0000000001074546
AUTHOR
Victor V. Flambaum
HfF+ as a candidate to search for the nuclear weak quadrupole moment
Nuclei with a quadrupole deformation, such as $^{177}\mathrm{Hf}$ have enhanced weak quadrupole moment which induces the tensor weak electron-nucleus interaction in atoms and molecules. Corresponding parity-non-conserving (PNC) effect is strongly enhanced in the ${}^{3}{\mathrm{\ensuremath{\Delta}}}_{1}$ electronic state of the $^{177}\mathrm{HfF}^{+}$ cation which has very close opposite parity levels mixed by this tensor interaction. In the present paper we perform relativistic many-body calculations of this PNC effect. It is shown that the tensor weak interaction induced by the weak quadrupole moment gives the dominating contribution to the PNC effects in $^{177}\mathrm{HfF}^{+}$ which s…
Calculation of atomic spectra and transition amplitudes for superheavy element Db (Z=105)
Atomic spectra and other properties of superheavy element dubnium (Db, $Z=105$) are calculated using recently developed method combining configuration interaction with perturbation theory [the CIPT method, V. A. Dzuba, J. C. Berengut, C. Harabati, and V. V. Flambaum, Phys. Rev. A 95, 012503 (2017)]. These include energy levels for low-lying states of Db and Db II, electric dipole transition amplitudes between the ground state and low-lying states of opposite parity, isotope shift for these transitions, and the ionization potential of Db. Similar calculations for Ta, which is a lighter analog of Db, are performed to control the accuracy of the calculations.
Fast apparent oscillations of fundamental constants
Precision spectroscopy of atoms and molecules allows one to search for and to put stringent limits on the variation of fundamental constants. These experiments are typically interpreted in terms of variations of the fine structure constant $\alpha$ and the electron to proton mass ratio $\mu=m_e/m_p$. Atomic spectroscopy is usually less sensitive to other fundamental constants, unless the hyperfine structure of atomic levels is studied. However, the number of possible dimensionless constants increases when we allow for fast variations of the constants, where "fast" is determined by the time scale of the response of the studied species or experimental apparatus used. In this case, the relevan…
Isotopic variation of parity violation in atomic ytterbium: Description of the measurement method and analysis of systematic effects
We present a detailed description of experimental studies of the parity violation effect in an isotopic chain of atomic ytterbium (Yb), whose results were reported in a recent paper [Antypas et al., Nat. Phys. 15, 120 (2019)]. We discuss the principle of these measurements, made on the Yb $6{s}^{2} {}^{1}{S}_{0}\ensuremath{\rightarrow}5d6s ^{3}D_{1}$ optical transition at 408 nm, describe the experimental apparatus, and give a detailed account of our studies of systematic effects in the experiment. Our results offer a direct observation of the isotopic variation in the atomic parity violation effect, a variation which is in agreement with the prediction of the standard model. These measurem…
Searching for Earth/Solar axion halos
We discuss the sensitivity of the present and near-future axion dark matter experiments to a halo of axions or axion-like particles gravitationally bound to the Earth or the Sun. The existence of such halos, assuming they are formed, renders a significant gain in the sensitivity of axion searches while satisfying all the present experimental bounds. The structure and coherence properties of these halos also imply novel signals, which can depend on the latitude or orientation of the detector. We demonstrate this by analysing the sensitivity of several distinct types of axion dark matter experiments.
Isotope shift, non-linearity of King plots and the search for new particles
We derive a mean-field relativistic formula for the isotope shift of an electronic energy level for arbitrary angular momentum; we then use it to predict the spectra of superheavy metastable neutron-rich isotopes belonging to the hypothetical island of stability. Our results may be applied to the search for superheavy atoms in astrophysical spectra using the known values of the transition frequencies for the neutron deficient isotopes produced in the laboratory. An example of a relevant astrophysical system may be the spectra of the Przybylski's star where superheavy elements up to Z=99 have been possibly identified. In addition, it has been recently suggested to use the measurements of Kin…
Prediction of quantum many-body chaos in protactinium atom
Energy level spectrum of protactinium atom (Pa, Z=91) is simulated with a CI calculation. Levels belonging to the separate manifolds of a given total angular momentum and parity $J^\pi$ exhibit distinct properties of many-body quantum chaos. Moreover, an extremely strong enhancement of small perturbations takes place. As an example, effective three-electron interaction is investigated and found to play a significant role in the system. Chaotic properties of the eigenstates allow one to develop a statistical theory and predict probabilities of different processes in chaotic systems.
Constraints on Exotic Spin-Dependent Interactions Between Matter and Antimatter from Antiprotonic Helium Spectroscopy.
Heretofore undiscovered spin-0 or spin-1 bosons can mediate exotic spin-dependent interactions between standard-model particles. Here we carry out the first search for semileptonic spin-dependent interactions between matter and antimatter. We compare theoretical calculations and spectroscopic measurements of the hyperfine structure of antiprotonic helium to constrain exotic spin- and velocity-dependent interactions between electrons and antiprotons.
