0000000001092347

AUTHOR

Derek F. Jackson Kimball

showing 28 related works from this author

Search for axionlike dark matter with a liquid-state nuclear spin comagnetometer

2019

Physical review letters 122(19), 191302 (2019). doi:10.1103/PhysRevLett.122.191302

PhysicsParticle physicsField (physics)SpinsDark matterGeneral Physics and AstronomyOrder (ring theory)FOS: Physical sciencesCoupling (probability)01 natural sciences530High Energy Physics - ExperimentHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesddc:530010306 general physicsNucleonSpin (physics)Axion
researchProduct

Application of spin-exchange relaxation-free magnetometry to the Cosmic Axion Spin Precession Experiment

2018

The Cosmic Axion Spin Precession Experiment (CASPEr) seeks to measure oscillating torques on nuclear spins caused by axion or axion-like-particle (ALP) dark matter via nuclear magnetic resonance (NMR) techniques. A sample spin-polarized along a leading magnetic field experiences a resonance when the Larmor frequency matches the axion/ALP Compton frequency, generating precessing transverse nuclear magnetization. Here we demonstrate a Spin-Exchange Relaxation-Free (SERF) magnetometer with sensitivity $\approx 1~{\rm fT/\sqrt{Hz}}$ and an effective sensing volume of 0.1 $\rm{cm^3}$ that may be useful for NMR detection in CASPEr. A potential drawback of SERF-magnetometer-based NMR detection is …

Physics - Instrumentation and DetectorsMagnetometerAtomic Physics (physics.atom-ph)FOS: Physical sciences01 natural sciences7. Clean energylaw.inventionPhysics - Atomic Physics010309 opticsMagnetizationPhysics - Space Physicslaw0103 physical sciences010306 general physicsAxionLarmor precessionPhysicsSpinsAstronomy and AstrophysicsInstrumentation and Detectors (physics.ins-det)Magnetic fluxSpace Physics (physics.space-ph)Magnetic fieldSpace and Planetary SciencePrecessionAtomic physicsPhysics of the Dark Universe
researchProduct

Overview of the Cosmic Axion Spin Precession Experiment (CASPEr)

2020

An overview of our experimental program to search for axion and axion-like-particle (ALP) dark matter using nuclear magnetic resonance (NMR) techniques is presented. An oscillating axion field can exert a time-varying torque on nuclear spins either directly or via generation of an oscillating nuclear electric dipole moment (EDM). Magnetic resonance techniques can be used to detect such an effect. The first-generation experiments explore many decades of ALP parameter space beyond the current astrophysical and laboratory bounds. It is anticipated that future versions of the experiments will be sensitive to the axions associated with quantum chromodynamics (QCD) having masses \({\lesssim }10^{…

Quantum chromodynamicsPhysicsParticle physicsElectric dipole momentSpinsField (physics)High Energy Physics::PhenomenologyDark matterPrecessionSpin (physics)Axion
researchProduct

Constraints on Exotic Spin-Dependent Interactions Between Matter and Antimatter from Antiprotonic Helium Spectroscopy.

2018

Heretofore undiscovered spin-0 or spin-1 bosons can mediate exotic spin-dependent interactions between standard-model particles. Here we carry out the first search for semileptonic spin-dependent interactions between matter and antimatter. We compare theoretical calculations and spectroscopic measurements of the hyperfine structure of antiprotonic helium to constrain exotic spin- and velocity-dependent interactions between electrons and antiprotons.

PhysicsAtomic Physics (physics.atom-ph)010308 nuclear & particles physicsFOS: Physical sciencesGeneral Physics and AstronomyElectron01 natural sciencesPhysics - Atomic Physics3. Good healthStandard ModelNuclear physicsAntiprotonAntimatter0103 physical sciencesCondensed Matter::Strongly Correlated ElectronsPhysics::Atomic Physics010306 general physicsSpin (physics)Antiprotonic heliumHyperfine structureBosonPhysical review letters
researchProduct

