETECTORPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologySolar neutrino problemCosmic neutrino backgroundNeutrino detectorPhysics and Astronomy13. Climate actionMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrino astronomyNeutrinoNEUTRINO-INDUCED CASCADESAstrophysics - High Energy Astrophysical PhenomenaPhysical Review Letters
researchProduct

Measurement of Atmospheric Neutrino Oscillations with IceCube

2013

We present the first statistically significant detection of neutrino oscillations in the high-energy regime ($>$ 20 GeV) from an analysis of IceCube Neutrino Observatory data collected in 2010-2011. This measurement is made possible by the low energy threshold of the DeepCore detector ($\sim 20$ GeV) and benefits from the use of the IceCube detector as a veto against cosmic ray-induced muon background. The oscillation signal was detected within a low-energy muon neutrino sample (20 -- 100 GeV) extracted from data collected by DeepCore. A high-energy muon neutrino sample (100 GeV -- 10 TeV) was extracted from IceCube data to constrain systematic uncertainties. Disappearance of low-energy upw…

Particle physicsTELESCOPEPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Physics and Astronomyddc:500.201 natural sciencesHigh Energy Physics - ExperimentIceCubeIceCube Neutrino ObservatoryHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesddc:550Muon neutrino010306 general physicsNeutrino oscillationHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMuon010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyPERFORMANCESolar neutrino problem3. Good healthPhysics and AstronomyNeutrino detector13. Climate actionHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaSYSTEM
researchProduct

Measurement of the AtmosphericνeSpectrum with IceCube

2015

We present a measurement of the atmospheric $\nu_e$ spectrum at energies between 0.1 TeV and 100 TeV using data from the first year of the complete IceCube detector. Atmospheric $\nu_e$ originate mainly from the decays of kaons produced in cosmic-ray air showers. This analysis selects 1078 fully contained events in 332 days of livetime, then identifies those consistent with particle showers. A likelihood analysis with improved event selection extends our previous measurement of the conventional $\nu_e$ fluxes to higher energies. The data constrain the conventional $\nu_e$ flux to be $1.3^{+0.4}_{-0.3}$ times a baseline prediction from a Honda's calculation, including the knee of the cosmic-…

AMANDANuclear and High Energy PhysicsParticle physicsAstrophysics::High Energy Astrophysical PhenomenaHadronCASCADES01 natural sciences7. Clean energyPower lawIceCubeNuclear physicsFlux (metallurgy)DESIGNLikelihood analysisDIGITIZATION0103 physical sciencesNEUTRINO FLUX010306 general physicsDETECTORPhysics010308 nuclear & particles physicsICEHigh Energy Physics::PhenomenologySpectrum (functional analysis)DetectorPERFORMANCEENERGY-SPECTRUMEvent selectionPhysics and AstronomyHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaphysicsSYSTEMPhysical Review D
researchProduct

Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 59-string configuration

2013

A search for high-energy neutrinos was performed using data collected by the IceCube Neutrino Observatory from May 2009 to May 2010, when the array was running in its 59-string configuration. The data sample was optimized to contain muon neutrino induced events with a background contamination of atmospheric muons of less than 1%. These data, which are dominated by atmospheric neutrinos, are analyzed with a global likelihood fit to search for possible contributions of prompt atmospheric and astrophysical neutrinos, neither of which have yet been identified. Such signals are expected to follow a harder energy spectrum than conventional atmospheric neutrinos. In addition, the zenith angle dist…

SELECTIONHIGH-ENERGY NEUTRINOSNuclear and High Energy PhysicsTELESCOPEAstrophysics::High Energy Astrophysical PhenomenaFluxFOS: Physical sciencesCosmic rayAstrophysics7. Clean energyIceCube Neutrino ObservatoryRATIOObservatoryDETECTORSddc:530Muon neutrinoZenithPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)MuonICEPERFORMANCEPhysics and AstronomyHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical Phenomena
researchProduct

