0000000001008784

AUTHOR

J. M. F. Dos Santos

showing 32 related works from this author

The proton radius puzzle

2017

High-precision measurements of the proton radius from laser spectroscopy of muonic hydrogen demonstrated up to six standard deviations smaller values than obtained from electron-proton scattering and hydrogen spectroscopy. The status of this discrepancy, which is known as the proton radius puzzle will be discussed in this paper, complemented with the new insights obtained from spectroscopy of muonic deuterium.

[PHYS]Physics [physics][ PHYS ] Physics [physics]Atomic Physics (physics.atom-ph)FOS: Physical sciences[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Physics - Atomic Physicslaserelectron p: scatteringhydrogen: muonic atomp: size[ PHYS.PHYS.PHYS-GEN-PH ] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Physics::Atomic Physicsspectrometerdeuterium: muonic atomNuclear Experimentactivity report
researchProduct

Intrinsic backgrounds from Rn and Kr in the XENON100 experiment

2018

In this paper, we describe the XENON100 data analyses used to assess the target-intrinsic background sources radon ([InlineMediaObject not available: see fulltext.]), thoron ([InlineMediaObject not available: see fulltext.]) and krypton ([InlineMediaObject not available: see fulltext.]). We detail the event selections of high-energy alpha particles and decay-specific delayed coincidences. We derive distributions of the individual radionuclides inside the detector and quantify their abundances during the main three science runs of the experiment over a period of ∼4years, from January 2010 to January 2014. We compare our results to external measurements of radon emanation and krypton concentr…

data analysis methodPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)WIMPFOS: Physical scienceschemistry.chemical_elementlcsh:AstrophysicsRadonSciences de l'ingénieur01 natural sciencesIonNuclear physicsradon: nuclideXENONlcsh:QB460-4660103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Engineering (miscellaneous)nuclidebackground: radioactivitybackground: suppressionkryptonPhysicsRadionuclidePhysique010308 nuclear & particles physicsKryptonInstrumentation and Detectors (physics.ins-det)Alpha particleAstronomieDark Matter direct search experimentrespiratory tract diseasesRadon DaughtersBackgroundchemistrylcsh:QC770-798TPCAstrophysics - Instrumentation and Methods for Astrophysics
researchProduct

First Axion Results from the XENON100 Experiment

2014

We present the first results of searches for axions and axion-like-particles with the XENON100 experiment. The axion-electron coupling constant, $g_{Ae}$, has been tested by exploiting the axio-electric effect in liquid xenon. A profile likelihood analysis of 224.6 live days $\times$ 34 kg exposure has shown no evidence for a signal. By rejecting $g_{Ae}$, larger than $7.7 \times 10^{-12}$ (90% CL) in the solar axion search, we set the best limit to date on this coupling. In the frame of the DFSZ and KSVZ models, we exclude QCD axions heavier than 0.3 eV/c$^2$ and 80 eV/c$^2$, respectively. For axion-like-particles, under the assumption that they constitute the whole abundance of dark matte…

Nuclear and High Energy PhysicsParticle physicsAstrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)astro-ph.GADark matterchemistry.chemical_elementFOS: Physical sciencesAstrophysics01 natural sciencesCosmologydark matterXenonHigh Energy Physics - Phenomenology (hep-ph)Assioni0103 physical sciences010306 general physicsAxionLiquid XenonCouplingCoupling constantQuantum chromodynamicsPhysics010308 nuclear & particles physicshep-phAstrophysics - Astrophysics of GalaxiesGalaxyHigh Energy Physics - Phenomenologychemistry[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Astrophysics of Galaxies (astro-ph.GA)astro-ph.COAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Online 222 Rn removal by cryogenic distillation in the XENON100 experiment

2017

We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant 222 Rn background originating from radon emanation. After inserting an auxiliary 222 Rn emanation source in the gas loop, we determined a radon reduction factor of R>27 (95% C.L.) for the distillation column by monitoring the 222 Rn activity concentration inside the XENON100 detector.

XenonPhysics and Astronomy (miscellaneous)WimpDirect SearchDark MatterTPCEngineering (miscellaneous)European Physical Journal C
researchProduct

Constraining the spin-dependent WIMP-nucleon cross sections with XENON1T

2019

We report the first experimental results on spin-dependent elastic weakly interacting massive particle (WIMP) nucleon scattering from the XENON1T dark matter search experiment. The analysis uses the full ton year exposure of XENON1T to constrain the spin-dependent proton-only and neutron-only cases. No significant signal excess is observed, and a profile likelihood ratio analysis is used to set exclusion limits on the WIMP-nucleon interactions. This includes the most stringent constraint to date on the WIMP-neutron cross section, with a minimum of 6.3 × 10−42 cm2 at 30 GeV/c2 and 90% confidence level. The results are compared with those from collider searches and used to exclude new paramet…