Enhanced nuclear Schiff moment in stable and metastable nuclei
Nuclei with static intrinsic octupole deformation or a soft octupole vibrational mode lead to strongly enhanced collective nuclear Schiff? moments. Interaction between electrons and these Schiff moments produce enhanced time reversal (T) and parity (P) violating electric dipole moments (EDM) in atoms and molecules. Corresponding experiments may be used to test CP-violation theories predicting T,P-violating nuclear forces and to search for axions. Nuclear octupole deformations are predicted in many short lived isotopes. This paper investigates octupole deformations in stable and very long lifetime nuclei such as 153Eu, 235U, 237Np and 227Ac, which can ease atomic experiments substantially. T…
Searching for Axion Dark Matter in Atoms: ~Oscillating Electric Dipole Moments and Spin-Precession Effects
Roberts, Benjamin M. "Searching for Axion Dark Matter in Atoms: ~Oscillating Electric Dipole Moments and Spin-Precession Effects" in Proceedings, 11th Patras Workshop on Axions, WIMPs and WISPs (Axion-WIMP 2015) / Irastorza, Igor G., Redondo, Javier, Carmona, José Manuel, Cebrian, Susana, Dafni, Theopisti, Iguaz, Francisco J., Luzon, Gloria (eds.), Verlag Deutsches Elektronen-Synchrotron : 2015 ; AXION-WIMP 2015 : 11th Patras Workshop on Axions, WIMPs and WISPs, 2015-06-22 - 2015-06-26, Zaragoza 11th Patras Workshop on Axions, WIMPs and WISPs, AXION-WIMP 2015, Zaragoza, Spain, 22 Jun 2015 - 26 Jun 2015 ; DESY-PROC 120-123(2015). doi:10.3204/DESY-PROC-2015-02/roberts_benjamin_axions
Limiting P-odd interactions of cosmic fields with electrons, protons and neutrons
We propose methods for extracting limits on the strength of P-odd interactions of pseudoscalar and pseudovector cosmic fields with electrons, protons and neutrons. Candidates for such fields are dark matter (including axions) and dark energy, as well as several more exotic sources described by standard-model extensions. Calculations of parity nonconserving amplitudes and atomic electric dipole moments induced by these fields are performed for H, Li, Na, K, Rb, Cs, Ba+, Tl, Dy, Fr, and Ra+. From these calculations and existing measurements in Dy, Cs and Tl, we constrain the interaction strengths of the parity-violating static pseudovector cosmic field to be 7*10^(-15) GeV with an electron, a…
Atomic Ionization by Scalar Dark Matter and Solar Scalars
We calculate the cross-sections of atomic ionization by absorption of scalar particles in the energy range from a few eV to 100 keV. We consider both nonrelativistic particles (dark matter candidates) and relativistic particles which may be produced inside Sun. We provide numerical results for atoms relevant for direct dark matter searches (O, Na, Ar, Ca, Ge, I, Xe, W and Tl). We identify a crucial flaw in previous calculations and show that they overestimated the ionization cross sections by several orders of magnitude due to violation of the orthogonality of the bound and continuum electron wave functions. Using our computed cross-sections, we interpret the recent data from the Xenon1T ex…
Intrinsic quantum chaos and spectral fluctuations within the protactinium atom
Limits on gravitational Einstein Equivalence Principle violation from monitoring atomic clock frequencies during a year
Sun's gravitation potential at earth varies during a year due to varying Earth-Sun distance. Comparing the results of very accurate measurements of atomic clock transitions performed at different time in the year allows us to study the dependence of the atomic frequencies on the gravitational potential. We examine the measurement data for the ratio of the frequencies in Hg$^+$ and Al$^+$ clock transitions and absolute frequency measurements (with respect to caesium frequency standard) for Dy, Sr, H, hyperfine transitions in Rb and H, and obtain significantly improved limits on the values of the gravity related parameter of the Einstein Equivalence Principle violating term in the Standard Mo…
Probing Sizes and Shapes of Nobelium Isotopes by Laser Spectroscopy
Until recently, ground-state nuclear moments of the heaviest nuclei could only be inferred from nuclear spectroscopy, where model assumptions are required. Laser spectroscopy in combination with modern atomic structure calculations is now able to probe these moments directly, in a comprehensive and nuclear-model-independent way. Here we report on unique access to the differential mean-square charge radii of ^{252,253,254}No, and therefore to changes in nuclear size and shape. State-of-the-art nuclear density functional calculations describe well the changes in nuclear charge radii in the region of the heavy actinides, indicating an appreciable central depression in the deformed proton densi…
Dark matter scattering on electrons: Accurate calculations of atomic excitations and implications for the DAMA signal
We revisit the WIMP-type dark matter scattering on electrons that results in atomic ionization and can manifest itself in a variety of existing direct-detection experiments. Unlike the WIMP-nucleon scattering, where current experiments probe typical interaction strengths much smaller than the Fermi constant, the scattering on electrons requires a much stronger interaction to be detectable, which in turn requires new light force carriers. We account for such new forces explicitly, by introducing a mediator particle with scalar or vector couplings to dark matter and to electrons. We then perform state-of-the-art numerical calculations of atomic ionization relevant to the existing experiments.…
New generation low-energy probes for ultralight axion and scalar dark matter
We present a brief overview of a new generation of high-precision laboratory and astrophysical measurements to search for ultralight (sub-eV) axion, axion-like pseudoscalar and scalar dark matter, which form either a coherent condensate or topological defects (solitons). In these new detection methods, the sought effects are linear in the interaction constant between dark matter and ordinary matter, which is in stark contrast to traditional searches for dark matter, where the sought effects are quadratic or higher order in the underlying interaction constants (which are extremely small).
Comment on "Axion induced oscillating electric dipole moments"
In the recent work [Phys. Rev. D 91, 111702(R) (2015)], C. Hill concludes that the axion electromagnetic anomaly induces an oscillating electron electric dipole moment of frequency $m_a$ and strength $\sim 10^{-32}~e$ cm, in the limit $v/c \to 0$ for the axion field. Here, we demonstrate that a proper treatment of this problem in the lowest order yields $\textit{no}$ electric dipole moment of the electron in the same limit. Instead, oscillating electric dipole moments of atoms and molecules are produced by different mechanisms.