Quantum sensor networks as exotic field telescopes for multi-messenger astronomy

2020

Multi-messenger astronomy, the coordinated observation of different classes of signals originating from the same astrophysical event, provides a wealth of information about astrophysical processes with far-reaching implications. So far, the focus of multi-messenger astronomy has been the search for conventional signals from known fundamental forces and standard model particles, like gravitational waves (GW). In addition to these known effects, quantum sensor networks could be used to search for astrophysical signals predicted by beyond-standard-model (BSM) theories. Exotic bosonic fields are ubiquitous features of BSM theories and appear while seeking to understand the nature of dark matter…

PhotonCosmology and Nongalactic Astrophysics (astro-ph.CO)010504 meteorology & atmospheric sciencesField (physics)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesQuantum metrology010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)0105 earth and related environmental sciencesAstroparticle physicsPhysicsQuantum PhysicsGravitational waveQuantum sensorAstronomyAstronomy and AstrophysicsFundamental interactionQuantum Physics (quant-ph)Astrophysics - Instrumentation and Methods for AstrophysicsEvent (particle physics)Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Analysis method for detecting topological defect dark matter with a global magnetometer network

2019

Abstract The Global Network of Optical Magnetometers for Exotic physics searches (GNOME) is a network of time-synchronized, geographically separated, optically pumped atomic magnetometers that is being used to search for correlated transient signals heralding exotic physics. GNOME is sensitive to exotic couplings of atomic spins to certain classes of dark matter candidates, such as axions. This work presents a data analysis procedure to search for axion dark matter in the form of topological defects: specifically, walls separating domains of discrete degenerate vacua in the axion field. An axion domain wall crossing the Earth creates a distinctive signal pattern in the network that can be d…

PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Field (physics)Spins010308 nuclear & particles physicsMagnetometerDark matterFOS: Physical sciencesAstronomy and Astrophysics01 natural sciencesTopological defectlaw.inventionDomain wall (string theory)Space and Planetary Sciencelaw0103 physical sciencesAstrophysics - Instrumentation and Methods for Astrophysics010303 astronomy & astrophysicsAxionInstrumentation and Methods for Astrophysics (astro-ph.IM)GnomeAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

A network of superconducting gravimeters as a detector of matter with feeble nongravitational coupling

2020

Abstract Hidden matter that interacts only gravitationally would oscillate at characteristic frequencies when trapped inside of Earth. For small oscillations near the center of the Earth, these frequencies are around 300 μHz. Additionally, signatures at higher harmonics would appear because of the non-uniformity of Earth’s density. In this work, we use data from a global network of gravimeters of the International Geodynamics and Earth Tide Service (IGETS) to look for these hypothetical trapped objects. We find no evidence for such objects with masses on the order of 1014 kg or greater with an oscillation amplitude of 0.1 re. It may be possible to improve the sensitivity of the search by s…

Physics010308 nuclear & particles physicsGravimeter530 PhysicsInner coreAstronomyEarth tideGeodynamics530 Physik01 natural sciencesAtomic and Molecular Physics and OpticsPhysics::GeophysicsCoupling (physics)Orders of magnitude (time)HarmonicsPhysics::Space Physics0103 physical sciencesAstrophysics::Earth and Planetary Astrophysics010306 general physicsNoise (radio)
researchProduct

Gravity Probe Spin: Prospects for measuring general-relativistic precession of intrinsic spin using a ferromagnetic gyroscope

2020

An experimental test at the intersection of quantum physics and general relativity is proposed: measurement of relativistic frame dragging and geodetic precession using intrinsic spin of electrons. The behavior of intrinsic spin in spacetime dragged and warped by a massive rotating body is an experimentally open question, hence the results of such a measurement could have important theoretical consequences. Such a measurement is possible by using mm-scale ferromagnetic gyroscopes in orbit around the Earth. Under conditions where the rotational angular momentum of a ferromagnet is sufficiently small, a ferromagnet's angular momentum is dominated by atomic electron spins and is predicted to e…

Angular momentumGeneral relativityFOS: Physical sciencesElectronFrame-draggingGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciences7. Clean energyGeneral Relativity and Quantum Cosmologylaw.inventionPhysics::Geophysicslaw0103 physical sciencesddc:530010306 general physicsSpin (physics)Geodetic effectPhysicsQuantum Physics010308 nuclear & particles physicsGyroscopeQuantum electrodynamicsPhysics::Space PhysicsPrecessionCondensed Matter::Strongly Correlated ElectronsQuantum Physics (quant-ph)
researchProduct