WIMP nucleon: interactionWIMP nucleon: scatteringParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)IsoscalarDark matterNuclear TheoryMassive particleGeneral Physics and AstronomyFOS: Physical sciencesParameter spacedark matter: direct detectionGravitation and Astrophysicsspin: dependence01 natural scienceslaw.inventionHigh Energy Physics - Phenomenology (hep-ph)WIMPlawisoscalar0103 physical sciencesS046DM1mediation010306 general physicsColliderPseudovectorPhysicsS030DN2S030DN1S030DP3S030DN3S030DP2S030DP1WIMP nucleon: cross sectionaxial-vectorHigh Energy Physics - PhenomenologyWIMPs Spin Dependent Cross Sections Neutron Cross Sections Likelihood methoddark matter: scattering[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentNucleon[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic Astrophysicsexperimental results
researchProduct

A low-mass dark matter search using ionization signals in XENON100

2016

We perform a low-mass dark matter search using an exposure of 30\,kg$\times$yr with the XENON100 detector. By dropping the requirement of a scintillation signal and using only the ionization signal to determine the interaction energy, we lowered the energy threshold for detection to 0.7\,keV for nuclear recoils. No dark matter detection can be claimed because a complete background model cannot be constructed without a primary scintillation signal. Instead, we compute an upper limit on the WIMP-nucleon scattering cross section under the assumption that every event passing our selection criteria could be a signal event. Using an energy interval from 0.7\,keV to 9.1\,keV, we derive a limit on …

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsDark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSignalHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)WIMPIonization0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsPhysicsScintillation010308 nuclear & particles physicsDetectorInstrumentation and Detectors (physics.ins-det)Physics and Astronomy (miscellaneous) DARK MATTER XENON TPC WIMPHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Scintillation counterEnergy (signal processing)Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Energy calibration of the NEXT-White detector with 1% resolution near Q ββ of 136Xe

2019

Excellent energy resolution is one of the primary advantages of electroluminescent high pressure xenon TPCs, and searches for rare physics events such as neutrinoless double-beta decay ($\beta\beta0\nu$) require precise energy measurements. Using the NEXT-White detector, developed by the NEXT (Neutrino Experiment with a Xenon TPC) collaboration, we show for the first time that an energy resolution of 1% FWHM can be achieved at 2.6 MeV, establishing the present technology as the one with the best energy resolution of all xenon detectors for $\beta\beta0\nu$ searches.

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysical measurementsPhysics::Instrumentation and DetectorsDark Matter and Double Beta DecayFísica -- Mesuramentschemistry.chemical_elementBioengineeringAtomic01 natural sciencesMathematical SciencesNuclear physicsParticle and Plasma PhysicsXenonAffordable and Clean Energy0103 physical sciencesDark Matter and Double Beta Decay (experiments)CalibrationNuclearlcsh:Nuclear and particle physics. Atomic energy. RadioactivityCalibratge010306 general physicsMathematical PhysicsPhysicsQuantum Physics010308 nuclear & particles physicsDetectorResolution (electron density)MolecularDetectorsNuclear & Particles PhysicsFull width at half maximumchemistryBeta (plasma physics)Physical SciencesCalibrationlcsh:QC770-798High Energy Physics::ExperimentNeutrinoEnergy (signal processing)
researchProduct

The XENON1T Dark Matter Experiment

2017

The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2 t liquid xenon inventory, 2.0 t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented. © 2017, The Author(s).

xenon: targetPhotomultiplierCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)WIMP[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Dark matterchemistry.chemical_elementFOS: Physical scienceslcsh:Astrophysics01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)XENONXenonbackground: lowWIMP[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]Ionization0103 physical scienceslcsh:QB460-466[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Dark Matterlcsh:Nuclear and particle physics. Atomic energy. Radioactivity[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsEngineering (miscellaneous)Instrumentation and Methods for Astrophysics (astro-ph.IM)[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]AstrophysiquePhysicsScintillationxenon: liquidTime projection chamberphotomultiplier010308 nuclear & particles physicsDetectorInstrumentation and Detectors (physics.ins-det)dark matter: detectortime projection chamberchemistrylcsh:QC770-798TPCAstrophysics - Instrumentation and Methods for Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]performanceAstrophysics - Cosmology and Nongalactic AstrophysicsEuropean Physical Journal C
researchProduct

NEXT-100 Technical Design Report (TDR). Executive summary

2012

[EN] In this Technical Design Report (TDR) we describe the NEXT-100 detector that will search for neutrinoless double beta decay (ßß0v) in 136XE at the Laboratorio Subterráneo de Canfranc (LSC), in Spain. The document formalizes the design presented in our Conceptual Design Report (CDR): an electroluminescence time projection chamber, with separate readout planes for calorimetry and tracking, located, respectively, behind cathode and anode. The detector is designed to hold a maximum of about 150 kg of xenon at 15 bar, or 100 kg at 10 bar. This option builds in the capability to increase the total isotope mass by 50% while keeping the operating pressure at a manageable level. The readout pla…

MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASPhotomultiplierPhysics - Instrumentation and DetectorsBar (music)Time projection chambersFOS: Physical scienceschemistry.chemical_elementWavelength shifterTracking (particle physics)7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentTECNOLOGIA ELECTRONICAHigh Energy Physics - Experiment (hep-ex)chemistry.chemical_compoundXenonOptics0103 physical sciences010306 general physicsInstrumentationMathematical PhysicsPhysicsTime projection chamber010308 nuclear & particles physicsbusiness.industryDetectorFísicaTetraphenyl butadieneDetectorsInstrumentation and Detectors (physics.ins-det)Gas detectorsDetectors de gasoschemistryDetector design and construction technologies and materialsbusinessJournal of Instrumentation
researchProduct

Results from a calibration of XENON100 using a source of dissolved radon-220

2017

A Rn 220 source is deployed on the XENON100 dark matter detector in order to address the challenges in calibration of tonne-scale liquid noble element detectors. We show that the Pb 212 beta emission can be used for low-energy electronic recoil calibration in searches for dark matter. The isotope spreads throughout the entire active region of the detector, and its activity naturally decays below background level within a week after the source is closed. We find no increase in the activity of the troublesome Rn 222 background after calibration. Alpha emitters are also distributed throughout the detector and facilitate calibration of its response to Rn 222 . Using the delayed coincidence of R…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsDark matterFOS: Physical scienceschemistry.chemical_elementRadon01 natural sciencesCoincidenceNuclear physicsRecoilOpticsXenonXENON DARK MATTER WIMPS CALIBRATION RADON0103 physical sciencesCalibration[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsPhysics010308 nuclear & particles physicsbusiness.industryDetectorAstrophysics::Instrumentation and Methods for AstrophysicsOrder (ring theory)Instrumentation and Detectors (physics.ins-det)chemistryHigh Energy Physics::Experimentbusiness
researchProduct

Ba$^{2+}$ ion trapping by organic submonolayer: towards an ultra-low background neutrinoless double beta decay detector

2022

If neutrinos are their own antiparticles, the otherwise-forbidden nuclear reaction known as neutrinoless double beta decay ($\beta\beta 0\nu$) can occur, with a characteristic lifetime which is expected to be very long, making the suppression of backgrounds a daunting task. It has been shown that detecting (``tagging'') the Ba$^{+2}$ dication produced in the double beta decay ${}^{136}\mathrm{Xe} \rightarrow {}^{136}$Ba$^{+2}+ 2 e + (2 \nu)$ in a high pressure gas experiment, could lead to a virtually background free experiment. To identify these \Bapp, chemical sensors are being explored as a key tool by the NEXT collaboration . Although used in many fields, the application of such chemose…

Chemical Physics (physics.chem-ph)High Energy Physics - Experiment (hep-ex)Condensed Matter - Materials SciencePhysics - Chemical PhysicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesHigh Energy Physics - Experiment
researchProduct

Radon and material radiopurity assessment for the NEXT double beta decay experiment

2015

Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAM

Radon mitigationPhysics - Instrumentation and DetectorsNuclear engineeringchemistry.chemical_elementFOS: Physical sciencesRadon7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)XenonCambres d'ionitzacióDouble beta decayGamma detectors (HPGe)0103 physical sciencesGamma spectroscopyNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentDetectors de radiació010308 nuclear & particles physicsIonization chambersCanfranc Underground LaboratoryMaterial radiopurityFísicaTime-Projection Chamber (TPC)Instrumentation and Detectors (physics.ins-det)Double beta decaySemiconductor detectorchemistry13. Climate actionNuclear countersEnvironmental scienceNeutrino
researchProduct

Demonstration of the event identification capabilities of the NEXT-White detector

2019

[EN] In experiments searching for neutrinoless double-beta decay, the possibility of identifying the two emitted electrons is a powerful tool in rejecting background events and therefore improving the overall sensitivity of the experiment. In this paper we present the first measurement of the efficiency of a cut based on the different event signatures of double and single electron tracks, using the data of the NEXT-White detector, the first detector of the NEXT experiment operating underground. Using a 228Th calibration source to produce signal-like and background-like events with energies near 1.6 MeV, a signal efficiency of 71.6 ± 1.5 stat ± 0.3 sys% for a background acceptance of 20.6 ± …