South Pole glacial climate reconstruction from multi-borehole laser particulate stratigraphy

2013

AbstractThe IceCube Neutrino Observatory and its prototype, AMANDA, were built in South Pole ice, using powerful hot-water drills to cleanly bore>100 holes to depths up to 2500 m. The construction of these particle physics detectors provided a unique opportunity to examine the deep ice sheet using a variety of novel techniques. We made high-resolution particulate profiles with a laser dust logger in eight of the boreholes during detector commissioning between 2004 and 2010. The South Pole laser logs are among the most clearly resolved measurements of Antarctic dust strata during the last glacial period and can be used to reconstruct paleoclimate records in exceptional detail. Here we use…

EPICA-DOME-C010504 meteorology & atmospheric sciencesDEEP ICEBoreholeAntarctic ice sheetDUSTddc:500.2ANTARCTIC ICE-SHEET01 natural sciencesIceCube Neutrino ObservatoryIceCubePaleontology0103 physical sciencesPaleoclimatologyddc:550COREGlacial period010303 astronomy & astrophysicsSIPLE DOME0105 earth and related environmental sciencesEarth-Surface Processesgeographygeography.geographical_feature_categoryEAST ANTARCTICAVOLCANIC WINTERVOSTOKOPTICAL-PROPERTIESStratigraphy13. Climate actionEarth and Environmental SciencesRadiometric datingIce sheetphysicsGeology
researchProduct

IceTop : the surface component of IceCube

2012

IceTop, the surface component of the IceCube Neutrino Observatory at the South Pole, is an air shower array with an area of 1 km2. The detector allows a detailed exploration of the mass composition of primary cosmic rays in the energy range from about 100 TeV to 1 EeV by exploiting the correlation between the shower energy measured in IceTop and the energy deposited by muons in the deep ice. In this paper we report on the technical design, construction and installation, the trigger and data acquisition systems as well as the software framework for calibration, reconstruction and simulation. Finally the first experience from commissioning and operating the detector and the performance as an …

FLUXNuclear and High Energy PhysicsAir showerPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaAir shower; Cosmic rays; Detector; IceCube; IceTopFOS: Physical sciencesCosmic rayddc:500.27. Clean energy01 natural sciencesIceCube Neutrino ObservatoryIceCubeShowerData acquisitioncosmic raysDIGITIZATION0103 physical sciencesSHOWERSCalibrationddc:530Instrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsInstrumentationCosmic raysRemote sensingPhysicsMuondetector010308 nuclear & particles physicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyDetectorENERGY-SPECTRUMAir showerPhysics and AstronomySIMULATIONIceTopHigh Energy Physics::ExperimentAstrophysics - Instrumentation and Methods for Astrophysics
researchProduct

Measurement of South Pole ice transparency with the IceCube LED calibration system

2013

The IceCube Neutrino Observatory, approximately 1 km^3 in size, is now complete with 86 strings deployed in the Antarctic ice. IceCube detects the Cherenkov radiation emitted by charged particles passing through or created in the ice. To realize the full potential of the detector, the properties of light propagation in the ice in and around the detector must be well understood. This report presents a new method of fitting the model of light propagation in the ice to a data set of in-situ light source events collected with IceCube. The resulting set of derived parameters, namely the measured values of scattering and absorption coefficients vs. depth, is presented and a comparison of IceCube …

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsSouth Pole icePhoton progagationAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsddc:500.201 natural sciencesHigh Energy Physics - ExperimentIceCube Neutrino ObservatoryIceCubePhysics::GeophysicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesCalibrationddc:53014. Life underwater010306 general physicsAbsorption (electromagnetic radiation)InstrumentationInstrumentation and Methods for Astrophysics (astro-ph.IM)Cherenkov radiationRemote sensingPhysicsOptical properties010308 nuclear & particles physicsScatteringDetectorAstrophysics::Instrumentation and Methods for AstrophysicsIceCube; Optical properties; Photon propagation; South Pole iceSouth PoleiceInstrumentation and Detectors (physics.ins-det)Charged particleData setPhoton propagationAstrophysics - Instrumentation and Methods for AstrophysicsNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Improvement in fast particle track reconstruction with robust statistics

