0000000001206315

AUTHOR

Y. Xu

showing 35 related works from this author

Study ofJ/ψ→pp¯andJ/ψ→nn¯

2012

The decays J/psi -> p (p) over bar and J/psi -> n (n) over bar have been investigated with a sample of 225.2 x 10(6) J/psi events collected with the BESIII detector at the BEPCII e(+)e(-) collider. The branching fractions are determined to be B(J/psi -> p (p) over bar) = (2.112 +/- 0.004 +/- 0.031 x 10(-3) and B(J/psi -> n (n) over bar) =(2.07 +/- 0.01 +/- 0.17) x 10(-3). Distributions of the angle theta between the proton or antineutron and the beam direction are well described by the form 1 + alpha cos(2)theta, and we find alpha = 0.595 +/- 0.012 +/- 0.015 for J/psi -> p (p) over bar and alpha = 0.50 +/- 0.04 +/- 0.21 for J/psi -> n (n) over bar. Our branching- fraction results suggest a …

BaryonPhysicsNuclear and High Energy PhysicsQCD sum rulesProtonElectron–positron annihilationPhase angleAnalytical chemistryHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsNucleonAntineutronBar (unit)Physical Review D
researchProduct

A Search for IceCube Events in the Direction of ANITA Neutrino Candidates

2020

During the first three flights of the Antarctic Impulsive Transient Antenna (ANITA) experiment, the collaboration detected several neutrino candidates. Two of these candidate events were consistent with an ultra-high-energy up-going air shower and compatible with a tau neutrino interpretation. A third neutrino candidate event was detected in a search for Askaryan radiation in the Antarctic ice, although it is also consistent with the background expectation. The inferred emergence angle of the first two events is in tension with IceCube and ANITA limits on isotropic cosmogenic neutrino fluxes. Here, we test the hypothesis that these events are astrophysical in origin, possibly caused by a po…

010504 meteorology & atmospheric sciencesPoint sourceAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesStandard ModelHigh Energy Physics - Phenomenology (hep-ph)Tau neutrino0103 physical sciencesTRACK RECONSTRUCTIONSource spectrum010303 astronomy & astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEIsotropyAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and Astrophysicshep-phHigh Energy Physics - PhenomenologyAir showerPhysics and Astronomy13. Climate actionSpace and Planetary ScienceNeutrinoAstrophysics - High Energy Astrophysical PhenomenaEvent (particle physics)
researchProduct

Feasibility and physics potential of detecting $^8$B solar neutrinos at JUNO

2021

The Jiangmen Underground Neutrino Observatory (JUNO) features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector. Some of JUNO's features make it an excellent location for 8B solar neutrino measurements, such as its low-energy threshold, high energy resolution compared with water Cherenkov detectors, and much larger target mass compared with previous liquid scintillator detectors. In this paper, we present a comprehensive assessment of JUNO's potential for detecting 8B solar neutrinos via the neutrino-electron elastic scattering process. A reduced 2 MeV threshold for the recoil electron energy is found to be achievable, assuming that the intrinsic radioactive …

Physics - Instrumentation and Detectorsneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoscintillation counter: liquidhigh [energy resolution]01 natural sciences7. Clean energymass [target]High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)JUNO; Neutrino oscillation; Solar neutrinoelastic scattering [neutrino electron]KamLAND[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]flavor [transformation]neutrino oscillationInstrumentationJiangmen Underground Neutrino ObservatoryPhysicsElastic scatteringJUNOliquid [scintillation counter]neutrino oscillation solar neutrino JUNOSettore FIS/01 - Fisica Sperimentaleoscillation [neutrino]Instrumentation and Detectors (physics.ins-det)Monte Carlo [numerical calculations]neutrino electron: elastic scatteringtensionmass difference [neutrino]ddc:nuclear reactor [antineutrino]observatoryHigh Energy Physics - PhenomenologyPhysics::Space Physicsneutrino: flavorsolar [neutrino]target: massNeutrinonumerical calculations: Monte CarloNuclear and High Energy PhysicsParticle physicsNeutrino oscillationmatter: solarCherenkov counter: waterneutrino: mass differenceFOS: Physical sciencesSolar neutrinoNOtransformation: flavoruraniumPE2_20103 physical scienceselectron: recoil: energyantineutrino: nuclear reactorsolar [matter]ddc:530ddc:610Sensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationbackground: radioactivityCherenkov radiationAstrophysiquesolar neutrino010308 nuclear & particles physicswater [Cherenkov counter]radioactivity [background]flavor [neutrino]Astronomy and Astrophysicssensitivityneutrino: mixing anglerecoil: energy [electron]energy spectrum [electron]electron: energy spectrumHigh Energy Physics::Experimentsphereneutrino: oscillationenergy resolution: highEnergy (signal processing)mixing angle [neutrino]
researchProduct

Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector

2021

To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in various compositions were studied by replacing the gadolinium-loaded LS in one antineutrino detector. The concentrations of the fluor, PPO, and the wavelength shifter, bis-MSB, were increased in 12 steps from 0.5 g/L and <0.01 mg/L to 4 g/L and 13 mg/L, respectively. The numbers of total detected photoelectrons suggest that, with the optically purified solvent, the bis-MSB concentration does not need to be more than 4 mg/L. To bridge the one order of magnitude in the detect…

organic compounds: admixtureNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsLiquid scintillatorscintillation counter: liquidAnalytical chemistryFOS: Physical sciencesmodel: opticalScintillatorWavelength shifterantineutrino: detector01 natural sciencesNOHigh Energy Physics - Experimentwavelength shifterHigh Energy Physics - Experiment (hep-ex)PE2_2Daya BayNeutrino0103 physical sciencesfluorine: admixture[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530neutrino oscillation[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentationJiangmen Underground Neutrino ObservatoryPhysicsJUNO010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleDetectorLight yield; Liquid scintillator; NeutrinoInstrumentation and Detectors (physics.ins-det)Yield (chemistry)Scintillation counterComposition (visual arts)photon: yieldNeutrinoLight yieldNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

SNEWS 2.0 : a next-generation supernova early warning system for multi-messenger astronomy

2021

The next core-collapse supernova in the Milky Way or its satellites will represent a once-in-a-generation opportunity to obtain detailed information about the explosion of a star and provide significant scientific insight for a variety of fields because of the extreme conditions found within. Supernovae in our galaxy are not only rare on a human timescale but also happen at unscheduled times, so it is crucial to be ready and use all available instruments to capture all possible information from the event. The first indication of a potential stellar explosion will be the arrival of a bright burst of neutrinos. Its observation by multiple detectors worldwide can provide an early warning for t…

Milky WayAstrophysics::High Energy Astrophysical PhenomenasatelliteFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesHigh Energy Physics - Experiment010305 fluids & plasmasHigh Energy Physics - Experiment (hep-ex)Astronomi astrofysik och kosmologistar0103 physical sciencessupernova[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Astronomy Astrophysics and Cosmology010306 general physicssupernova neutrinoscaptureAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astroparticle physicsPhysicsWarning systemSupernova Early Warning SystembackgroundAstronomysensitivityGalaxySupernovaelectromagneticNeutrino detectorsupernova neutrinos; multi-messenger astronomy; particle astrophysicsneutrino: burstgalaxyNeutrinoAstrophysics - High Energy Astrophysical Phenomenamulti-messenger astronomy[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]particle astrophysics
researchProduct

Saharan dust inputs to western North Atlantic Ocean with three years time series

2018

International audience; In archeological record for the late Lower Pleistocene, manuports often represent a high proportion of the stone tool assemblages. Examples from well-known sites in Eurasia, such as; Olduvai Gorge Beds I and II, Dmanisi or Hummal, underline the significance of these items. Yet these materials are usually only summarily mentioned and their analysis is generally occulted by the, more thoroughly studies knapped materials. Archeostratigraphic Unit 2 (US2) of the Bois-de-Riquet site provides a good opportunity to evaluate the importance of imported materials for understanding hominin activities and interactions with carnivores. A few basalt cores and flakes were uncovered…

[SDE] Environmental Sciences[SDE]Environmental Sciences
researchProduct

IceCube search for neutrinos coincident with compact binary mergers from LIGO-Virgo's first gravitational-wave transient catalog

2020

Using the IceCube Neutrino Observatory, we search for high-energy neutrino emission coincident with compact binary mergers observed by the LIGO and Virgo gravitational-wave (GW) detectors during their first and second observing runs. We present results from two searches targeting emission coincident with the sky localization of each GW event within a 1000 s time window centered around the reported merger time. One search uses a model-independent unbinned maximum-likelihood analysis, which uses neutrino data from IceCube to search for pointlike neutrino sources consistent with the sky localization of GW events. The other uses the Low-Latency Algorithm for Multi-messenger Astrophysics, which …

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsBayesian7. Clean energy01 natural sciencesNeutrino astronomy; High energy astrophysics; Gravitational waveslocalizationIceCubeIceCube Neutrino ObservatoryGravitational wavesparticle source [neutrino]0103 physical sciencesLIGO010303 astronomy & astrophysics0105 earth and related environmental sciencesastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsGravitational wavegravitational radiationAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsLIGOobservatorymessengerMassless particleVIRGONeutrino detector13. Climate actionSpace and Planetary ScienceNeutrino astronomycompact [binary]Physique des particules élémentairesddc:520High Energy Physics::ExperimentNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical PhenomenaHigh energy astrophysicsLepton
researchProduct

The IceCube realtime alert system

2016

Following the detection of high-energy astrophysical neutrinos in 2013, their origin is still unknown. Aiming for the identification of an electromagnetic counterpart of a rapidly fading source, we have implemented a realtime analysis framework for the IceCube neutrino observatory. Several analyses selecting neutrinos of astrophysical origin are now operating in realtime at the detector site in Antarctica and are producing alerts to the community to enable rapid follow-up observations. The goal of these observations is to locate the astrophysical objects responsible for these neutrino signals. This paper highlights the infrastructure in place both at the South Pole detector site and at IceC…

HIGH-ENERGY NEUTRINOSTELESCOPEAstrophysics::High Energy Astrophysical PhenomenaMulti-messenger astronomy; Neutrino astronomy; Neutrino detectors; Transient sources; Astronomy and AstrophysicspoleFOS: Physical sciences01 natural sciencesIceCubelaw.inventionIceCube Neutrino ObservatoryTelescopeSEARCHESCORE-COLLAPSE SUPERNOVAElawObservatory0103 physical sciencesMulti-messenger astronomysiteNeutrino detectors010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsbackgroundEvent (computing)Astrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstronomy and AstrophysicsPERFORMANCEsensitivityTransient sourcesobservatoryIdentification (information)electromagneticPhysics and AstronomyNeutrino detectorNeutrino astronomyddc:540High Energy Physics::ExperimentNeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsFOLLOW-UPAstroparticle Physics
researchProduct

PINGU: a vision for neutrino and particle physics at the South Pole

2017

The Precision IceCube Next Generation Upgrade (PINGU) is a proposed low-energy in-fill extension to the IceCube Neutrino Observatory. With detection technology modeled closely on the successful IceCube example, PINGU will provide a 6Mton effective mass for neutrino detection with an energy threshold of a few GeV. With an unprecedented sample of over 60,000 atmospheric neutrinos per year in this energy range, PINGU will make highly competitive measurements of neutrino oscillation parameters in an energy range over an order of magnitude higher than long-baseline neutrino beam experiments. PINGU will measure the mixing parameters $\theta_{\rm 23}$ and $\Delta m^2_{\rm 32}$, including the octan…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsmixing [neutrino]atmospheric neutrinos; IceCube Neutrino Observatory; neutrino oscillations; PINGU; Nuclear and High Energy Physicspole7. Clean energy01 natural sciencesPINGUIceCube Neutrino ObservatoryIceCubeHigh Energy Physics - ExperimentObservatoryPhysicssolar [WIMP]precision measurementAstrophysics::Instrumentation and Methods for Astrophysicsoscillation [neutrino]solar [dark matter]atmosphere [neutrino]threshold [energy]mass difference [neutrino]atmospheric neutrinosobservatoryHigh Energy Physics - PhenomenologyUpgradeNeutrino detectorupgradeNeutrinoKM3NETperformanceParticle physicsNuclear and High Energy Physicssupernova [neutrino]particle identification [neutrino/tau]Astrophysics::High Energy Astrophysical PhenomenaSUPERNOVA DETECTIONIceCube Neutrino Observatory0103 physical sciencesOSCILLATIONSmass: low [dark matter]unitarityddc:530010306 general physicsNeutrino oscillationneutrino oscillations010308 nuclear & particles physicsAstronomysensitivityKM3NeTPhysics and Astronomymass [neutrino]beam [neutrino]High Energy Physics::ExperimentgalaxyATMOSPHERIC NEUTRINOSMATTERSYSTEMLeptonmixing angle [neutrino]experimental results
researchProduct

Searches for Sterile Neutrinos with the IceCube Detector

2016

The IceCube neutrino telescope at the South Pole has measured the atmospheric muon neutrino spectrum as a function of zenith angle and energy in the approximate 320 GeV to 20 TeV range, to search for the oscillation signatures of light sterile neutrinos. No evidence for anomalous $\nu_\mu$ or $\bar{\nu}_\mu$ disappearance is observed in either of two independently developed analyses, each using one year of atmospheric neutrino data. New exclusion limits are placed on the parameter space of the 3+1 model, in which muon antineutrinos would experience a strong MSW-resonant oscillation. The exclusion limits extend to $\mathrm{sin}^2 2\theta_{24} \leq$ 0.02 at $\Delta m^2 \sim$ 0.3 $\mathrm{eV}^…

Particle physicsSterile neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesHigh Energy Physics - ExperimentMiniBooNENuclear physicsHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)0103 physical sciencesOSCILLATIONSddc:550Muon neutrino010306 general physicsNeutrino oscillationZenithHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMuon010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyMODELNeutrino detectorPhysics and Astronomy13. Climate actionHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical PhenomenaEnergy (signal processing)SYSTEM
researchProduct

Measurement of the mass and lifetime of the Ω(−)(b) baryon

2016

A proton-proton collision data sample, corresponding to an integrated luminosity of 3 fb$^{-1}$ collected by LHCb at $\sqrt{s}=7$ and 8 TeV, is used to reconstruct $63\pm9$ $\Omega_b^-\to\Omega_c^0\pi^-$, $\Omega_c^0\to pK^-K^-\pi^+$ decays. Using the $\Xi_b^-\to\Xi_c^0\pi^-$, $\Xi_c^0\to pK^-K^-\pi^+$ decay mode for calibration, the lifetime ratio and absolute lifetime of the $\Omega_b^-$ baryon are measured to be \begin{align*} \frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\ \tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the uncertainties are statistical, systematic and from the calibration mode (for $\tau_{\Omega_b^-}$ only). A measurement …

Physics and Astronomy (miscellaneous)Analytical chemistryQuarkonium01 natural sciencesOmegaproton-proton scatteringHigh Energy Physics - ExperimentLuminosityPhysics Particles & FieldsHEAVY-QUARK EXPANSIONHadron-Hadron scattering (experiments)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]BaryonsBarionsPhysicsPhysicsBEAUTYMassa (Física)Nuclear & Particles PhysicsPhysical SciencesINCLUSIVE WEAK DECAYSLHCMass (Physics)Propietats de la matèriaParticle Physics - ExperimentProperties of matterNuclear and High Energy PhysicsHadronsAstronomy & AstrophysicsParticle and resonance productionNONuclear physicsRATIO0202 Atomic Molecular Nuclear Particle And Plasma Physics0103 physical sciencesPi010306 general physics0206 Quantum PhysicsINCLUSIVE WEAK DECAYS; HEAVY-QUARK EXPANSION; DISCARDING 1/N(C); RATIO; BEAUTY; RULEScience & Technology010308 nuclear & particles physicsQCDHEPDISCARDING 1/N(C)BaryonLHCb0201 Astronomical And Space SciencesHadron-Hadron scattering (experiments) Particle and resonance production proton-proton scattering QCD QuarkoniumHadronic decays of baryonBottom baryons (|B|>0)High Energy Physics::ExperimentCharmed mesons (|C|>0 B=0)RULE
researchProduct

TH-302 + Gemcitabine (G + T) vs Gemcitabine (G) in Patients with Previously Untreated advanced Pancreatic Cancer (PAC)

2012

ABSTRACT Background TH-302 is a hypoxia targeted prodrug with a hypoxia-triggered 2-nitroimidazole component designed to release the DNA alkylator, bromo-isophosphoramide mustard (Br-IPM), when reduced in severe hypoxia. A randomized Phase 2B study (NCT01144455) was conducted to assess the benefit of G + T to standard dose G as first-line therapy of PAC. Materials and methods An open-label multi-center study of two dose levels of TH-302 (240 mg/m2 or 340 mg/m2) in combination with G versus G alone (randomized 1:1:1). G (1000 mg/m2) and T were administered IV over 30-60 minutes on Days 1, 8 and 15 of a 28-day cycle. Patients on the G could crossover after progression and be randomized to a G…

medicine.medical_specialtyGastrointestinal tumorsPerformance statusbusiness.industryHematologySevere hypoxiaNeutropeniamedicine.diseaseRashGastroenterologyDiscontinuationNon colorectalOncologyInternal medicineToxicitymedicinemedicine.symptombusinessAnnals of Oncology
researchProduct

Anthropogenic Perturbations to the Atmospheric Molybdenum Cycle

2021

Molybdenum (Mo) is a key cofactor in enzymes used for nitrogen (N) fixation and nitrate reduction, and the low availability of Mo can constrain N inputs, affecting ecosystem productivity. Natural atmospheric Mo aerosolization and deposition from sources such as desert dust, sea‐salt spray, and volcanoes can affect ecosystem function across long timescales, but anthropogenic activities such as combustion, motor vehicles, and agricultural dust have accelerated the natural Mo cycle. Here we combined a synthesis of global atmospheric concentration observations and modeling to identify and estimate anthropogenic sources of atmospheric Mo. To project the impact of atmospheric Mo on terrestrial ec…

Atmospheric ScienceGlobal and Planetary ChangeNitrogenasechemistry.chemical_elementParticulatesAerosol depositionchemistryNitrogen fixationMolybdenumEnvironmental chemistryNutrient limitationNitrogenaseNitrogen fixationEnvironmental ChemistryEnvironmental scienceAerosol depositionParticulate matterGeneral Environmental Science
researchProduct

Performance of the upgraded PreProcessor of the ATLAS Level-1 Calorimeter Trigger

2020

The PreProcessor of the ATLAS Level-1 Calorimeter Trigger prepares the analogue trigger signals sent from the ATLAS calorimeters by digitising, synchronising, and calibrating them to reconstruct transverse energy deposits, which are then used in further processing to identify event features. During the first long shutdown of the LHC from 2013 to 2014, the central components of the PreProcessor, the Multichip Modules, were replaced by upgraded versions that feature modern ADC and FPGA technology to ensure optimal performance in the high pile-up environment of LHC Run 2. This paper describes the features of the newMultichip Modules along with the improvements to the signal processing achieved.

Physics - Instrumentation and Detectors:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Computer sciencePhysics::Instrumentation and Detectors01 natural sciencesHigh Energy Physics - Experiment030218 nuclear medicine & medical imaginglaw.inventionSubatomär fysikHigh Energy Physics - Experiment (hep-ex)0302 clinical medicinelawSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]PreprocessorDetectors and Experimental Techniquesphysics.ins-detInstrumentationMathematical PhysicsFPGASettore FIS/01Signal processingLarge Hadron ColliderInstrumentation and Detectors (physics.ins-det)trigger [calorimeter]ATLASCalorimeters; Trigger concepts and systems (hardware and software)Calorimetermedicine.anatomical_structure:Nuclear and elementary particle physics: 431 [VDP]Trigger concepts and systems (hardware and software)design [electronics]Particle Physics - ExperimentComputer hardwareperformanceCiências Naturais::Ciências Físicas530 Physics:Ciências Físicas [Ciências Naturais]Analog-to-digital converterFOS: Physical sciences61003 medical and health sciencesCalorimetersAtlas (anatomy)0103 physical sciencesmedicineHigh Energy Physicsddc:610[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Field-programmable gate arraysignal processingCalorimeterScience & Technologyhep-ex010308 nuclear & particles physicsbusiness.industrycalorimeter: trigger530 Physikcalibrationanalog-to-digital converterpile-upExperimental High Energy Physicselectronics: readoutbusinessreadout [electronics]Energy (signal processing)electronics: design
researchProduct

Association Between Tumor Egfr and Kras Mutation Status and Clinical Outcomes in Nsclc Patients Randomized to Sorafenib Plus Best Supportive Care (BS…

2012

ABSTRACT Background Tumor EGFR and KRas mutations are both predictive and prognostic biomarkers in patients with advanced NSCLC. We analyzed the correlation between these biomarkers and treatment outcomes in a phase III trial of 3rd/4th line sorafenib in patients with NSCLC. Methods The global, randomized, placebo-controlled MISSION trial enrolled 703 patients with advanced relapsed/refractory NSCLC of predominantly non-squamous histology. The primary study endpoint was overall survival (OS). EGFR and KRas mutations were analyzed in archival tumor samples and in circulating tumor DNA isolated from plasma. Results Tumor and/or plasma mutation data were available from 347 patients (49%). EGFR…

OncologySorafenibmedicine.medical_specialtyProportional hazards modelbusiness.industryHematologymedicine.disease_causePlacebomedicine.diseaseBreast cancerOncologyEgfr mutationInternal medicineMedicineBiomarker (medicine)KRASStage (cooking)businessmedicine.drugAnnals of Oncology
researchProduct

Observation of Two NewN*Resonances in the Decayψ(3686)→pp¯π0

2013

Based on 106 x 10(6)psi(3686) events collected with the BESIII detector at the BEPCII facility, a partial wave analysis of psi(3686) -> p (p) over bar pi(0) is performed. The branching fraction of this channel has been determined to be B psi(3686) -> p (p) over bar pi(0) = (1.65 +/- 0.03 +/- 0.15) x 10(-4). In this decay, 7 N* intermediate resonances are observed. Among these, two new resonances, N(2300) and N(2570) are significant, one 1/2(+) resonance with a mass of 2300(-30-0)(+40+109) MeV/c(2) and width of 340(-30-58)(+30+110) MeV/c(2), and one 5/2(-) resonance with a mass of 2570(-10-10)(+19+34) MeV/c(2) and width of 250(-24-21)(+14+69) MeV/c(.)(2) For the remaining 5 N* intermediate r…

BaryonNuclear physicsPhysicsBranching fractionElectron–positron annihilationPartial wave analysisAnalytical chemistryGeneral Physics and AstronomyResonanceBar (unit)Physical Review Letters
researchProduct

Determination of the number of J/psi events with J/psi -> inclusive decays

2012

The number of J/psi events collected with the BESIII detector at the BEPC II from June 12 to July 28, 2009 is determined to be (225.3 +/- 2.8) x 10(6) using J/psi -> inclusive events, where the uncertainty is the systematic error and the statistical one is negligible.

PhysicsSystematic errorNuclear and High Energy PhysicsElectron–positron annihilationDetectorMonte Carlo methodBESIIIInclusive eventsAstronomy and AstrophysicsJ/ψ→Nuclear physicsBESIII detector; Inclusive events; J/ψ→; Number of J/ψ eventsNumber of J/ψ eventsJ/psi -> inclusive eventsnumber of J/psi eventsBESIII detectorInstrumentationChinese physics c
researchProduct

Correction to: Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study (Intensive Care M…

2018

The members of the LUNG SAFE Investigators and the ESICM Trials Group were provided in such a way that they could not be indexed as collaborators on PubMed. The publisher apologizes for this error.

Critical Care and Intensive Care Medicine
researchProduct

Evidence for Astrophysical Muon Neutrinos from the Northern Sky with IceCube

2015

Results from the IceCube Neutrino Observatory have recently provided compelling evidence for the existence of a high energy astrophysical neutrino flux utilizing a dominantly Southern Hemisphere dataset consisting primarily of nu_e and nu_tau charged current and neutral current (cascade) neutrino interactions. In the analysis presented here, a data sample of approximately 35,000 muon neutrinos from the Northern sky was extracted from data taken during 659.5 days of livetime recorded between May 2010 and May 2012. While this sample is composed primarily of neutrinos produced by cosmic ray interactions in the Earth's atmosphere, the highest energy events are inconsistent with a hypothesis of …

HIGH-ENERGY NEUTRINOSFLUXESATMOSPHERIC MUONAstrophysics::High Energy Astrophysical PhenomenaSolar neutrinoFOS: Physical sciencesGeneral Physics and AstronomyAstrophysics01 natural sciencesIceCube Neutrino ObservatoryRATIO0103 physical sciencesddc:550010303 astronomy & astrophysicsGAMMA-RAY BURSTSHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSPECTRUMSpectral indexMuon010308 nuclear & particles physicsSolar neutrino problemPhysics and AstronomyNeutrino detector13. Climate actionHigh Energy Physics::ExperimentNeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Resolved versus confirmed ARDS after 24 h: insights from the LUNG SAFE study

2018

Purpose: To evaluate patients with resolved versus confirmed ARDS, identify subgroups with substantial mortality risk, and to determine the utility of day 2 ARDS reclassification. Methods: Our primary objective, in this secondary LUNG SAFE analysis, was to compare outcome in patients with resolved versus confirmed ARDS after 24 h. Secondary objectives included identifying factors associated with ARDS persistence and mortality, and the utility of day 2 ARDS reclassification. Results: Of 2377 patients fulfilling the ARDS definition on the first day of ARDS (day 1) and receiving invasive mechanical ventilation, 503 (24%) no longer fulfilled the ARDS definition the next day, 52% of whom initial…

MaleARDSmedicine.medical_treatmentlnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]ARDS reassessment; ARDS Survival; Berlin criteria ARDS; Persisting ARDS;Critical Care and Intensive Care Medicineassisted ventilation0302 clinical medicineRisk Factors030212 general & internal medicinerisk factor AdultTidal volumecomparative studyeducation.field_of_studyRespiratory Distress SyndromeMortality rateRemission Inductiontidal volumeARDS reassessment; ARDS Survival; Berlin criteria ARDS; Persisting ARDS; Critical Care and Intensive Care MedicineARDS reassessmentartificial ventilationclinical trialimmunosuppressive treatmentadult respiratory distress syndromeMiddle AgedARDS SurvivalMonte Carlo methodmedicine.anatomical_structureclassificationpositive end expiratory pressureCardiologyDisease ProgressionSOFA scoredisease severityFemaleAdultmedicine.medical_specialtyPopulationdisease classificationArticleNO03 medical and health sciencesremissionlength of stayAnesthesiologyInternal medicinemedicinepneumoniaSequential Organ Failure Assessment ScoreHumanshumaneducationAgedMechanical ventilationhospital mortalityLungbusiness.industryRisk Factordisease associationRespiratory Distress Syndrome AdultPersisting ARDSmedicine.diseasemajor clinical studymortalityRespiration Artificialbreathing rate030228 respiratory systemdisease exacerbationBerlin criteria ARDSbusinessIntensive care medicine
researchProduct

Observation and Measurement of Forward Proton Scattering in Association with Lepton Pairs Produced via the Photon Fusion Mechanism at ATLAS

2020

The observation of forward proton scattering in association with lepton pairs (eþe− þ p or μþμ− þ p) produced via photon fusion is presented. The scattered proton is detected by the ATLAS Forward Proton spectrometer, while the leptons are reconstructed by the central ATLAS detector. Proton-proton collision data recorded in 2017 at a center-of-mass energy of ffiffiffi s p ¼ 13 TeV are analyzed, corresponding to an integrated luminosity of 14.6 fb−1. A total of 57 (123) candidates in the ee þ p (μμ þ p) final state are selected, allowing the background-only hypothesis to be rejected with a significance exceeding 5 standard deviations in each channel. Proton-tagging techniques are introduced f…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Photon13000 GeV-cmsLHC ATLASmeasured [channel cross section]General Physics and Astronomy01 natural sciences7. Clean energyHigh Energy Physics - Experimentelectron: pair productionSubatomär fysikHigh Energy Physics - Experiment (hep-ex)Integrated LuminosityFusion Mechanismphoton photon: fusionspectrometer [p]Subatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]scattering [p p]pair production [lepton]Electroweak interactionQuantum ChromodynamicsParticle productionNuclear ExperimentSettore FIS/01PhysicsQuantum chromodynamicsObservation and MeasurementQuantum electrodynamicsLarge Hadron Colliderp: spectrometerdimuonAtlas (topology)COLLISIONS; PHYSICS; GAMMA; LIGHT; LHCElectroweak interactionDetectorphotonATLASfusion [photon photon]muon: pair production:Nuclear and elementary particle physics: 431 [VDP]PhotoproductionLIGHTCERN LHC CollATLAS DetectorsLHCcolliding beams [p p]channel cross section: measuredParticle Physics - Experimentsmall-angleParticle physicsp p: scatteringCOLLISIONSp: particle identificationCiências Naturais::Ciências Físicas530 Physicslepton: pair production:Ciências Físicas [Ciências Naturais]Particles & FieldsFOS: Physical sciencesparticle identification [p]LHC ATLAS High Energy PhysicsPHYSICS0103 physical sciencesddc:530Cross-Section Measurementpair production [electron]pair production [muon]High Energy Physics010306 general physicsCiencias ExactasATLAS CollaborationScience & TechnologySpectrometerhep-exPomeronsFísicaGAMMALeptonsProton Scatteringexclusive productionPrecision measurementsProton Proton CollisionsStandard DeviationExperimental High Energy PhysicsElementary Particles and FieldsHigh Energy Physics::ExperimentHadron-hadron collisionsp p: colliding beamsLeptonacceptanceexperimental results
researchProduct

Characteristics of the diffuse astrophysical electron and Tau neutrino flux with six years of IceCube high energy cascade data

2020

We report on the first measurement of the astrophysical neutrino flux using particle showers (cascades) in IceCube data from 2010-2015. Assuming standard oscillations, the astrophysical neutrinos in this dedicated cascade sample are dominated (∼90%) by electron and tau flavors. The flux, observed in the sensitive energy range from 16 TeV to 2.6 PeV, is consistent with a single power-law model as expected from Fermi-type acceleration of high energy particles at astrophysical sources. We find the flux spectral index to be γ=2.53±0.07 and a flux normalization for each neutrino flavor of φastro=1.66-0.27+0.25 at E0=100 TeV, in agreement with IceCube's complementary muon neutrino results and wit…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Physics and AstronomyElectronpower spectrumflux [electron]energy [particle]01 natural sciencesIceCubeNuclear physics5/3Tau neutrinomuon0103 physical scienceslow [energy]Muon neutrinoddc:530010303 astronomy & astrophysicsastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSPECTRUMSpectral indexMuon010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyflavor [neutrino]RAYSflux [neutrino]accelerationshowersoscillationPhysics and Astronomy13. Climate actionEnergy cascadePhysique des particules élémentairesastro-ph.COhigh [energy]cascade [energy]High Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaFermi Gamma-ray Space TelescopeAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

First Observation of theM1Transitionψ(3686)→γηc(2S)

2012

Using a sample of 106×10(6) ψ(3686) events collected with the BESIII detector at the BEPCII storage ring, we have made the first measurement of the M1 transition between the radially excited charmonium S-wave spin-triplet and the radially excited S-wave spin-singlet states: ψ(3686)→γη(c)(2S). Analyses of the processes ψ(3686)→γη(c)(2S) with η(c)(2S)→K(S)(0)K(±)π(∓) and K(+)K(-)π(0) give an η(c)(2S) signal with a statistical significance of greater than 10 standard deviations under a wide range of assumptions about the signal and background properties. The data are used to obtain measurements of the η(c)(2S) mass (M(η(c)(2S))=3637.6±2.9(stat)±1.6(syst) MeV/c(2)), width (Γ(η(c)(2S))=16.9±6.4(…

PhysicsBranching fractionElectron–positron annihilationExcited stateAnalytical chemistryGeneral Physics and AstronomyPhysical Review Letters
researchProduct

Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU

2020

Physical review / D 101(3), 032006 (1-19) (2020). doi:10.1103/PhysRevD.101.032006

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsantineutrino/e: energy spectrumJoint analysishiukkasfysiikka7. Clean energy01 natural sciencesString (physics)PINGUHigh Energy Physics - ExperimentSubatomär fysikHigh Energy Physics - Experiment (hep-ex)neutrino: atmosphereSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Particle Physics Experimentsneutrino: massphysics.ins-detPhysicsJUNOPhysicsneutriinotoscillation [neutrino]Instrumentation and Detectors (physics.ins-det)massa (fysiikka)atmosphere [neutrino]tensionneutrino: nuclear reactormass difference [neutrino]ddc:UpgradePhysique des particules élémentairesnuclear reactor [neutrino]proposed experimentNeutrinoperformanceParticle physicsAstrophysics::High Energy Astrophysical Phenomenaneutrino: mass differenceFOS: Physical sciencesddc:500.25300103 physical sciencesEnergy spectrumIceCube: upgradeOSCILLATIONSddc:530Sensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationenergy spectrum [antineutrino/e]hep-ex010308 nuclear & particles physicssensitivityPhysics and Astronomymass [neutrino]stringupgrade [IceCube]High Energy Physics::ExperimentReactor neutrinoneutrino: oscillationMATTER
researchProduct

Saharan dust inputs to North- Western Atlantic Ocean with three years time series

2019

International audience; North Africa, the largest dust source worldwide, accounts for 55% of global continental dust emission [1]. These dusts can be transported over long distance, and significantly impact ocean biogeochemistry in the North Atlantic and the ecosystems of the North Tropical Atlantic Islands, after deposition through biogeochemical processes [2,3]. Yet, the inputs of Saharan dust to the North-Western Atlantic are not precisely measured. In this work, we present time series of dust deposition performed in Guadeloupe, an island situated in the Western North Atlantic Ocean. Atmospheric total deposition was continuously sampled on a weekly basis during three years (2015-2018). A…

[SDE] Environmental Sciences[SDE]Environmental Sciences
researchProduct

Two-photon widths of the $\chi_{c0, 2}$ states and helicity analysis for $\chi_{c2}\ar\gamma\gamma$}

2012

Based on a data sample of 106 M $\psi^{\prime}$ events collected with the BESIII detector, the decays $\psi^{\prime}\ar\gamma\chi_{c0, 2}$,$\chi_{c0, 2}\ar\gamma\gamma$ are studied to determine the two-photon widths of the $\chi_{c0, 2}$ states. The two-photon decay branching fractions are determined to be ${\cal B}(\chi_{c0}\ar\gamma\gamma) = (2.24\pm 0.19\pm 0.12\pm 0.08)\times 10^{-4}$ and ${\cal B}(\chi_{c2}\ar\gamma\gamma) = (3.21\pm 0.18\pm 0.17\pm 0.13)\times 10^{-4}$. From these, the two-photon widths are determined to be $\Gamma_{\gamma \gamma}(\chi_{c0}) = (2.33\pm0.20\pm0.13\pm0.17)$ keV, $\Gamma_{\gamma \gamma}(\chi_{c2}) = (0.63\pm0.04\pm0.04\pm0.04)$ keV, and $\cal R$ $=\Gamma…

Astrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Physics - Experiment
researchProduct

Computational Techniques for the Analysis of Small Signals in High-Statistics Neutrino Oscillation Experiments

2020

The current and upcoming generation of Very Large Volume Neutrino Telescopes – collecting unprecedented quantities of neutrino events – can be used to explore subtle effects in oscillation physics, such as (but not restricted to) the neutrino mass ordering. The sensitivity of an experiment to these effects can be estimated from Monte Carlo simulations. With the high number of events that will be collected, there is a trade-off between the computational expense of running such simulations and the inherent statistical uncertainty in the determined values. In such a scenario, it becomes impractical to produce and use adequately-sized sets of simulated events with traditional methods, such as M…

data analysis methodNuclear and High Energy PhysicsMonte Carlo methodFVLV nu TData analysis; Detector; KDE; MC; Monte Carlo; Neutrino; Neutrino mass ordering; Smoothing; Statistics; VLVνTData analysisKDEFOS: Physical sciences01 natural sciencesIceCubeHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)statistical analysisnumerical methods0103 physical sciencesStatisticsNeutrinoddc:530Sensitivity (control systems)MC010306 general physicsNeutrino oscillationInstrumentation and Methods for Astrophysics (astro-ph.IM)InstrumentationMonte CarloPhysicsVLVνT010308 nuclear & particles physicsOscillationStatisticsoscillation [neutrino]ObservableDetectorMonte Carlo [numerical calculations]WeightingNeutrino mass orderingPhysics and AstronomyPhysics - Data Analysis Statistics and ProbabilityPhysique des particules élémentairesNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsMATTERData Analysis Statistics and Probability (physics.data-an)SmoothingSmoothing
researchProduct

Search for a light exotic particle inJ/ψradiative decays

2012

Using a data sample containing 1.06x10^8 psi' events collected with the BESIII detector at the BEPCII electron-positron collider, we search for a light exotic particle X in the process psi' -> pi^+ pi^- J/psi, J/psi -> gamma X, X -> mu^+ mu^-. This light particle X could be a Higgs-like boson A^0, a spin-1 U boson, or a pseudoscalar sgoldstino particle. In this analysis, we find no evidence for any mu^+mu^- mass peak between the mass threshold and 3.0 GeV/c^2. We set 90%-confidence-level upper limits on the product-branching fractions for J/psi -> gamma A^0, A^0 -> mu^+ mu^- which range from 4x10^{-7} to 2.1x10^{-5}, depending on the mass of A^0, for M(A^0)<3.0 GeV/c^2. On…

BOSONSPhysicsNuclear and High Energy PhysicsParticle physicsRange (particle radiation)ENERGIESElectron–positron annihilationGRAVITINOFOS: Physical sciencesSupersymmetryHigh Energy Physics - Experimentlaw.inventionNuclear physicsPseudoscalarHigh Energy Physics - Experiment (hep-ex)lawSgoldstinoRadiative transferHigh Energy Physics::ExperimentColliderBosonPhysical Review D
researchProduct

Constraints on Minute-Scale Transient Astrophysical Neutrino Sources

2019

High-energy neutrino emission has been predicted for several short-lived astrophysical transients including gamma-ray bursts (GRBs), core-collapse supernovae with choked jets, and neutron star mergers. IceCube's optical and x-ray follow-up program searches for such transient sources by looking for two or more muon neutrino candidates in directional coincidence and arriving within 100 s. The measured rate of neutrino alerts is consistent with the expected rate of chance coincidences of atmospheric background events and no likely electromagnetic counterparts have been identified in Swift follow-up observations. Here, we calculate generic bounds on the neutrino flux of short-lived transient so…

HIGH-ENERGY NEUTRINOSAstrophysics::High Energy Astrophysical PhenomenaPopulationGeneral Physics and AstronomyFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences7. Clean energy0103 physical sciencesMuon neutrinoddc:530education010303 astronomy & astrophysicsPhysicsGAMMA-RAY BURSTSHigh Energy Astrophysical Phenomena (astro-ph.HE)education.field_of_studyMuon010308 nuclear & particles physicsSupernovaNeutron starPhysics and Astronomy13. Climate actionPhysique des particules élémentairesHigh Energy Physics::ExperimentNeutrinoGamma-ray burstAstrophysics - High Energy Astrophysical PhenomenaEnergy (signal processing)
researchProduct

ALEPH: a Detector for Electron-Positron Annihilations at LEP

1990

Process-centred Software Engineering Environments (PSEE) are the most recent generation of environments supporting software development activities. Most of PSEE are based on mechanisms promoting enforcement and automation of process activities. In this kind of mechanisms the process models are prescribed in a detailed and complete way. But the experience shows that supporting processes is more concerned with the flexibility of guidance offered during the process performance than with enforcement of a collection of predefined process models. In this paper, we present a solution to support strategic processes in a PSEE by providing a flexible guidance during process enactment.

PhysicsFlexibility (engineering)Nuclear and High Energy PhysicsAlephhigh-energy physicsProcess modelingProcess (engineering)business.industrySoftware developmentLEPAutomationparticle detectorsData acquisitionDetectors and Experimental TechniquesLEP; particle detectors; high-energy physicsSoftware engineeringbusinessEnforcementInstrumentationparticle detector
researchProduct

The nature of the extreme X-ray variability in the NLS1 1H 0707-495

2021

We examine archival XMM-Newton data on the extremely variable narrow-line Seyfert 1 (NLS1) active galactic nucleus (AGN) 1H 0707-495. We construct fractional excess variance (Fvar) spectra for each epoch, including the recent 2019 observation taken simultaneously with eROSITA. We explore both intrinsic and environmental absorption origins for the variability in different epochs, and examine the effect of the photoionised emission lines from outflowing gas. In particular, we show that the unusual soft variability first detected by eROSITA in 2019 is due to a combination of an obscuration event and strong suppression of the variance at 1 keV by photoionised emission, which makes the variance …

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Active galactic nucleusAccretion (meteorology)Astrophysics::High Energy Astrophysical PhenomenaX-rayFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsLow frequencySpectral lineAmplitudeSpace and Planetary ScienceEmission spectrumAbsorption (electromagnetic radiation)Astrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy Astrophysics
researchProduct

Assessment of the worldwide burden of critical illness: The Intensive Care Over Nations (ICON) audit

2014

Item does not contain fulltext BACKGROUND: Global epidemiological data regarding outcomes for patients in intensive care units (ICUs) are scarce, but are important in understanding the worldwide burden of critical illness. We, therefore, did an international audit of ICU patients worldwide and assessed variations between hospitals and countries in terms of ICU mortality. METHODS: 730 participating centres in 84 countries prospectively collected data on all adult (>16 years) patients admitted to their ICU between May 8 and May 18, 2012, except those admitted for fewer than 24 h for routine postoperative monitoring. Participation was voluntary. Data were collected daily for a maximum of 28 da…

Pulmonary and Respiratory Medicinemedicine.medical_specialtyCritical Illnesshealth care facilities manpower and servicesPopulationlnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]Critical care european intensive care icon studyComorbidityintensive care medicineGlobal HealthMOF; sepsis; critically ill[SDV.MHEP.PSR]Life Sciences [q-bio]/Human health and pathology/Pulmonology and respiratory tractICON Intensive CareArticleSepsisCohort StudiesOutcome Assessment (Health Care)Intensive careSepsisOutcome Assessment Health CareEpidemiologyHealth careSettore MED/41 - ANESTESIOLOGIAmedicineGlobal healthcritical illness mortalityHumansHospital MortalityeducationIntensive care medicineeducation.field_of_studyMedical Auditbusiness.industryIntensive Caremedicine.diseaseComorbidity3. Good healthIntensive Care UnitsICONbusinessCohort study
researchProduct

Evidence for the Direct Two-Photon Transition from $\psi(3686)$ to $J/\psi$

2012

The two-photon transition $\psi(3686)\to\gamma\gamma J/\psi$ is studied in a sample of 106 million $\psi(3686)$ decays collected by the BESIII detector. The branching fraction is measured to be $(3.1\pm0.6(\unit{stat})^{+0.8}_{-1.0}(\unit{syst})) \times10^{-4}$ using $J/\psi\to e^+e^-$ and $J/\psi\to\mu^+\mu^-$ decays, and its upper limit is estimated to be $4.5\times10^{-4}$ at the 90% conference level. This work represents the first measurement of a two-photon transition among charmonium states. The orientation of the $\psi(3686)$ decay plane and the $J/\psi$ polarization in this decay are also studied. In addition, the product branching fractions of sequential $E1$ transitions $\psi(3686…

High Energy Physics - PhenomenologyHigh Energy Physics::ExperimentHigh Energy Physics - Experiment
researchProduct

Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.201…

2016

non presente

Molecular Biology; Cell BiologyCell BiologySettore BIO/06 - Anatomia Comparata E CitologiaMolecular Biology
researchProduct

Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube

2015

A diffuse flux of astrophysical neutrinos above $100\,\mathrm{TeV}$ has been observed at the IceCube Neutrino Observatory. Here we extend this analysis to probe the astrophysical flux down to $35\,\mathrm{TeV}$ and analyze its flavor composition by classifying events as showers or tracks. Taking advantage of lower atmospheric backgrounds for shower-like events, we obtain a shower-biased sample containing 129 showers and 8 tracks collected in three years from 2010 to 2013. We demonstrate consistency with the $(f_e:f_{\mu}:f_\tau)_\oplus\approx(1:1:1)_\oplus$ flavor ratio at Earth commonly expected from the averaged oscillations of neutrinos produced by pion decay in distant astrophysical sou…

FLUXAMANDAParticle physicsPhysics::Instrumentation and DetectorsENERGIESAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Physics and AstronomyFluxCosmic rayAstrophysicsACCELERATION01 natural sciencesflavor : ratioHigh Energy Physics - ExperimentIceCube Neutrino ObservatoryIceCubeHigh Energy Physics - Experiment (hep-ex)PionObservatory0103 physical sciencesddc:550010306 general physicsNeutrino oscillationHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsSigmashowersCOSMIC-RAYSatmosphere : backgroundtracksneutrino : flavor : rationeutrino : oscillationfluxobservatoryPhysics and Astronomy13. Climate actionHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical Phenomenaneutrino : VHEpi : decay
researchProduct