Nuclear and High Energy PhysicsPhysical measurementsPhysics - Instrumentation and DetectorsMonte Carlo methodExtrapolationFísica -- MesuramentsFOS: Physical sciences7. Clean energy01 natural sciencesAtomicMathematical SciencesHigh Energy Physics - ExperimentNuclear physicsTECNOLOGIA ELECTRONICAHigh Energy Physics - Experiment (hep-ex)Particle and Plasma PhysicsDouble beta decay0103 physical sciencesDark Matter and Double Beta Decay (experiments)Calibrationlcsh:Nuclear and particle physics. Atomic energy. RadioactivityNuclearCalibratge010306 general physicsNuclear ExperimentMathematical PhysicsPhysicsQuantum Physics010308 nuclear & particles physicsDetectorMolecularDetectorsInstrumentation and Detectors (physics.ins-det)Nuclear & Particles PhysicsCalibrationPhysical Scienceslcsh:QC770-798High Energy Physics::ExperimentSensitivity (electronics)Event (particle physics)Energy (signal processing)
researchProduct

Radiogenic backgrounds in the NEXT double beta decay experiment

2019

[EN] Natural radioactivity represents one of the main backgrounds in the search for neutrinoless double beta decay. Within the NEXT physics program, the radioactivity- induced backgrounds are measured with the NEXT-White detector. Data from 37.9 days of low-background operations at the Laboratorio Subterraneo de Canfranc with xenon depleted in Xe-136 are analyzed to derive a total background rate of (0.84 +/- 0.02) mHz above 1000 keV. The comparison of data samples with and without the use of the radon abatement system demonstrates that the contribution of airborne-Rn is negligible. A radiogenic background model is built upon the extensive radiopurity screening campaign conducted by the NEX…

Nuclear and High Energy PhysicsPhysical measurementsPhysics - Instrumentation and DetectorsDark Matter and Double Beta DecayDark matterFísica -- Mesuramentschemistry.chemical_elementFOS: Physical sciencesRadon7. Clean energy01 natural sciencesAtomicMathematical SciencesHigh Energy Physics - ExperimentNuclear physicsTECNOLOGIA ELECTRONICAHigh Energy Physics - Experiment (hep-ex)XenonParticle and Plasma PhysicsDouble beta decayDark matter and double beta decay (experiments)0103 physical sciencesDark Matter and Double Beta Decay (experiments)Dark Matterlcsh:Nuclear and particle physics. Atomic energy. RadioactivityNuclear010306 general physicsDouble Beta DecayNatural radioactivityMathematical PhysicsPhysicsQuantum PhysicsRadiogenic nuclide010308 nuclear & particles physicsDetectorMolecularDetectorsInstrumentation and Detectors (physics.ins-det)Nuclear & Particles PhysicschemistryPhysical Scienceslcsh:QC770-798Event (particle physics)
researchProduct

Sensitivity of a tonne-scale NEXT detector for neutrinoless double beta decay searches

2020

The Neutrino Experiment with a Xenon TPC (NEXT) searches for the neutrinoless double-beta decay of Xe-136 using high-pressure xenon gas TPCs with electroluminescent amplification. A scaled-up version of this technology with about 1 tonne of enriched xenon could reach in less than 5 years of operation a sensitivity to the half-life of neutrinoless double-beta decay decay better than 1E27 years, improving the current limits by at least one order of magnitude. This prediction is based on a well-understood background model dominated by radiogenic sources. The detector concept presented here represents a first step on a compelling path towards sensitivity to the parameter space defined by the in…

Physics - Instrumentation and DetectorsFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)Nuclear Experiment (nucl-ex)Nuclear Experiment
researchProduct

Material screening and selection for XENON100

2011

Results of the extensive radioactivity screening campaign to identify materials for the construction of XENON100 are reported. This Dark Matter search experiment is operated underground at Laboratori Nazionali del Gran Sasso (LNGS), Italy. Several ultra sensitive High Purity Germanium detectors (HPGe) have been used for gamma ray spectrometry. Mass spectrometry has been applied for a few low mass plastic samples. Detailed tables with the radioactive contaminations of all screened samples are presented, together with the implications for XENON100.

PhysicsPhysics - Instrumentation and Detectors010308 nuclear & particles physicsGamma rayLow activityFOS: Physical sciencesAstronomy and AstrophysicsInstrumentation and Detectors (physics.ins-det)Mass spectrometry01 natural sciencesSemiconductor detectorNuclear physics0103 physical sciencesMass spectrum[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsGamma ray spectrometryUltra sensitive
researchProduct

XENON100 dark matter results from a combination of 477 live days

2016

We report on WIMP search results of the XENON100 experiment, combining three runs summing up to 477 live days from January 2010 to January 2014. Data from the first two runs were already published. A blind analysis was applied to the last run recorded between April 2013 and January 2014 prior to combining the results. The ultra-low electromagnetic background of the experiment, ~$5 \times 10^{-3}$ events/(keV$_{\mathrm{ee}}\times$kg$\times$day) before electronic recoil rejection, together with the increased exposure of 48 kg $\times$ yr improves the sensitivity. A profile likelihood analysis using an energy range of (6.6 - 43.3) keV$_{\mathrm{nr}}$ sets a limit on the elastic, spin-independe…