2014

The IceCube project has transformed one cubic kilometer of deep natural Antarctic ice into a Cherenkov detector. Muon neutrinos are detected and their direction inferred by mapping the light produced by the secondary muon track inside the volume instrumented with photomultipliers. Reconstructing the muon track from the observed light is challenging due to noise, light scattering in the ice medium, and the possibility of simultaneously having multiple muons inside the detector, resulting from the large flux of cosmic ray muons. This manuscript describes work on two problems: (1) the track reconstruction problem, in which, given a set of observations, the goal is to recover the track of a muo…

Nuclear and High Energy PhysicsParticle physicsCherenkov detectorPhysics::Instrumentation and DetectorsFOS: Physical sciencesddc:500.2Neutrino telescopeTrack reconstructionlaw.inventionIceCubelawCoincidentAngular resolutionddc:530InstrumentationInstrumentation and Methods for Astrophysics (astro-ph.IM)Remote sensingIce CubePhysicsMuonTrack (disk drive)DetectorIceCube; Neutrino astrophysics; Neutrino telescope; Robust statistics; Track reconstructionRobust statisticsNeutrino astrophysicsNeutrino detectorHigh Energy Physics::ExperimentNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Pion electroproduction, partially conserved axial-vector current, chiral Ward identities, and the axial form factor revisited

2003

We reinvestigate Adler's partially conserved axial-vector current relation in the presence of an external electromagnetic field within the framework of QCD coupled to external fields. We discuss pion electroproduction within a tree-level approximation to chiral perturbation theory and explicitly verify a chiral Ward identity referred to as the Adler-Gilman relation. We critically examine soft-momentum techniques and point out how inadmissable approximations may lead to results incompatible with chiral symmetry. As a result we confirm that threshold pion electroproduction is indeed a tool to obtain information on the axial form factor of the nucleon.

Quantum chromodynamicsElectromagnetic fieldPhysicsChiral anomalyNuclear and High Energy PhysicsParticle physicsChiral perturbation theoryHigh Energy Physics::LatticeNuclear TheoryHigh Energy Physics::PhenomenologyForm factor (quantum field theory)PionNuclear ExperimentNucleonPseudovectorMathematical physicsPhysical Review C
researchProduct

Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data

2014

We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 GeV and 100 GeV, where a strong disappearance signal is expected. The detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscilla…

Nuclear and High Energy PhysicsParticle physicsPhysics - Instrumentation and DetectorsTELESCOPEPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)TRACK RECONSTRUCTIONMuon neutrinoddc:530Neutrino oscillationPhysicsHigh Energy Physics::PhenomenologyInstrumentation and Detectors (physics.ins-det)Solar neutrino problemPERFORMANCENeutrino detectorPhysics and AstronomyMeasurements of neutrino speedHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsNeutrinoNeutrino astronomySYSTEM
researchProduct

IceCube search for dark matter annihilation in nearby galaxies and galaxy clusters

2013

Physical review / D 88(12), 122001 (2013). doi:10.1103/PhysRevD.88.122001

Nuclear and High Energy PhysicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesddc:500.2AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGalaxy merger53001 natural sciencesSIGNALSGalaxy group0103 physical sciencesPARTICLESHALOESddc:530Interacting galaxy010306 general physicsGalaxy clusterAstrophysics::Galaxy AstrophysicsDwarf galaxyHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstronomyCONSTRAINTSGalaxyEVOLUTIONPhysics and AstronomyElliptical galaxyHigh Energy Physics::ExperimentDark galaxyAstrophysics - High Energy Astrophysical PhenomenaSYSTEM
researchProduct