Ultralight dark photon as a model for early universe dark matter
Dark photon is a massive vector field which interacts only with the physical photon through the kinetic mixing. This coupling is assumed to be weak so that the dark photon becomes almost unobservable in processes with elementary particles, but can serve as a dark matter particle. We argue that in very early Universe ($z>3000$) this vector field may have the equation of state of radiation ($w=1/3$) but later behaves as cold dark matter ($w=0$). This may slightly change the expansion rate of the Universe at early time and reduce the value of the sound horizon of baryon acoustic oscillations (standard ruler). As a result, in this model the value of the Hubble constant appears to be larger than…
Electron-interacting dark matter: Implications from DAMA/LIBRA-phase2 and prospects for liquid xenon detectors and NaI detectors
We investigate the possibility for the direct detection of low-mass (GeV scale) weakly interacting massive particles (WIMP) dark matter in scintillation experiments. Such WIMPs are typically too light to leave appreciable nuclear recoils but may be detected via their scattering off atomic electrons. In particular, the DAMA Collaboration [R. Bernabei et al., Nucl. Phys. At. Energy 19, 307 (2018)] has recently presented strong evidence of an annual modulation in the scintillation rate observed at energies as low as 1 keV. Despite a strong enhancement in the calculated event rate at low energies, we find that an interpretation in terms of electron-interacting WIMPs cannot be consistent with ex…
Search for the effect of massive bodies on atomic spectra and constraints on Yukawa-type interactions of scalar particles
We propose a new method to search for hypothetical scalar particles that have feeble interactions with Standard-Model particles. In the presence of massive bodies, these interactions produce a non-zero Yukawa-type scalar-field magnitude. Using radio-frequency spectroscopy data of atomic dysprosium, as well as atomic clock spectroscopy data, we constrain the Yukawa-type interactions of a scalar field with the photon, electron, and nucleons for a range of scalar-particle masses corresponding to length scales $ > 10$ cm. In the limit as the scalar-particle mass $m_\phi \to 0$, our derived limits on the Yukawa-type interaction parameters are: $\Lambda_\gamma \gtrsim 8 \times 10^{19}$ GeV, $\Lam…
Sensitivity of Th229 nuclear clock transition to variation of the fine-structure constant
Peik and Tamm [Europhys. Lett. 61, 181 (2003)] proposed a nuclear clock based on the isomeric transition between the ground state and the first excited state of thorium-229. This transition was recognized as a potentially sensitive probe of possible temporal variation of the fine-structure constant, $\ensuremath{\alpha}$. The sensitivity to such a variation can be determined from measurements of the mean-square charge radius and quadrupole moment of the different isomers. However, current measurements of the quadrupole moment are yet to achieve an accuracy high enough to resolve nonzero sensitivity. Here we determine this sensitivity using existing measurements of the change in the mean-squ…
Time reversal violating Magnetic Quadrupole Moment in heavy deformed nuclei
The existence of permanent electric dipole moments (EDMs) and magnetic quadrupole moments (MQMs) violate both time reversal invariance (T) and parity (P). Following the CPT theorem they also violate combined CP symmetry. Nuclear EDMs are completely screened in atoms and molecules while interaction between electrons and MQMs creates atomic and molecular EDMs which can be measured and used to test CP-violation theories. Nuclear MQMs are produced by the nucleon-nucleon T, P-odd interaction and by nucleon EDMs. In this work we study the effect of enhancement of the nuclear MQMs due to the nuclear quadrupole deformation. Using the Nilsson model we calculate the nuclear MQMs for deformed nuclei o…
Radiation from matter-antimatter annihilation in the quark nugget model of dark matter
We revisit the properties of positron cloud in quark nugget (QN) model of dark matter (DM). In this model, dark matter particles are represented by compact composite objects composed of a large number of quarks or antiquarks with total baryon number $B\sim 10^{24}$. These particles have a very small number density in our galaxy which makes them "dark" to all DM detection experiments and cosmological observations. In this scenario, anti-quark nuggets play special role because they may manifest themselves in annihilation with visible matter. We study electron-positron annihilation in collisions of free electrons, hydrogen and helium gases with the positron cloud of anti-quark nuggets. We show…
Coherent axion-photon transformations in the forward scattering on atoms
In certain laboratory experiments the production and/or detection of axions is due to the photon-axion transformations in a strong magnetic field. This process is coherent, and the rate of the transformation is proportional to the length $l$ and magnitude $B$ of the magnetic field squared, $\sim l^2B^2$. In the present paper, we consider coherent production of axions due to the forward scattering of photons on atoms or molecules. This process may be represented as being due to an effective electromagnetic field which converts photons to axions. We present analytical expressions for such effective magnetic and electric fields induced by resonant atomic M0 and M1 transitions, as well as give …
Resonant detection and production of axions with atoms
The axions and axion-like particles can be detected via a resonant atomic or molecular transition induced by axion absorption. The signal obtained in this process is second order in the axion-electron interaction constant and hence small. In this chapter, it is demonstrated that this signal may become first order in the axion-electron interaction constant if we allow the interference between the axion-induced transition amplitude and the transition amplitude induced by the electromagnetic radiation. Additionally, we show that the conventional scheme of producing axions from photons in a magnetic field may be improved if the field is replaced by an atomic medium in which photons scattering …
Experimental constraint on axion-like particle coupling over seven orders of magnitude in mass
We use our recent electric dipole moment (EDM) measurement data to constrain the possibility that the HfF$^+$ EDM oscillates in time due to interactions with candidate dark matter axion-like particles (ALPs). We employ a Bayesian analysis method which accounts for both the look-elsewhere effect and the uncertainties associated with stochastic density fluctuations in the ALP field. We find no evidence of an oscillating EDM over a range spanning from 27 nHz to 400 mHz, and we use this result to constrain the ALP-gluon coupling over the mass range $10^{-22}-10^{-15}$ eV. This is the first laboratory constraint on the ALP-gluon coupling in the $10^{-17}-10^{-15}$ eV range, and the first laborat…
Theoretical study of the electron structure of superheavy elements with an open 6d shell: Sg, Bh, Hs, and Mt
We use recently developed efficient versions of the configuration interaction method to perform {\em ab initio} calculations of the spectra of superheavy elements seaborgium (Sg, $Z=106$), bohrium (Bh, $Z=107$), hassium (Hs, $Z=108$) and meitnerium (Mt, $Z=109$). We calculate energy levels, ionization potentials, isotope shifts and electric dipole transition amplitudes. Comparison with lighter analogs reveals significant differences caused by strong relativistic effects in superheavy elements. Very large spin-orbit interaction distinguishes subshells containing orbitals with a definite total electron angular momentum $j$. This effect replaces Hund's rule holding for lighter elements.
Experimental Constraint on Axionlike Particles over Seven Orders of Magnitude in Mass
We use our recent electric dipole moment (EDM) measurement data to constrain the possibility that the HfF+ EDM oscillates in time due to interactions with candidate dark matter axionlike particles (ALPs). We employ a Bayesian analysis method which accounts for both the look-elsewhere effect and the uncertainties associated with stochastic density fluctuations in the ALP field. We find no evidence of an oscillating EDM over a range spanning from 27 nHz to 400 mHz, and we use this result to constrain the ALP-gluon coupling over the mass range 10-22-10-15 eV. This is the first laboratory constraint on the ALP-gluon coupling in the 10-17-10-15 eV range, and the first laboratory constraint to pr…
New Strong Bounds on sub-GeV Dark Matter from Boosted and Migdal Effects
Due to the low nuclear recoils, sub-GeV dark matter (DM) is usually beyond the sensitivity of the conventional DM direct detection experiments. The boosted and Migdal scattering mechanisms have been proposed as two new complementary avenues to search for light DM. In this work, we consider the momentum-transfer effect in the DM-nucleus scattering to derive the new bounds on sub-GeV DM for these two scenarios. We show that such an effect is sizable so that the existing bounds on the DM-nucleus scattering cross section can be improved significantly.
Nuclear anapole moment interaction in BaF from relativistic coupled-cluster theory
We present high accuracy relativistic coupled cluster calculations of the P-odd interaction coefficient $W_A$ describing the nuclear anapole moment effect on the molecular electronic structure. The molecule under study, BaF, is considered a promising candidate for the measurement of the nuclear anapole moment, and the preparation for the experiment is now underway [Altunas et al., Phys. Rev. Lett. 120, 142501 (2018)]. Influence of various computational parameters (size of the basis set, treatment of relativistic effects, and treatment of electron correlation) on the calculated $W_A$ coefficient is investigated and a recommended value of 147.7 Hz with an estimated uncertainty of 1.5% is prop…
Dependence of atomic parity-violation effects on neutron skins and new physics
We estimate the relative contribution of nuclear structure and new physics couplings to the parity non-conserving spin-independent effects in atomic systems, for both single isotopes and isotopic ratios. General expressions are presented to assess the sensitivity of isotopic ratios to neutron skins and to couplings beyond standard model at tree level. The specific coefficients for these contributions are calculated assuming Fermi distribution for proton and neutron nuclear densities for isotopes of Cs, Ba, Sm, Dy, Yb, Pb, Fr, and Ra. The present work aims to provide a guide to the choice of the best isotopes and pairs of isotopes for conducting atomic PNC measurements.
Using optical clock transitions in Cu II and Yb III for time-keeping and search for new physics
We study the $^1$S$_0 - ^3$D$_2$ and $^1$S$_0 - ^3$D$_3$ transitions in Cu II and the $^1$S$_0 - ^3$P$^{\rm o}_2$ transition in Yb III as possible candidates for the optical clock transitions. A recently developed version of the configuration (CI) method, designed for a large number of electrons above closed-shell core, is used to carry out the calculation. We calculate excitation energies, transition rates, lifetimes, scalar static polarizabilities of the ground and clock states, and blackbody radiation shift. We demonstrate that the considered transitions have all features of the clock transition leading to prospects of highly accurate measurements. Search for new physics, such as time va…
Search for CP-violating nuclear magnetic quadrupole moment using the LuOH+ cation
The time-reversal and spatial parity violating interaction of the nuclear magnetic quadrupole moment (MQM) of the 175Lu and 176Lu nuclei with electrons in the molecular cation LuOH+ is studied. The resulting effect is expressed in terms of fundamental parameters, such as quantum chromodynamics angle θ⎯⎯, quark electric dipole moment (EDM), and chromo-EDM. For this, we have estimated the magnetic quadrupole moments of 175Lu and 176Lu nuclei and calculated the molecular constant that characterizes the interaction of the MQM with electrons in the considered molecules. Additionally, we predict the hyperfine structure constants for the ground electronic state of LuOH+. In the molecular calculati…
Enhanced effects of variation of the fundamental constants in laser interferometers and application to dark matter detection
We outline new laser interferometer measurements to search for variation of the electromagnetic fine-structure constant $\alpha$ and particle masses (including a non-zero photon mass). We propose a strontium optical lattice clock -- silicon single-crystal cavity interferometer as a novel small-scale platform for these new measurements. Multiple passages of a light beam inside an interferometer enhance the effects due to variation of the fundamental constants by the mean number of passages ($N_{\textrm{eff}} \sim 10^2$ for a large-scale gravitational-wave detector, such as LIGO, Virgo, GEO600 or TAMA300, while $N_{\textrm{eff}} \sim 10^5$ for a strontium clock -- silicon cavity interferomete…
Theoretical study of YbOH173 to search for the nuclear magnetic quadrupole moment
A $CP$-violating interaction of the nuclear magnetic quadrupole moment (MQM) with electrons in the ytterbium monohydroxide molecule $^{173}\mathrm{YbOH}$ is considered. Both the MQM of the $^{173}\mathrm{Yb}$ nucleus and the molecular interaction constant ${W}_{M}$ are estimated. Electron correlation effects are taken into account within the relativistic Fock-space coupled-cluster method. Results are interpreted in terms of the strength constants of $CP$-violating nuclear forces, neutron dipole moment (EDM), QCD vacuum angle $\ensuremath{\theta}$, quark EDMs, and chromo-EDMs.