Scattering cross-sectionPhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics - Instrumentation and DetectorsProton010308 nuclear & particles physicsDark matterFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)01 natural sciences7. Clean energyXENON DARK MATTER WIMP TPCNuclear physicsRecoilWIMPLikelihood analysis0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Sensitivity (control systems)010306 general physicsEnergy (signal processing)Astrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review D
researchProduct

Initial results of NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment

2013

NEXT-DEMO is a large-scale prototype of the NEXT-100 detector, an electroluminescent time projection chamber that will search for the neutrinoless double beta decay of Xe-136 using 100-150 kg of enriched xenon gas. NEXT-DEMO was built to prove the expected performance of NEXT-100, namely, energy resolution better than 1% FWHM at 2.5MeV and event topological reconstruction. In this paper we describe the prototype and its initial results. A resolution of 1.75% FWHM at 511 keV (which extrapolates to 0.8% FWHM at 2.5 MeV) was obtained at 10 bar pressure using a gamma-ray calibration source. Also, a basic study of the event topology along the longitudinal coordinate is presented, proving that it…

MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASPhysics - Instrumentation and DetectorsBar (music)Isòtops radioactius -- DesintegracióTime projection chambersPattern recognition SystemsFOS: Physical scienceschemistry.chemical_elementElectron7. Clean energy01 natural sciencesNuclear physicsTECNOLOGIA ELECTRONICAXenonCambres d'ionitzacióCluster analysisDouble beta decayPattern recognition0103 physical sciencesCalibrationReconeixement de formes (Informàtica)Calibratge010306 general physicsInstrumentationMathematical PhysicsRadioisotopes -- DecayPhysicsCalibration and fitting methodsTime projection chamber010308 nuclear & particles physicsDetectorCluster findingFísicaInstrumentation and Detectors (physics.ins-det)Double-beta decay detectorsAnàlisi de conglomeratschemistryCalibrationEvent (particle physics)Ionization Chambers
researchProduct

Search for Electronic Recoil Event Rate Modulation with 4 Years of XENON100 Data

2017

We report on a search for electronic recoil event rate modulation signatures in the XENON100 data accumulated over a period of 4 years, from January 2010 to January 2014. A profile likelihood method, which incorporates the stability of the XENON100 detector and the known electronic recoil background model, is used to quantify the significance of periodicity in the time distribution of events. There is a weak modulation signature at a period of $431^{+16}_{-14}$ days in the low energy region of $(2.0-5.8)$ keV in the single scatter event sample, with a global significance of $1.9\,\sigma$, however no other more significant modulation is observed. The expected annual modulation of a dark matt…

Physics and Astronomy (all) XENON DARK MATTER MODULATION TPCPhysics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterGeneral Physics and AstronomyFOS: Physical sciencesElectron01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Recoil0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsPseudovectorInstrumentation and Methods for Astrophysics (astro-ph.IM)Physics010308 nuclear & particles physicsDetectorInstrumentation and Detectors (physics.ins-det)Coupling (probability)ModulationAstrophysics - Instrumentation and Methods for AstrophysicsEvent (particle physics)Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Characterization of a medium size Xe/TMA TPC instrumented with microbulk Micromegas, using low-energy gamma-rays

2014

NEXT-MM is a general-purpose high pressure (10 bar, $\sim25$ l active volume) Xenon-based TPC, read out in charge mode with an 8 cm $\times$8 cm-segmented 700 cm$^2$ plane (1152 ch) of the latest microbulk-Micromegas technology. It has been recently commissioned at University of Zaragoza as part of the R&D of the NEXT $0\nu\beta\beta$ experiment, although the experiment's first stage is currently being built based on a SiPM/PMT-readout concept relying on electroluminescence. Around 2 million events were collected during the last months, stemming from the low energy $\gamma$-rays emitted by a $^{241}$Am source when interacting with the Xenon gas ($\epsilon$ = 26, 30, 59.5 keV). The localized…

MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASDrift velocityPhysics - Instrumentation and DetectorsXenonTime projection chambersDouble-beta decayNuclear physicschemistry.chemical_element01 natural sciencesMicrobulkNuclear physicsTECNOLOGIA ELECTRONICASilicon photomultiplierXenon0103 physical sciencesTrimethylamineDiffusion (business)010306 general physicsInstrumentationMathematical PhysicsDetectors de radiacióPhysicsAtmospheric pressure010308 nuclear & particles physicsGamma rayMicroMegas detectorHigh pressurechemistryTime projection chamberNuclear countersFísica nuclearMicromegasBar (unit)
researchProduct