Search for Dark Matter Annihilations in the Sun with the 79-String IceCube Detector

2012

We have performed a search for muon neutrinos from dark matter annihilation in the center of the Sun with the 79-string configuration of the IceCube neutrino telescope. For the first time, the DeepCore sub-array is included in the analysis, lowering the energy threshold and extending the search to the austral summer. The 317 days of data collected between June 2010 and May 2011 are consistent with the expected background from atmospheric muons and neutrinos. Upper limits are therefore set on the dark matter annihilation rate, with conversions to limits on spin-dependent and spin-independent WIMP-proton cross-sections for WIMP masses in the range 20 - 5000 GeV. These are the most stringent s…

Particle physicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesGeneral Physics and AstronomyCosmic rayddc:500.2MASSIVE PARTICLESAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics7. Clean energy01 natural sciencesIceCubeHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)LIMITSWIMP0103 physical sciencesddc:550010306 general physicsLight dark matterCANDIDATESHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsCONSTRAINTSCAPTURENEUTRINOSPhysics and AstronomyNeutrino detector13. Climate actionWeakly interacting massive particlesHigh Energy Physics::ExperimentCryogenic Dark Matter SearchNeutrinoAstrophysics - High Energy Astrophysical PhenomenaPhysical Review Letters
researchProduct

Searches for Sterile Neutrinos with the IceCube Detector

2016

The IceCube neutrino telescope at the South Pole has measured the atmospheric muon neutrino spectrum as a function of zenith angle and energy in the approximate 320 GeV to 20 TeV range, to search for the oscillation signatures of light sterile neutrinos. No evidence for anomalous $\nu_\mu$ or $\bar{\nu}_\mu$ disappearance is observed in either of two independently developed analyses, each using one year of atmospheric neutrino data. New exclusion limits are placed on the parameter space of the 3+1 model, in which muon antineutrinos would experience a strong MSW-resonant oscillation. The exclusion limits extend to $\mathrm{sin}^2 2\theta_{24} \leq$ 0.02 at $\Delta m^2 \sim$ 0.3 $\mathrm{eV}^…

Particle physicsSterile neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesHigh Energy Physics - ExperimentMiniBooNENuclear physicsHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)0103 physical sciencesOSCILLATIONSddc:550Muon neutrino010306 general physicsNeutrino oscillationZenithHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMuon010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyMODELNeutrino detectorPhysics and Astronomy13. Climate actionHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical PhenomenaEnergy (signal processing)SYSTEM
researchProduct

Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube

2014

Made available in DSpace on 2022-04-29T07:21:49Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-11-17 We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of …

MECHANISMPhysics and Astronomy (miscellaneous)AstrophysicsFOLLOW-UP OBSERVATIONSASTROPHYSICAL SOURCESIceCubeneutrinoDetection of gravitational waveGravitational waves neutrinoObservatory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]QCLIGO Scientific CollaborationQBPhysicsGAMMA-RAY BURSTS[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsASTRONOMYNuclear and High Energy Physics; Physics and Astronomy (miscellaneous)NEUTRINOSNeutrino detectorComputingMethodologies_DOCUMENTANDTEXTPROCESSINGNeutrinoSENSITIVITYGIANT FLARENuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]95.85.RyMUON NEUTRINOSAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Cosmology and Extragalactic AstrophysicsACCELERATIONGravitational wavesGeneral Relativity and Quantum CosmologyINSTABILITIESSettore FIS/05 - Astronomia e AstrofisicaCORE-COLLAPSE SUPERNOVAE[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530SDG 7 - Affordable and Clean EnergyCORE-COLLAPSEDETECTOR/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyGravitational wave95.85.SzMAGNETIZED NEUTRON-STARS[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]AstronomyTRANSIENTS95.85.Sz; 95.85.RyRELATIVISTIC STARSLIGOPhysics and Astronomy[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Gamma-ray burstEMISSIONEnergy (signal processing)
researchProduct

Evidence for Astrophysical Muon Neutrinos from the Northern Sky with IceCube

2015

Results from the IceCube Neutrino Observatory have recently provided compelling evidence for the existence of a high energy astrophysical neutrino flux utilizing a dominantly Southern Hemisphere dataset consisting primarily of nu_e and nu_tau charged current and neutral current (cascade) neutrino interactions. In the analysis presented here, a data sample of approximately 35,000 muon neutrinos from the Northern sky was extracted from data taken during 659.5 days of livetime recorded between May 2010 and May 2012. While this sample is composed primarily of neutrinos produced by cosmic ray interactions in the Earth's atmosphere, the highest energy events are inconsistent with a hypothesis of …

HIGH-ENERGY NEUTRINOSFLUXESATMOSPHERIC MUONAstrophysics::High Energy Astrophysical PhenomenaSolar neutrinoFOS: Physical sciencesGeneral Physics and AstronomyAstrophysics01 natural sciencesIceCube Neutrino ObservatoryRATIO0103 physical sciencesddc:550010303 astronomy & astrophysicsGAMMA-RAY BURSTSHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSPECTRUMSpectral indexMuon010308 nuclear & particles physicsSolar neutrino problemPhysics and AstronomyNeutrino detector13. Climate actionHigh Energy Physics::ExperimentNeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Comparison of European ICU patients in 2012 (ICON) versus 2002 (SOAP)

2018

Purpose: To evaluate differences in the characteristics and outcomes of intensive care unit (ICU) patients over time. Methods: We reviewed all epidemiological data, including comorbidities, types and severity of organ failure, interventions, lengths of stay and outcome, for patients from the Sepsis Occurrence in Acutely ill Patients (SOAP) study, an observational study conducted in European intensive care units in 2002, and the Intensive Care Over Nations (ICON) audit, a survey of intensive care unit patients conducted in 2012. Results: We compared the 3147 patients from the SOAP study with the 4852 patients from the ICON audit admitted to intensive care units in the same countries as those…

MaleOriginalEpidemiology[SDV]Life Sciences [q-bio]HSJ UCIlnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]MULTICENTERclinical outcomemortality rateCritical Care and Intensive Care Medicineintensive care unitlaw.invention0302 clinical medicineSeverity of diseaselawEpidemiologymiddle agedMedicine and Health SciencesFAILURE030212 general & internal medicineHospital Mortalityintensive care units -- analysis -- epidemiology -- mortalityGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)CODEScomparative studyintensive careMedicine(all)multilevel analysiIncidenceadultSciences bio-médicales et agricolesIntensive care unit3. Good healthEuropesepsaIntensive Care UnitsfemaleCohortenote intenzivne terapije -- analiza -- epidemiologija -- umrljivostHumanAdultmedicine.medical_specialtyseverity of diseaseCritical CareSepsiIntensive Care UnitUNITED-STATES610 Medicine & healthINTENSIVE-CAREEuropeanArticleSepsisEpidemiology; Sepsis; Severity of disease03 medical and health sciencesAll institutes and research themes of the Radboud University Medical Centerlength of staymaleEpidemiology; Sepsis; Severity of disease; Adult; Europe; Hospital Mortality; Humans; Length of Stay; Male; Critical Care; Intensive Care Units; SepsisAnesthesiologyIntensive careSepsisSCOREmedicineudc:614.2Humanshumanoutcome assessmentSeptic shockbusiness.industrySEPTIC SHOCK030208 emergency & critical care medicineLength of Staymedicine.diseaseTRENDSmajor clinical studySEVERE SEPSIScomorbidity assessmentEmergency medicineEpidemiology; Sepsis; Severity of disease; Critical Care and Intensive Care MedicineObservational studyCLAIMSbusinessSepsis;Severity of disease;Epidemiologyresnost bolezni
researchProduct