A machine learning algorithm for direct detection of axion-like particle domain walls

2021

The Global Network of Optical Magnetometers for Exotic physics searches (GNOME) conducts an experimental search for certain forms of dark matter based on their spatiotemporal signatures imprinted on a global array of synchronized atomic magnetometers. The experiment described here looks for a gradient coupling of axion-like particles (ALPs) with proton spins as a signature of locally dense dark matter objects such as domain walls. In this work, stochastic optimization with machine learning is proposed for use in a search for ALP domain walls based on GNOME data. The validity and reliability of this method were verified using binary classification. The projected sensitivity of this new analy…

Space and Planetary SciencePhysics - Data Analysis Statistics and ProbabilityFOS: Physical sciencesddc:530Astronomy and AstrophysicsAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Data Analysis Statistics and Probability (physics.data-an)Physics::Geophysics
researchProduct

Wu et al. Reply:

2019

PhysicsMEDLINECalculusGeneral Physics and AstronomyMathematical physicsPhysical Review Letters
researchProduct

A Precessing Ferromagnetic Needle Magnetometer

2016

A ferromagnetic needle is predicted to precess about the magnetic field axis at a Larmor frequency $\Omega$ under conditions where its intrinsic spin dominates over its rotational angular momentum, $N\hbar \gg I\Omega$ ($I$ is the moment of inertia of the needle about the precession axis and $N$ is the number of polarized spins in the needle). In this regime the needle behaves as a gyroscope with spin $N\hbar$ maintained along the easy axis of the needle by the crystalline and shape anisotropy. A precessing ferromagnetic needle is a correlated system of $N$ spins which can be used to measure magnetic fields for long times. In principle, by taking advantage of rapid averaging of quantum unce…

Angular momentumMagnetometerPhysics::Medical PhysicsFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technology01 natural scienceslaw.inventionComputer Science::RoboticslawMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences010306 general physicsSpin (physics)PhysicsLarmor precessionQuantum PhysicsCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsMoment of inertia021001 nanoscience & nanotechnologyMagnetic fieldMagnetic anisotropyPhysics::Space PhysicsPrecessionQuantum Physics (quant-ph)0210 nano-technology
researchProduct

The cosmic axion spin precession experiment (CASPEr): a dark-matter search with nuclear magnetic resonance

2017

The Cosmic Axion Spin Precession Experiment (CASPEr) is a nuclear magnetic resonance experiment (NMR) seeking to detect axion and axion-like particles which could make up the dark matter present in the universe. We review the predicted couplings of axions and axion-like particles with baryonic matter that enable their detection via NMR. We then describe two measurement schemes being implemented in CASPEr. The first method, presented in the original CASPEr proposal, consists of a resonant search via continuous-wave NMR spectroscopy. This method offers the highest sensitivity for frequencies ranging from a few Hz to hundreds of MHz, corresponding to masses $ m_{\rm a} \sim 10^{-14}$--$10^{-6}…

Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsMagnetometerMaterials Science (miscellaneous)Dark matterFOS: Physical sciencesApplied Physics (physics.app-ph)7. Clean energy01 natural scienceslaw.inventionHigh Energy Physics - Phenomenology (hep-ph)Nuclear magnetic resonancelaw0103 physical sciencesElectrical and Electronic Engineering010306 general physicsAxionPhysicsQuantum PhysicsCOSMIC cancer database010308 nuclear & particles physicsBandwidth (signal processing)RangingInstrumentation and Detectors (physics.ins-det)Physics - Applied PhysicsNuclear magnetic resonance spectroscopyAtomic and Molecular Physics and OpticsBaryonHigh Energy Physics - PhenomenologyPhysics - Data Analysis Statistics and ProbabilityQuantum Physics (quant-ph)Data Analysis Statistics and Probability (physics.data-an)Quantum Science and Technology
researchProduct

Search for New Physics with Atoms and Molecules

2017

This article reviews recent developments in tests of fundamental physics using atoms and molecules, including the subjects of parity violation, searches for permanent electric dipole moments, tests of the CPT theorem and Lorentz symmetry, searches for spatiotemporal variation of fundamental constants, tests of quantum electrodynamics, tests of general relativity and the equivalence principle, searches for dark matter, dark energy and extra forces, and tests of the spin-statistics theorem. Key results are presented in the context of potential new physics and in the broader context of similar investigations in other fields. Ongoing and future experiments of the next decade are discussed.

Condensed Matter::Quantum GasesPhysicsAtomic Physics (physics.atom-ph)010308 nuclear & particles physicsGeneral relativityOrders of magnitude (temperature)Physics beyond the Standard ModelAtoms in moleculesDark matterFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesMetrologyPhysics - Atomic PhysicsTheoretical physicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Quantum mechanics0103 physical sciencesAtomPhysics::Atomic PhysicsEquivalence principle010306 general physics
researchProduct

Search for Axionlike Dark Matter Using Solid-State Nuclear Magnetic Resonance.

2021

Physical review letters 126(14), 141802 (2021). doi:10.1103/PhysRevLett.126.141802

Quantum chromodynamicsPhysicsPhysics - Instrumentation and DetectorsNeutron electric dipole momentRelaxation (NMR)FOS: Physical sciencesGeneral Physics and AstronomyInstrumentation and Detectors (physics.ins-det)Coupling (probability)01 natural sciences530High Energy Physics - ExperimentCondensed Matter - Other Condensed MatterHigh Energy Physics - Experiment (hep-ex)Electric dipole moment0103 physical sciencesddc:530Atomic physics010306 general physicsSpin (physics)AxionExcitationOther Condensed Matter (cond-mat.other)Physical review letters
researchProduct

Ferromagnetic gyroscopes for tests of fundamental physics

2020

A ferromagnetic gyroscope (FG) is a ferromagnet whose angular momentum is dominated by electron spin polarization and that will precess under the action of an external torque, such as that due to a magnetic field. Here we model and analyze FG dynamics and sensitivity, focusing on practical schemes for experimental realization. In the case of a freely floating FG, we model the transition from dynamics dominated by libration in relatively high externally applied magnetic fields, to those dominated by precession at relatively low applied fields. Measurement of the libration frequency enables in situ measurement of the magnetic field and a technique to reduce the field below the threshold for w…

Angular momentumgyroscopePhysics and Astronomy (miscellaneous)Field (physics)Atomic Physics (physics.atom-ph)Materials Science (miscellaneous)physics beyond the standard modelFOS: Physical sciencesApplied Physics (physics.app-ph)01 natural sciences530Physics - Atomic Physics010305 fluids & plasmasMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesLibrationddc:530Electrical and Electronic Engineering010306 general physicsLarmor precessionSuperconductivityPhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsMeissner effectFerromagnetism gyroscope physics beyond the standard model Meissner effectPhysics - Applied PhysicsferromagnetismAtomic and Molecular Physics and OpticsMagnetic fieldMeissner effectFerromagnetismPrecessionQuantum Physics (quant-ph)
researchProduct

Quantum sensitivity limits of nuclear magnetic resonance experiments searching for new fundamental physics

2021

Nuclear magnetic resonance is a promising experimental approach to search for ultra-light axion-like dark matter. Searches such as the cosmic axion spin-precession experiments (CASPEr) are ultimately limited by quantum-mechanical noise sources, in particular, spin-projection noise. We discuss how such fundamental limits can potentially be reached. We consider a circuit model of a magnetic resonance experiment and quantify three noise sources: spin-projection noise, thermal noise, and amplifier noise. Calculation of the total noise spectrum takes into account the modification of the circuit impedance by the presence of nuclear spins, as well as the circuit back-action on the spin ensemble. S…

Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Materials Science (miscellaneous)Dark matterFOS: Physical sciences01 natural sciencesNoise (electronics)010305 fluids & plasmasNuclear magnetic resonanceHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesddc:530Sensitivity (control systems)Electrical and Electronic Engineering010306 general physicsAxionQuantumElectrical impedanceSpin-½PhysicsQuantum PhysicsSpinsInstrumentation and Detectors (physics.ins-det)Atomic and Molecular Physics and OpticsCondensed Matter - Other Condensed MatterHigh Energy Physics - PhenomenologyQuantum Physics (quant-ph)Other Condensed Matter (cond-mat.other)
researchProduct

Constraints on bosonic dark matter from ultralow-field nuclear magnetic resonance

2019

The nature of dark matter, the invisible substance making up over $80\%$ of the matter in the Universe, is one of the most fundamental mysteries of modern physics. Ultralight bosons such as axions, axion-like particles or dark photons could make up most of the dark matter. Couplings between such bosons and nuclear spins may enable their direct detection via nuclear magnetic resonance (NMR) spectroscopy: as nuclear spins move through the galactic dark-matter halo, they couple to dark-matter and behave as if they were in an oscillating magnetic field, generating a dark-matter-driven NMR signal. As part of the Cosmic Axion Spin Precession Experiment (CASPEr), an NMR-based dark-matter search, w…

Particle physicsPhotonField (physics)Atomic Physics (physics.atom-ph)Dark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences7. Clean energyHigh Energy Physics - ExperimentPhysics - Atomic PhysicsHigh Energy Physics - Experiment (hep-ex)Computer Science::Emerging TechnologiesNuclear magnetic resonancePhysics - Chemical Physics0103 physical sciences010306 general physicsSpin (physics)AxionResearch ArticlesBosonPhysicsChemical Physics (physics.chem-ph)MultidisciplinarySpins010308 nuclear & particles physicsPhysicsSciAdv r-articlesHaloddc:500Research Article
researchProduct

Dynamics of a Ferromagnetic Particle Levitated Over a Superconductor

2018

Under conditions where the angular momentum of a ferromagnetic particle is dominated by intrinsic spin, applied torque is predicted to cause gyroscopic precession of the particle. If the particle is sufficiently isolated from the environment, a measurement of spin precession can potentially yield sensitivity to torque beyond the standard quantum limit. Levitation of a micron-scale ferromagnetic particle above a superconductor is a possible method of near frictionless suspension enabling observation of ferromagnetic particle precession and ultrasensitive torque measurements. We experimentally investigate the dynamics of a micron-scale ferromagnetic particle levitated above a superconducting …

SuperconductivityPhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsSpinsQuantum limitGeneral Physics and AstronomyFOS: Physical sciencesPhysics - Applied Physics02 engineering and technologyApplied Physics (physics.app-ph)021001 nanoscience & nanotechnology01 natural sciencesPhysics::Fluid DynamicsFerromagnetismCondensed Matter::Superconductivity0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)PrecessionLevitationTorque010306 general physics0210 nano-technologyMicroscale chemistry
researchProduct

Nuclear-spin comagnetometer based on a liquid of identical molecules

2018

Atomic comagnetometers are used in searches for anomalous spin-dependent interactions. Magnetic field gradients are one of the major sources of systematic errors in such experiments. Here we describe a comagnetometer based on the nuclear spins within an ensemble of identical molecules. The dependence of the measured spin-precession frequency ratio on the first-order magnetic field gradient is suppressed by over an order of magnitude compared to a comagnetometer based on overlapping ensembles of different molecules. Our single-species comagnetometer is shown to be capable of measuring the hypothetical spin-dependent gravitational energy of nuclei at the $10^{-17}$ eV level, comparable to the…

PhysicsSpinsAtomic Physics (physics.atom-ph)Frequency ratioGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyMagnetic field gradient021001 nanoscience & nanotechnologyPolarization (waves)01 natural sciencesMolecular physicsGravitational energyPhysics - Atomic Physics0103 physical sciencesMolecule010306 general physics0210 nano-technologyNucleonOrder of magnitude
researchProduct

Spectral signatures of axionlike dark matter

2022

We derive spectral line shapes of the expected signal for a haloscope experiment searching for axionlike dark matter. The knowledge of these line shapes is needed to optimize an experimental design and data analysis procedure. We extend the previously known results for the axion-photon and axion-gluon couplings to the case of gradient (axion-fermion) coupling. A unique feature of the gradient interaction is its dependence not only on magnitudes but also on directions of velocities of galactic halo particles, which leads to the directional sensitivity of the corresponding haloscope. We also discuss the daily and annual modulations of the gradient signal caused by the Earth's rotational and o…

High Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Cosmology and Nongalactic Astrophysics (astro-ph.CO)Atomic Physics (physics.atom-ph)FOS: Physical sciencesddc:530530Astrophysics - Cosmology and Nongalactic AstrophysicsHigh Energy Physics - ExperimentPhysics - Atomic PhysicsPhysical Review
researchProduct

Can a quantum nondemolition measurement improve the sensitivity of an atomic magnetometer?

2004

Noise properties of an idealized atomic magnetometer that utilizes spin squeezing induced by a continuous quantum nondemolition measurement are considered. Such a magnetometer measures spin precession of $N$ atomic spins by detecting optical rotation of far-detuned light. Fundamental noise sources include the quantum projection noise and the photon shot-noise. For measurement times much shorter than the spin-relaxation time observed in the absence of light ($\tau_{\rm rel}$) divided by $\sqrt{N}$, the optimal sensitivity of the magnetometer scales as $N^{-3/4}$, so an advantage over the usual sensitivity scaling as $N^{-1/2}$ can be achieved. However, at longer measurement times, the optimi…

Quantum nondemolition measurementPhysicsPhotonMagnetometerAtomic Physics (physics.atom-ph)Shot noiseGeneral Physics and AstronomyFOS: Physical sciencesNoise (electronics)Physics - Atomic Physicslaw.inventionlawQuantum mechanicsHeisenberg limitPhysics::Atomic PhysicsSpin (physics)QuantumPhysical review letters
researchProduct

Surpassing the Energy Resolution Limit with Ferromagnetic Torque Sensors

2021

We discuss the fundamental noise limitations of a ferromagnetic torque sensor based on a levitated magnet in the tipping regime. We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit (SQL). We find that the Energy Resolution Limit (ERL), pointed out in recent literature as a relevant benchmark for most classes of magnetometers, can be surpassed by many orders of magnitude. Moreover, similarly to the case of a ferromagnetic gyroscope, it is also possible to surpass the standard quantum limit for magnetometry with independent spins, arising from spin-projection noise. Our finding indica…

PhysicsQuantum PhysicsPhysics - Instrumentation and DetectorsMagnetometerOrders of magnitude (temperature)Quantum limitFOS: Physical sciencesGeneral Physics and AstronomyGyroscopeInstrumentation and Detectors (physics.ins-det)01 natural sciencesNoise (electronics)010305 fluids & plasmaslaw.inventionMagnetic fieldComputational physicslawMagnet0103 physical sciencesTorque sensorddc:530Quantum Physics (quant-ph)010306 general physics
researchProduct

Search for topological defect dark matter with a global network of optical magnetometers

2021

Ultralight bosons such as axion-like particles are viable candidates for dark matter. They can form stable, macroscopic field configurations in the form of topological defects that could concentrate the dark matter density into many distinct, compact spatial regions that are small compared with the Galaxy but much larger than the Earth. Here we report the results of the search for transient signals from the domain walls of axion-like particles by using the global network of optical magnetometers for exotic (GNOME) physics searches. We search the data, consisting of correlated measurements from optical atomic magnetometers located in laboratories all over the world, for patterns of signals p…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsAtomic Physics (physics.atom-ph)Particle physicsGeneral Physics and AstronomyFOS: Physical sciences53001 natural sciencesArticleHigh Energy Physics - ExperimentPhysics - Atomic PhysicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesDark energy and dark matterddc:530Atomic and molecular physics010306 general physicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Constraints on exotic spin-dependent interactions between electrons from helium fine-structure spectroscopy

2017

Agreement between theoretical calculations of atomic structure and spectroscopic measurements is used to constrain possible contribution of exotic spin-dependent interactions between electrons to the energy differences between states in helium-4. In particular, constraints on dipole-dipole interactions associated with the exchange of pseudoscalar bosons (such as axions or axion-like particles) with masses ${10}^{\ensuremath{-}2}\ensuremath{\lesssim}m\ensuremath{\lesssim}{10}^{4}\mathrm{eV}$ are improved by a factor of $\ensuremath{\sim}100$. The first atomic-scale constraints on several exotic velocity-dependent dipole-dipole interactions are established as well.

General PhysicsAtomic Physics (physics.atom-ph)FOS: Physical sciencesElectron01 natural sciencesphysics.atom-phMathematical SciencesPhysics - Atomic PhysicsHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesPhysics::Atomic Physics010306 general physicsSpin (physics)SpectroscopyAxionBosonPhysics010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyhep-phPseudoscalarHigh Energy Physics - PhenomenologyExcited statePhysical SciencesChemical SciencesAtomic physicsEnergy (signal processing)
researchProduct

Dynamic effects in nonlinear magneto-optics of atoms and molecules: review

2004

A brief review is given of topics relating to dynamical processes arising in nonlinear interactions between light and resonant systems (atoms or molecules) in the presence of a magnetic field.

Quantum opticsPhysicsZeeman effectCondensed matter physicsAtomic Physics (physics.atom-ph)business.industryAtoms in moleculesFOS: Physical sciencesNonlinear opticsStatistical and Nonlinear PhysicsAtomic and Molecular Physics and OpticsPhysics - Atomic PhysicsMagnetic fieldNonlinear systemsymbols.namesakeOpticsQuantum beatssymbolsbusinessMagnetoJournal of the Optical Society of America B
researchProduct

Stochastic fluctuations of bosonic dark matter

2021

Numerous theories extending beyond the standard model of particle physics predict the existence of bosons that could constitute the dark matter (DM) permeating the universe. In the standard halo model (SHM) of galactic dark matter the velocity distribution of the bosonic DM field defines a characteristic coherence time $\tau_c$. Until recently, laboratory experiments searching for bosonic DM fields have been in the regime where the measurement time $T$ significantly exceeds $\tau_c$, so null results have been interpreted as constraints on the coupling of bosonic DM to standard model particles with a bosonic DM field amplitude $\Phi_0$ fixed by the average local DM density. However, motivate…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Atomic Physics (physics.atom-ph)530 PhysicsScienceQFOS: Physical sciences500Astrophysics::Cosmology and Extragalactic Astrophysics530 PhysikCharacterization and analytical techniquesArticlePhysics - Atomic PhysicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Dark energy and dark matterddc:500Astrophysics - Cosmology and Nongalactic AstrophysicsNature Communications
researchProduct

Intensity interferometry for ultralight bosonic dark matter detection

2023

Ultralight bosonic dark matter (UBDM) can be described by a classical wave-like field oscillating near the Compton frequency of the bosons. If a measurement scheme for the direct detection of UBDM interactions is sensitive to a signature quadratic in the field, then there is a near-zero-frequency (dc) component of the signal. Thus, a detector with a given finite bandwidth can be used to search for bosons with Compton frequencies many orders of magnitude larger than its bandwidth. This opens the possibility of a detection scheme analogous to Hanbury Brown and Twiss intensity interferometry. Assuming that the UBDM is virialized in the galactic gravitational potential, the random velocities pr…

High Energy Physics - Experiment (hep-ex)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Cosmology and Nongalactic Astrophysics (astro-ph.CO)Atomic Physics (physics.atom-ph)FOS: Physical sciencesAstrophysics - Cosmology and Nongalactic AstrophysicsHigh Energy Physics - ExperimentPhysics - Atomic PhysicsPhysical Review
researchProduct

A network of precision gravimeters as a detector of matter with feeble nongravitational coupling

2019

Hidden matter that interacts only gravitationally would oscillate at characteristic frequencies when trapped inside of Earth. For small oscillations near the center of the Earth, these frequencies are around 300 $\mu$Hz. Additionally, signatures at higher harmonics would appear because of the non-uniformity of Earth's density. In this work, we use data from a global network of gravimeters of the International Geodynamics and Earth Tide Service (IGETS) to look for these hypothetical trapped objects. We find no evidence for such objects with masses on the order of 10$^{14}$ kg or greater with an oscillation amplitude of 0.1 $r_e$. It may be possible to improve the sensitivity of the search by…

Earth and Planetary Astrophysics (astro-ph.EP)Physics::Space PhysicsFOS: Physical sciencesAstrophysics::Earth and Planetary AstrophysicsAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Astrophysics - Earth and Planetary AstrophysicsPhysics::Geophysics
researchProduct