Online $$^{222}$$ 222 Rn removal by cryogenic distillation in the XENON100 experiment

2017

researchProduct

First Results on the Scalar WIMP-Pion Coupling, Using the XENON1T Experiment

2018

We present first results on the scalar coupling of weakly interacting massive particles (WIMPs) to pions from 1 t yr of exposure with the XENON1T experiment. This interaction is generated when the WIMP couples to a virtual pion exchanged between the nucleons in a nucleus. In contrast to most nonrelativistic operators, these pion-exchange currents can be coherently enhanced by the total number of nucleons and therefore may dominate in scenarios where spin-independent WIMP-nucleon interactions are suppressed. Moreover, for natural values of the couplings, they dominate over the spin-dependent channel due to their coherence in the nucleus. Using the signal model of this new WIMP-pion channel, …

Nuclear TheoryPhysics::Instrumentation and DetectorsNuclear TheoryGeneral Physics and Astronomy01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)WIMPPions[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear ExperimentS030UDMPhysicsStarke Wechselwirkung und exotische Kerne – Abteilung BlaumAstrophysics::Instrumentation and Methods for AstrophysicsnucleonsuppressionHigh Energy Physics - PhenomenologyWeakly interacting massive particlesmedicine.anatomical_structureWeakly interacting massive particlesNucleonCoherence (physics)Astrophysics - Cosmology and Nongalactic AstrophysicsWIMP nucleon: interactionParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]FOS: Physical sciencesWIMP: massspin: dependenceGravitation and Astrophysicsoperator: nonrelativisticDark matter Particle dark matter Pions Weakly interacting massive particles Dark matter detectorsNuclear Theory (nucl-th)PionParticle dark matter0103 physical sciencesmedicineDark mattercross section: upper limit010306 general physicsCouplingDark matter detectorsnucleusScalar (physics)coherenceDark Matter WIMP-Pion coupling Xenon Direct seartch[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experiment[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Nucleus
researchProduct

Search for WIMP Inelastic Scattering off Xenon Nuclei with XENON100

2017

We present the first constraints on the spin-dependent, inelastic scattering cross section of weakly interacting massive particles (WIMPs) on nucleons from XENON100 data with an exposure of 7.64 ×103 kg .days . XENON100 is a dual-phase xenon time projection chamber with 62 kg of active mass, operated at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy and designed to search for nuclear recoils from WIMP-nucleus interactions. Here we explore inelastic scattering, where a transition to a low-lying excited nuclear state of Xe 129 is induced. The experimental signature is a nuclear recoil observed together with the prompt deexcitation photon. We see no evidence for such inelastic WIMP-Xe…

Physics - Instrumentation and DetectorsXenonPhysics and Astronomy (miscellaneous)Physics::Instrumentation and Detectors[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)XenonRecoilWIMP[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Dark MatterNuclear Experiment[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]nucleus: recoilPhysicsTime projection chamberAstrophysics::Instrumentation and Methods for AstrophysicsWIMP nucleon: cross sectionInstrumentation and Detectors (physics.ins-det)Excited stateWeakly interacting massive particlesTPCNucleonchannel cross section: measuredsignatureAstrophysics - Cosmology and Nongalactic AstrophysicsParticle physicsdata analysis methodCosmology and Nongalactic Astrophysics (astro-ph.CO)WIMPchemistry.chemical_elementFOS: Physical sciencesInelastic scatteringspin: dependenceNuclear physicsstatistical analysis[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]photon: emission0103 physical sciencescross section: inelastic scattering[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsWIMP nucleon: inelastic scattering010308 nuclear & particles physicsS030DP2WIMP nucleus: interactionGran SassochemistryDirect Searchtime projection chamber: xenonHigh Energy Physics::Experiment[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]experimental results
researchProduct

Material radioassay and selection for the XENON1T dark matter experiment

2017

The XENON1T dark matter experiment aims to detect weakly interacting massive particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T experiment. Using gamma-ray spectroscopy and mass spectrometry techniques, systematic measurements of trace radioactive impurities in over one hundred samples within a wide range of materials were performed. The measured activities allowed for stringent selection and placement of materials during the…

Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsDark matterMonte Carlo methodmeasurement methodsFOS: Physical scienceschemistry.chemical_elementRadiopuritylcsh:AstrophysicsWIMP: detectorSciences de l'ingénieur01 natural sciencesgamma ray: energy spectrumNuclear physicsmass spectrumXENONXenonWIMPlcsh:QB460-4660103 physical sciencesDark Matterlcsh:Nuclear and particle physics. Atomic energy. Radioactivity[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsSpectroscopy[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Engineering (miscellaneous)background: radioactivityPhysicsRange (particle radiation)Physique010308 nuclear & particles physicsDetectorInstrumentation and Detectors (physics.ins-det)AstronomiesensitivitychemistryWeakly interacting massive particleslcsh:QC770-798TPCnumerical calculations: Monte Carlo
researchProduct