An improved method for measuring muon energy using the truncated mean of dE/dx

2012

Nuclear instruments & methods in physics research / A 703, 190 - 198 (2013). doi:10.1016/j.nima.2012.11.081

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsFOS: Physical sciencesddc:500.2Cherenkov; dE/dx; IceCube detector; Muon energy; Neutrino energy; Truncated mean53001 natural sciencesParticle detectorParticle identificationNuclear physicsdE/dx0103 physical sciencesSpecific energyddc:530CherenkovNeutrino energyInstrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsInstrumentationCherenkov radiationHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMuonTruncated meanMuon energy010308 nuclear & particles physicsDE/dxPhysics - Data Analysis Statistics and ProbabilityScintillation counterHigh Energy Physics::ExperimentNeutrinoIceCube detectorAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsData Analysis Statistics and Probability (physics.data-an)Lepton
researchProduct

Assessment of the worldwide burden of critical illness: The Intensive Care Over Nations (ICON) audit

2014

Item does not contain fulltext BACKGROUND: Global epidemiological data regarding outcomes for patients in intensive care units (ICUs) are scarce, but are important in understanding the worldwide burden of critical illness. We, therefore, did an international audit of ICU patients worldwide and assessed variations between hospitals and countries in terms of ICU mortality. METHODS: 730 participating centres in 84 countries prospectively collected data on all adult (>16 years) patients admitted to their ICU between May 8 and May 18, 2012, except those admitted for fewer than 24 h for routine postoperative monitoring. Participation was voluntary. Data were collected daily for a maximum of 28 da…

Pulmonary and Respiratory Medicinemedicine.medical_specialtyCritical Illnesshealth care facilities manpower and servicesPopulationlnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]Critical care european intensive care icon studyComorbidityintensive care medicineGlobal HealthMOF; sepsis; critically ill[SDV.MHEP.PSR]Life Sciences [q-bio]/Human health and pathology/Pulmonology and respiratory tractICON Intensive CareArticleSepsisCohort StudiesOutcome Assessment (Health Care)Intensive careSepsisOutcome Assessment Health CareEpidemiologyHealth careSettore MED/41 - ANESTESIOLOGIAmedicineGlobal healthcritical illness mortalityHumansHospital MortalityeducationIntensive care medicineeducation.field_of_studyMedical Auditbusiness.industryIntensive Caremedicine.diseaseComorbidity3. Good healthIntensive Care UnitsICONbusinessCohort study
researchProduct

Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube

2015

A diffuse flux of astrophysical neutrinos above $100\,\mathrm{TeV}$ has been observed at the IceCube Neutrino Observatory. Here we extend this analysis to probe the astrophysical flux down to $35\,\mathrm{TeV}$ and analyze its flavor composition by classifying events as showers or tracks. Taking advantage of lower atmospheric backgrounds for shower-like events, we obtain a shower-biased sample containing 129 showers and 8 tracks collected in three years from 2010 to 2013. We demonstrate consistency with the $(f_e:f_{\mu}:f_\tau)_\oplus\approx(1:1:1)_\oplus$ flavor ratio at Earth commonly expected from the averaged oscillations of neutrinos produced by pion decay in distant astrophysical sou…

FLUXAMANDAParticle physicsPhysics::Instrumentation and DetectorsENERGIESAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Physics and AstronomyFluxCosmic rayAstrophysicsACCELERATION01 natural sciencesflavor : ratioHigh Energy Physics - ExperimentIceCube Neutrino ObservatoryIceCubeHigh Energy Physics - Experiment (hep-ex)PionObservatory0103 physical sciencesddc:550010306 general physicsNeutrino oscillationHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsSigmashowersCOSMIC-RAYSatmosphere : backgroundtracksneutrino : flavor : rationeutrino : oscillationfluxobservatoryPhysics and Astronomy13. Climate actionHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical Phenomenaneutrino : VHEpi : decay
researchProduct