Resonance photoproduction of pionic atoms at the proposed Gamma Factory
We present a possibility of direct resonance production of pionic atoms (Coulomb bound states of a negative pion and a nucleus) with a rate of up to $\ensuremath{\approx}{10}^{10}$ per second using the gamma-ray beams from the Gamma Factory.
Revisiting spin-dependent forces mediated by new bosons : potentials in the coordinate-space representation for macroscopic- and atomic-scale experiments
The exchange of spin-0 or spin-1 bosons between fermions or spin-polarised macroscopic objects gives rise to various spin-dependent potentials. We derive the coordinate-space non-relativistic potentials induced by the exchange of such bosons, including contact terms that can play an important role in atomic-scale phenomena, and correct for errors and omissions in the literature. We summarise the properties of the potentials and their relevance for various types of experiments. These potentials underpin the interpretation of experiments that search for new bosons, including spectroscopy, torsion-pendulum measurements, magnetometry, parity nonconservation and electric dipole moment experiment…
Interference-assisted resonant detection of axions
Detection schemes for the quantum chromodynamics axions and other axion-like particles in light-shining-through-a-wall (LSW) experiments are based on the conversion of these particles into photons in a magnetic field. An alternative scheme may involve the detection via a resonant atomic or molecular transition induced by resonant axion absorption. The signal obtained in this process is second order in the axion-electron interaction constant but may become first order if we allow interference between the axion-induced transition amplitude and the transition amplitude induced by the electromagnetic radiation that produces the axions.
Electronic structure of the ytterbium monohydroxide molecule to search for axionlike particles
Recently, the YbOH molecule has been suggested as a candidate to search for the electron electric dipole moment (eEDM), which violates spatial parity ($P$) and time-reversal ($T$) symmetries [I. Kozyryev and N. R. Hutzler, Phys. Rev. Lett. 119, 133002 (2017)]. In the present paper, we show that the same system can be used to measure coupling constants of the interaction of electrons and nucleus mediated by axionlike particles. The electron-nucleus interaction produced by the axion exchange can contribute to a $T,P$-violating EDM of the whole molecular system. We express the corresponding $T,P$-violating energy shift produced by this effect in terms of the axion mass and product of the axion…
Searching for Scalar Dark Matter in Atoms and Astrophysical Phenomena: Variation of Fundamental Constants
Stadnik, Yevgeny V. "Searching for Scalar Dark Matter in Atoms and Astrophysical Phenomena: Variation of Fundamental Constants" in Proceedings, 11th Patras Workshop on Axions, WIMPs and WISPs (Axion-WIMP 2015) / Irastorza, Igor G., Redondo, Javier, Carmona, José Manuel, Cebrian, Susana, Dafni, Theopisti, Iguaz, Francisco J., Luzon, Gloria (eds.), Verlag Deutsches Elektronen-Synchrotron : 2015 ; AXION-WIMP 2015 : 11th Patras Workshop on Axions, WIMPs and WISPs, 2015-06-22 - 2015-06-26, Zaragoza 11th Patras Workshop on Axions, WIMPs and WISPs, AXION-WIMP 2015, Zaragoza, Spain, 22 Jun 2015 - 26 Jun 2015 ; DESY-PROC 169-172(2015). doi:10.3204/DESY-PROC-2015-02/roberts_benjamin
Atomic and molecular transitions induced by axions via oscillating nuclear moments
The interaction of standard model's particles with the axionic Dark Matter field may generate oscillating nuclear electric dipole moments (EDMs), oscillating nuclear Schiff moments and oscillating nuclear magnetic quadrupole moments (MQMs) with a frequency corresponding to the axion's Compton frequency. Within an atom or a molecule an oscillating EDM, Schiff moment or MQM can drive transitions between atomic or molecular states. The excitation events can be detected, for example, via subsequent fluorescence or photoionization. Here we calculate the rates of such transitions. If the nucleus has octupole deformation or quadrupole deformation then the transition rate due to Schiff moment and M…
Parity-violating interactions of cosmic fields with atoms, molecules, and nuclei: Concepts and calculations for laboratory searches and extracting limits
We propose methods and present calculations that can be used to search for evidence of cosmic fields by investigating the parity-violating effects, including parity nonconservation amplitudes and electric dipole moments, that they induce in atoms. The results are used to constrain important fundamental parameters describing the strength of the interaction of various cosmic fields with electrons, protons, and neutrons. Candidates for such fields are dark matter (including axions) and dark energy, as well as several more exotic sources described by standard-model extensions. Existing parity nonconservation experiments in Cs, Dy, Yb, and Tl are combined with our calculations to directly place …
Stadnik and Flambaum Reply:
In the comment of Avelino, Sousa and Lobo [arXiv:1506.06028], it is argued, by comparing the kinetic energy of a topological defect with the overall energy of a pulsar, that the origin of the pulsar glitch phenomenon due to the passage of networks of topological defects through pulsars is faced with serious difficulties. Here, we point out that topological defects may trigger pulsar glitches within traditional scenarios, such as vortex unpinning. If the energy transfer from a topological defect exceeds the activation energy for a single pinned vortex, this may lead to an avalanche of unpinning of vortices and consequently a pulsar glitch, and therefore the source of angular momentum and ene…
Effects of the Lorentz invariance violation in Coulomb interaction in nuclei and atoms
Anisotropy in the speed of light that has been constrained by Michelson-Morley-type experiments also generates anisotropy in the Coulomb interactions. This anisotropy can manifest itself as an energy anisotropy in nuclear and atomic experiments. Here the experimental limits on Lorentz violation in 21Ne are used to improve the limits on the Lorentz symmetry in the photon sector, namely the anisotropy of the speed of light and the Coulomb interactions, by 7 orders of magnitude in comparison with previous experiments: the speed of light is isotropic to a part in E-28.
Nuclear structure of lowestTh229states and time-dependent fundamental constants
The electromagnetic transition between the almost degenerate $5/{2}^{+}$ and $3/{2}^{+}$ states in $^{229}\mathrm{Th}$ is deemed to be very sensitive to potential changes in the fine structure constant $\ensuremath{\alpha}$. State of the art Hartree-Fock and Hartree-Fock-Bogoliubov calculations are performed to compute the difference in Coulomb energies of the two states that determines the sensitivity of the transition frequency \ensuremath{\nu} on variations in $\ensuremath{\alpha}$. The kinetic energies are also calculated that reflect a possible variation in the nucleon or quark masses. As the two states differ mainly in the orbit occupied by the last unpaired neutron the Coulomb energy…
Actinide and lanthanide molecules to search for strong CP-violation
The existence of the fundamental CP-violating interactions inside the nucleus leads to the existence of the nuclear Schiff moment. The Schiff moment potential corresponds to the electric field localized inside the nucleus and directed along its spin. This field can interact with electrons of an atom and induce the permanent electric dipole moment (EDM) of the whole system. The Schiff moment and corresponding electric field are enhanced in the nuclei with the octupole deformation leading to the enhanced atomic EDM. There is also a few-order enhancement of the T,P-violating effects in molecules due to the existence of energetically close levels of opposite parity. We study the Schiff moment e…
Time- and parity-violating effects of nuclear Schiff moment in molecules and solids
We show that existing calculations of the interaction between nuclear Schiff moments and electrons in molecules use an inaccurate operator which gives rise to significant errors. By comparing the matrix elements of the accurate and imprecise Schiff moment operators, we calculated the correction factor as a function of the nuclear charge Z and presented corrected results for the T,P-violating interaction of the nuclear spin with the molecular axis in the TlF, RaO, PbO, TlCN, ThO, AcF molecules and in the ferroelectric solid PbTiO$_3$.
Probing low-mass vector bosons with parity nonconservation and nuclear anapole moment measurements in atoms and molecules
In the presence of P-violating interactions, the exchange of vector bosons between electrons and nucleons induces parity-nonconserving (PNC) effects in atoms and molecules, while the exchange of vector bosons between nucleons induces anapole moments of nuclei. We perform calculations of such vector-mediated PNC effects in Cs, Ba$^+$, Yb, Tl, Fr and Ra$^+$ using the same relativistic many-body approaches as in earlier calculations of standard-model PNC effects, but with the long-range operator of the weak interaction. We calculate nuclear anapole moments due to vector boson exchange using a simple nuclear model. From measured and predicted (within the standard model) values for the PNC ampli…
Axion quark nuggets and how a global network can discover them
We advocate an idea that the presence of the daily and annual modulations of the axion flux on the Earth surface may dramatically change the strategy of the axion searches. Our computations are based on the so-called Axion Quark Nugget (AQN) dark matter model which was originally put forward to explain the similarity of the dark and visible cosmological matter densities $\Omega_{\rm dark}\sim \Omega_{\rm visible}$. In our framework, the population of galactic axions with mass $ 10^{-6} {\rm eV}\lesssim m_a\lesssim 10^{-3}{\rm eV}$ and velocity $\sim 10^{-3} c$ will be always accompanied by the axions with typical velocities $\sim 0.6 c$ emitted by AQNs. We formulate the broadband detection …
High magnetic fields for fundamental physics
Various fundamental-physics experiments such as measurement of the birefringence of the vacuum, searches for ultralight dark matter (e.g., axions), and precision spectroscopy of complex systems (including exotic atoms containing antimatter constituents) are enabled by high-field magnets. We give an overview of current and future experiments and discuss the state-of-the-art DC- and pulsed-magnet technologies and prospects for future developments.
Time reversal invariance violation in neutron-nucleus scattering
Planning and interpretation of the experiments searching for the time reversal (T) and parity (P) violation in neutron reactions require values of the matrix elements of the T,P-violating nuclear forces between nuclear compound states. We calculate the root mean square values and the ratio of the matrix elements of the T,P-violating and P-violating interactions using statistical theory based on the properties of chaotic compound states and present the results in terms of the fundamental parameters in four different forms: in terms of the constants of the contact nuclear interaction, meson exchange constants, QCD theta-term and quark chromo-EDMs. Using current limits on these parameters, we …
New Atomic Methods for Dark Matter Detection
We calculate the parity and time-reversal violating effects that are induced in atoms, nuclei, and molecules by their interaction with various background cosmic fields, such as axion dark matter or dark energy.
Theoretical study of $^{173}$YbOH to search for the nuclear magnetic quadrupole moment
CP-violating interaction of the nuclear magnetic quadrupole moment (MQM) with electrons in the ytterbium mono-hydroxide molecule, $^{173}$YbOH, is considered. Both the magnetic quadrupole moment (MQM) of the $^{173}$Yb nucleus and the molecular interaction constant WM are estimated. Electron correlation effects are taken into account within the relativistic Fock-space coupled cluster method. Results are interpreted in terms of the strength constants of CP-violating nuclear forces, neutron EDM, QCD vacuum angle $\theta$, quark EDM and chromo-EDM.
Ionization of atoms by slow heavy particles, including dark matter
Atoms and molecules can become ionized during the scattering of a slow, heavy particle off a bound electron. Such an interaction involving leptophilic weakly interacting massive particles (WIMPs) is a promising possible explanation for the anomalous 9 sigma annual modulation in the DAMA dark matter direct detection experiment [R. Bernabei et al., Eur. Phys. J. C 73, 2648 (2013)]. We demonstrate the applicability of the Born approximation for such an interaction by showing its equivalence to the semiclassical adiabatic treatment of atomic ionization by slow-moving WIMPs. Conventional wisdom has it that the ionization probability for such a process should be exponentially small. We show, howe…
A Hypothetical Effect of the Maxwell–Proca Electromagnetic Stresses on Galaxy Rotation Curves
Maxwell–Proca electrodynamics corresponding to finite photon mass causes a substantial change in the Maxwell stress tensor, and under certain circumstances, may cause electromagnetic stresses to act effectively as "negative pressure." This paper describes a model where this negative pressure imitates gravitational pull and may produce forces comparable to gravity and may even become dominant. The effect is associated with random magnetic fields with correlation lengths exceeding the photon Compton wavelength. The stresses act predominantly on the interstellar gas and cause an additional force pulling the gas toward the center and toward the galactic plane. Stars do not experience any signif…
Nuclear polarization effects in atoms and ions
In heavy atoms and ions, nuclear structure effects are significantly enhanced due to the overlap of the electron wave functions with the nucleus. This overlap rapidly increases with the nuclear charge $Z$. We study the energy level shifts induced by the electric dipole and electric quadrupole nuclear polarization effects in atoms and ions with $Z \geq 20$. The electric dipole polarization effect is enhanced by the nuclear giant dipole resonance. The electric quadrupole polarization effect is enhanced because the electrons in a heavy atom or ion move faster than the rotation of the deformed nucleus, thus experiencing significant corrections to the conventional approximation in which they `se…
Electron recombination with tungsten ions with open f-shells
We calculate the electron recombination rates with target ions W$^{q+}$, $q = 18$ -- $25$, as functions of electron energy and electron temperature (i.e. the rates integrated over the Maxwellian velocity distribution). Comparison with available experimental data for W$^{18+}$, W$^{19+}$, and W$^{20+}$ is used as a test of our calculations. Our predictions for W$^{21+}$, W$^{22+}$, W$^{23+}$, W$^{24+}$, and W$^{25+}$ (where the experimental data are not available) may be used for plasma modelling in thermonuclear reactors. The results for the temperature dependent rates for each ion are fitted with the standard analytical expressions to make them easy to use. All of these ions have an open e…
Sensitivity of EDM experiments in paramagnetic atoms and molecules to hadronic CP violation
Experiments searching for the electric dipole moment (EDM) of the electron $d_e$ utilise atomic/molecular states with one or more uncompensated electron spins, and these paramagnetic systems have recently achieved remarkable sensitivity to $d_e$. If the source of $CP$ violation resides entirely in the hadronic sector, the two-photon exchange processes between electrons and the nucleus induce $CP$-odd semileptonic interactions, parametrised by the Wilson coefficient $C_{SP}$, and provide the dominant source of EDMs in paramagnetic systems instead of $d_e$. We evaluate the $C_{SP}$ coefficients induced by the leading hadronic sources of $CP$ violation, namely nucleon EDMs and $CP$-odd pion-nu…
Resonant enhancement of an oscillating electric field in an atom
When an atom is placed into an oscillating electric field with frequency far from atomic resonances, the atomic electrons partly shield this field at the nucleus. It is conjectured that when the frequency of electric field reaches an atomic resonance, the electric field at the nucleus may be significantly enhanced. In this paper, we systematically study the mechanisms of this enhancement and show that it may reach five orders in magnitude in particular cases. As an application, we consider laser-assisted neutron capture in 139-Lanthanum nucleus and screening and resonance enhancement of nuclear electromagnetic transitions by electrons.
Oscillating nuclear electric dipole moments inside atoms
Interaction with the axion dark matter (DM) field generates an oscillating nuclear electric dipole moment (EDM) with a frequency corresponding to the axion's Compton frequency. Within an atom, an oscillating EDM can drive electric dipole transitions in the electronic shell. In the absence of radiation, and if the axion frequency matches a dipole transition, it can promote the electron into the excited state. The excitation events can be detected, for example, via subsequent uorescence or photoionization. Here we calculate the rates of such transitions. For a single light atom and an axion Compton frequency resonant with a transition energy corresponding to 1 eV, the rate is on the order of …
Atomic structure calculations of superheavy noble element oganesson (Z=118)
We calculate the spectrum and allowed E1 transitions of the superheavy element Og (Z=118). A combination of configuration interaction (CI) and perturbation theory (PT) is used (Dzuba \textit{et at.} Phys. Rev. A, \textbf{95}, 012503 (2017)). The spectrum of lighter analog Rn I is also calculated and compared to experiment with good agreement.
Nobelium energy levels and hyperfine structure constants
Advances in laser spectroscopy of superheavy ($Z>100$) elements enabled determination of the nuclear moments of the heaviest nuclei, which requires high-precision atomic calculations of the relevant hyperfine structure (HFS) constants. Here, we calculated the HFS constants and energy levels for a number of nobelium (Z=102) states using the hybrid approach, combining linearized coupled-cluster and configuration interaction methods. We also carried out an extensive study of the No energies using 16-electron configuration interaction method to determine the position of the (5f^{13}7s^2 6d) and (5f^{13}7s^2 7p) levels with a hole in the 5f shell to evaluate their potential effect on the hype…
Probing New Long-Range Interactions by Isotope Shift Spectroscopy
We explore a method to probe new long- and intermediate-range interactions using precision atomic isotope shift spectroscopy. We develop a formalism to interpret linear King plots as bounds on new physics with minimal theory inputs. We focus only on bounding the new physics contributions that can be calculated independently of the standard model nuclear effects. We apply our method to existing Ca[superscript +] data and project its sensitivity to conjectured new bosons with spin-independent couplings to the electron and the neutron using narrow transitions in other atoms and ions, specifically, Sr and Yb. Future measurements are expected to improve the relative precision by 5 orders of magn…
New constraints on axion-mediated P , T -violating interaction from electric dipole moments of diamagnetic atoms
The exchange of an axionlike particle between atomic electrons and the nucleus may induce electric dipole moments (EDMs) of atoms and molecules. This interaction is described by a parity- and time-reversal-invariance-violating potential which depends on the product of a scalar ${g}^{s}$ and a pseudoscalar ${g}^{p}$ coupling constant. We consider the interaction with the specific combination of these constants, ${g}_{e}^{s}{g}_{N}^{p}$, which gives significant contributions to the EDMs of diamagnetic atoms. In this paper, we calculate these contributions to the EDMs of $^{199}\mathrm{Hg}$, $^{129}\mathrm{Xe}$, $^{211}\mathrm{Rn}$, and $^{225}\mathrm{Ra}$ for a wide range of axion masses. Com…
Weak quadrupole moments
Collective effects in deformed atomic nuclei present possible avenues of study on the non-spherical distribution of neutrons and the violation of the local Lorentz invariance. We introduce the weak quadrupole moment of nuclei, related to the quadrupole distribution of the weak charge in the nucleus. The weak quadrupole moment produces tensor weak interaction between the nucleus and electrons and can be observed in atomic and molecular experiments measuring parity nonconservation. The dominating contribution to the weak quadrupole is given by the quadrupole moment of the neutron distribution, therefore, corresponding experiments should allow one to measure the neutron quadrupoles. Using the …
Interference-assisted detection of dark photon using atomic transitions
Dark photon is a massive vector particle which couples to the physical photon through the kinetic mixing term. Such particles, if exist, are produced in photon beams and, in particular, in laser radiation. Due to the oscillations between the physical photon and the dark photon, the latter may be, in principle, detected in the light-shining-through-a-wall experiment. We propose a variant of this experiment where the detection of dark photons is based on the atomic transitions. The key feature of this scheme is that the detection probability is first order in the coupling constant due to the interference term in the photon and dark photon absorption amplitudes. We expect that such experiment …
Atomic physics studies at the gamma factory at CERN
The Gamma Factory initiative proposes to develop novel research tools at CERN by producing, accelerating and storing highly relativistic, partially stripped ion beams in the SPS and LHC storage rings. By exciting the electronic degrees of freedom of the stored ions with lasers, high-energy narrow-band photon beams will be produced by properly collimating the secondary radiation that is peaked in the direction of ions' propagation. Their intensities, up to $10^{17}$ photons per second, will be several orders of magnitude higher than those of the presently operating light sources in the particularly interesting $\gamma$--ray energy domain reaching up to 400 MeV. This article reviews opportuni…
Effects of $CP$-violating internucleon interactions in paramagnetic molecules
We demonstrate that electron electric dipole moment experiments with molecules in paramagnetic state are sensitive to $P,T$-violating nuclear forces and other $CP$-violating parameters in the hadronic sector. These experiments, in particular, measure the coupling constant $C_{SP}$ of the $CP$-odd contact semileptonic interaction. We establish relations between $C_{SP}$ and different $CP$-violating hadronic parameters including strength constants of the $CP$-odd nuclear potentials, $CP$-odd pion-nucleon interactions, quark-chromo EDM and QCD vacuum angle. These relations allow us to find limits on various $CP$-odd hadronic parameters.
Sensitivity of the isotope shift to the distribution of nuclear charge density
It is usually assumed that the field isotope shift (FIS) is completely determined by the change of the averaged squared values of the nuclear charge radius $\ensuremath{\langle}{r}^{2}\ensuremath{\rangle}$. Relativistic corrections modify the expression for FIS, which is actually described by the change of $\ensuremath{\langle}{r}^{2\ensuremath{\gamma}}\ensuremath{\rangle}$, where $\ensuremath{\gamma}=\sqrt{1\ensuremath{-}{Z}^{2}{\ensuremath{\alpha}}^{2}}$. In the present paper we consider corrections to FIS which are due to the nuclear deformation and due to the predicted reduced charge density in the middle of the superheavy nuclei produced by a very strong proton repulsion (hole in the n…
Calculation of atomic properties of superheavy elements Z=110–112 and their ions
We calculate the spectra, electric dipole transition rates, and isotope shifts of the superheavy elements Ds ($Z=110$), Rg ($Z=111$), and Cn ($Z=112$) and their ions. These calculations were performed using a recently developed, efficient version of the ab intio configuration-interaction combined with perturbation theory to treat distant effects. The successive ionization potentials of the three elements are also calculated and compared to lighter analogous elements.
Pseudovector and pseudoscalar spin-dependent interactions in atoms
Hitherto unknown elementary particles can be searched for with atomic spectroscopy. We conduct such a search using a potential that results from the longitudinal polarization of a pseudovector particle. We show that such a potential, inversely proportional to the boson's mass squared, $V \propto 1/M^2$, can stay finite at $M \to 0$ if the theory is renormalizable. We also look for a pseudoscalar boson, which induces a contact spin-dependent potential that does not contribute to new forces searched for in experiments with macroscopic objects, but may be seen in atomic spectroscopy. We extract limits on the interaction constants of these potentials from the experimental spectra of antiprotoni…
Improved Limits on Axionlike-Particle-Mediated P , T -Violating Interactions between Electrons and Nucleons from Electric Dipole Moments of Atoms and Molecules
In the presence of P, T-violating interactions, the exchange of axionlike particles between electrons and nucleons in atoms and molecules induces electric dipole moments (EDMs) of atoms and molecules. We perform calculations of such axion-exchange-induced atomic EDMs using the relativistic Hartree-Fock-Dirac method including electron core polarization corrections. We present analytical estimates to explain the dependence of these induced atomic EDMs on the axion mass and atomic parameters. From the experimental bounds on the EDMs of atoms and molecules, including ^{133}Cs, ^{205}Tl, ^{129}Xe, ^{199}Hg, ^{171}Yb^{19}F, ^{180}Hf^{19}F^{+}, and ^{232}Th^{16}O, we constrain the P, T-violating s…