Search for Event Rate Modulation in XENON100 Electronic Recoil Data

2015

We have searched for periodic variations of the electronic recoil event rate in the (2-6) keV energy range recorded between February 2011 and March 2012 with the XENON100 detector, adding up to 224.6 live days in total. Following a detailed study to establish the stability of the detector and its background contributions during this run, we performed an un-binned profile likelihood analysis to identify any periodicity up to 500 days. We find a global significance of less than 1 sigma for all periods suggesting no statistically significant modulation in the data. While the local significance for an annual modulation is 2.8 sigma, the analysis of a multiple-scatter control sample and the phas…

Dark Matter Wimps ModulationPhysicsPhysics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)530 PhysicsDetectorDark matterPhase (waves)FOS: Physical sciencesGeneral Physics and AstronomySigmaInstrumentation and Detectors (physics.ins-det)AstrophysicsParticle detectorHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)RecoilModulation[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Event (particle physics)Astrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review Letters
researchProduct

DARWIN: Towards the ultimate dark matter detector

2016

DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/c2, such a detector with its large mass, low-energy …

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsdouble beta decay7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentPhysics Particles & FieldsNeutrino detectorHigh Energy Physics - Experiment (hep-ex)XenonWIMPPHOTOMULTIPLIERAXIONSphysics.ins-detsolar and atmospheric neutrinosPhysicsDark matter detectorTime projection chamberdark matter detectorsPhysicsSolar and atmospheric neutrinoInstrumentation and Detectors (physics.ins-det)Nuclear & Particles PhysicsNeutrino detectorSOLAR NEUTRINOSGASPhysical SciencesNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsGRAN SASSODark matter detectors; Double beta decay; Neutrino detectors; Solar and atmospheric neutrinosDark matterchemistry.chemical_elementFOS: Physical sciencesAstronomy & AstrophysicsLIQUID-XENON DETECTOR0202 Atomic Molecular Nuclear Particle And Plasma PhysicsSettore FIS/05 - Astronomia e AstrofisicaSEARCH0103 physical sciencesIsotopes of xenonZEPLIN-III[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsAxionInstrumentation and Methods for Astrophysics (astro-ph.IM)Science & Technology010308 nuclear & particles physicshep-exAstronomyAstronomy and Astrophysics0201 Astronomical And Space ScienceschemistryHigh Energy Physics::ExperimentSCINTILLATIONneutrino detectorsastro-ph.IMJournal of Cosmology and Astroparticle Physics
researchProduct

Online ^{222}Rn removal by cryogenic distillation in the XENON100 experiment

2017

International audience; We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant$^{222}$ Rn background originating from radon emanation. After inserting an auxiliary$^{222}$ Rn emanation source in the gas loop, we determined a radon reduction factor of $R\,>\,27$ (95% C.L.) for the distillation column by monitoring the$^{222}$ Rn activity concentration inside the XENON100 detector.

xenon: liquidradon: admixturePhysics - Instrumentation and DetectorsPhysicsFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)XENONmonitoringefficiencycryogenicsgasddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]background: radioactivity[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]
researchProduct

Removing krypton from xenon by cryogenic distillation to the ppq level

2017

The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β-emitter 85Kr which is present in the xenon. For XENON1T a concentration of natural krypton in xenon natKr/Xe<200ppq (parts per quadrillion, 1ppq=10-15mol/mol) is required. In this work, the design, construction and test of a novel cryogenic distillation column using the common McCabe–Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4 · 10 5 with thermodynamic stability a…

CryostatPhysics - Instrumentation and DetectorsXenonPhysics and Astronomy (miscellaneous)WIMPDark matterAnalytical chemistryFOS: Physical scienceschemistry.chemical_elementlcsh:AstrophysicsWeakly Interact Massive ParticleSciences de l'ingénieur01 natural sciences7. Clean energyXenonlcsh:QB460-4660103 physical sciencesDark Matterlcsh:Nuclear and particle physics. Atomic energy. RadioactivitySensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsComputer science information & general worksEngineering (miscellaneous)Liquid XenonComputingMilieux_MISCELLANEOUSPhysicsAir separationPhysique010308 nuclear & particles physicsDistillation ColumnKryptonKryptonOrder (ring theory)Instrumentation and Detectors (physics.ins-det)AstronomiechemistryDirect Searchddc:000lcsh:QC770-798TPCOrder of magnitude
researchProduct

Calibration of the NEXT-White detector using $^{83m}\mathrm{Kr}$ decays

2018

The NEXT-White (NEW) detector is currently the largest radio-pure high-pressure xenon gas time projection chamber with electroluminescent readout in the world. NEXT-White has been operating at Laboratorio Subterr\'aneo de Canfranc (LSC) since October 2016. This paper describes the calibrations performed with $^{83m}\mathrm{Kr}$ decays during a long run taken from March to November 2017 (Run II). Krypton calibrations are used to correct for the finite drift-electron lifetime as well as for the dependence of the measured energy on the event position which is mainly caused by variations in solid angle coverage. After producing calibration maps to correct for both effects we measure an excellen…

High Energy Physics - Experiment (hep-ex)Physics - Instrumentation and DetectorsFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)High Energy Physics - Experiment
researchProduct

Ionization and scintillation response of high-pressure xenon gas to alpha particles

2013

High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the ionization and scintillation detection properties of xenon gas at 10 bar pressure. For this purpose, we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. We measure the ionization electron drift velocity and longitudinal diffusion, and compare our results to expectations based on available electron scattering cross sections on pure xenon. In addition, two types of measurements add…

Scintillation (physics)IonizationMECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASPhysics - Instrumentation and DetectorsMaterials scienceIonitzacióPhysics::Instrumentation and DetectorsFOS: Physical scienceschemistry.chemical_elementElectronCharge transportNuclear excitation01 natural sciences7. Clean energyHigh Energy Physics - ExperimentTECNOLOGIA ELECTRONICAHigh Energy Physics - Experiment (hep-ex)Gaseous detectorsXenonComptadors de centelleigIonization and excitation processesIonization0103 physical sciencesPhysics::Atomic and Molecular ClustersNuclear Experiment (nucl-ex)010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Nuclear ExperimentInstrumentationMathematical PhysicsHeliumDetectors de radiacióScintillationTime projection chamber010308 nuclear & particles physicsFísicaMultiplication and electroluminescence in rare gases and liquidsInstrumentation and Detectors (physics.ins-det)Alpha particleDouble-beta decay detectorschemistryNuclear countersScintillation counterExcitació nuclearAtomic physicsAstrophysics - Instrumentation and Methods for Astrophysics
researchProduct

Search for two-neutrino double electron capture of $^{124}$Xe with XENON100

2017

Two-neutrino double electron capture is a rare nuclear decay where two electrons are simultaneously captured from the atomic shell. For $^{124}$Xe this process has not yet been observed and its detection would provide a new reference for nuclear matrix element calculations. We have conducted a search for two-neutrino double electron capture from the K-shell of $^{124}$Xe using 7636 kg$\cdot$d of data from the XENON100 dark matter detector. Using a Bayesian analysis we observed no significant excess above background, leading to a lower 90 % credibility limit on the half-life $T_{1/2}&gt;6.5\times10^{20}$ yr. We also evaluated the sensitivity of the XENON1T experiment, which is currently bein…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsElectron captureenergy resolutionFOS: Physical scienceschemistry.chemical_elementelectron: captureElectron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesBayesianX-rayneutrinoXenon0103 physical sciencesSensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det][ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)010306 general physics[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear ExperimentPhysicsnucleus: decayTime projection chamberphotomultiplier010308 nuclear & particles physicsbackgroundInstrumentation and Detectors (physics.ins-det)dark matter: detectorAtomic shellsensitivitytime projection chamberGran SassoxenonchemistryNeutrinoAtomic physicsRadioactive decayexperimental results
researchProduct

First Dark Matter Search Results from the XENON1T Experiment

2017

We report the first dark matter search results from XENON1T, a ∼2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind. The blinded search used 34.2 live days of data acquired between November 2016 and January 2017. Inside the (1042±12)-kg fiducial mass and in the [5,40] keVnr energy range of interest for weakly interacting massive particle (WIMP) dark matter searches, the electronic recoil background was (1.93±0.25)×10-4 events/(kg×day×keVee), the lowest ever achieved in such a dark matter detector. A profile likelihood analysis shows that the data are consisten…

Xenon[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Massive particleGeneral Physics and Astronomy01 natural sciencesWIMP: dark matterHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)RecoilXenonWIMPS046DM2[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Dark Matter[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]PhysicsRange (particle radiation)Time projection chamberDetectorHigh Energy Physics - Phenomenologydark matter: scatteringTPCAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - Cosmology and Nongalactic AstrophysicsWIMP nucleon: interactionParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)WIMPDark matterFOS: Physical scienceschemistry.chemical_elementWIMP: massS030DI2Nuclear physicsPhysics and Astronomy (all)[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesrecoil[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Physique010308 nuclear & particles physicsbackgrounddark matter: detectorAstronomieGran SassochemistryDirect Searchtime projection chamber: xenoninterpretation of experiments: XENON[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct