0000000001294026

AUTHOR

Gaetano Gerardi

showing 67 related works from this author

Digital performance improvements of a CdTe pixel detector for high flux energy-resolved X-ray imaging

2015

Abstract Photon counting detectors with energy resolving capabilities are desired for high flux X-ray imaging. In this work, we present the performance of a pixelated Schottky Al/p-CdTe/Pt detector (4×4) coupled to a custom-designed digital readout electronics for high flux measurements. The detector (4×4×2 mm 3 ) has an anode layout based on an array of 16 pixels with a geometric pitch of 1 mm (pixel size of 0.6 mm). The 4-channel readout electronics is able to continuously digitize and process the signals from each pixel, performing multi-parameter analysis (event arrival time, pulse shape, pulse height, pulse time width, etc.) even at high fluxes and at different throughput and energy re…

PhysicsNuclear and High Energy PhysicsPixelPhysics::Instrumentation and Detectorsbusiness.industryEnergy-resolved photon counting detectorSettore FIS/01 - Fisica SperimentaleDetectorSchottky diodePixel detectorSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Photon countingCharge sharingCdTe detectorHigh photon counting rateFull width at half maximumOpticsDigital pulse processingMonochromatic colorbusinessInstrumentationPulse shape analysiEnergy (signal processing)Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

A Very Large Area Telescope for γ-Ray Astronomy Above 100 MeV Employing Limited Streamer Tubes

1994

A new detector for γ-ray astronomy above 100 MeV is described in which the electron-positron pairs are tracked by means of a set of plane arrays of Limited Streamer Tubes. This technique allows to build up very large area experiments which are specifically useful to study variable or transient sources.

PhysicsPhysics::Instrumentation and Detectorsbusiness.industryPlane (geometry)DetectorAstronomyGamma-ray astronomylaw.inventionTelescopePrimary mirrorOpticsObservational astronomylawTransient (oscillation)business
researchProduct

Hard X-Ray Response of Pixellated CdZnTe Detectors

2009

In recent years, the development of cadmium zinc telluride (CdZnTe) detectors for x-ray and gamma ray spectrometry has grown rapidly. The good room temperature performance and the high spatial resolution of pixellated CdZnTe detectors make them very attractive in space-borne x-ray astronomy, mainly as focal plane detectors for the new generation of hard x-ray focusing telescopes. In this work, we investigated on the spectroscopic performance of two pixellated CdZnTe detectors coupled with a custom low noise and low power readout application specific integrated circuit (ASIC). The detectors (10x10x1 and 10x10x2 mm3 single crystals) have an anode layout based on an array of 256 pixels with a …

Materials scienceSpectrometerPhysics::Instrumentation and Detectorsbusiness.industryPreamplifierSettore FIS/01 - Fisica SperimentaleDetectorGeneral Physics and AstronomyX-ray opticsPhotodetectorIntegrated circuitSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Cadmium zinc telluridelaw.inventionchemistry.chemical_compoundOpticschemistryDetectors Semiconductor x-ray spectroscopylawOptoelectronicsGamma spectroscopybusiness
researchProduct

A digital approach for real time high-rate high-resolution radiation measurements

2014

Abstract Modern spectrometers are currently developed by using digital pulse processing (DPP) systems, showing several advantages over traditional analog electronics. The aim of this work is to present digital strategies, in a time domain, for the development of real time high-rate high-resolution spectrometers. We propose a digital method, based on the single delay line (SDL) shaping technique, able to perform multi-parameter analysis with high performance even at high photon counting rates. A robust pulse shape and height analysis (PSHA), applied on single isolated time windows of the detector output waveforms, is presented. The potentialities of the proposed strategy are highlighted thro…

PhysicsNuclear and High Energy PhysicsAnalogue electronicsSpectrometerDetectorSettore FIS/01 - Fisica SperimentalePhoton countingSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Semiconductor detectorPulse (physics)Digital pulse processing Pulse height analysis Pulse shape analysis Real time processing Dead time correction Energy resolved photon countingElectronic engineeringWaveformTime domainInstrumentation
researchProduct

Electrical Characterization of CdTe pixel detectors with Al Schottky anode

2014

Abstract Pixelated Schottky Al/p-CdTe/Pt detectors are very attractive devices for high-resolution X-ray spectroscopic imaging, even though they suffer from bias-induced time instability (polarization). In this work, we present the results of the electrical characterization of a (4×4) pixelated Schottky Al/p-CdTe/Pt detector. Current–voltage ( I–V ) characteristics and current transients were investigated at different temperatures. The results show deep levels that play a dominant role in the charge transport mechanism. The conduction mechanism is dominated by the space charge limited current (SCLC) both under forward bias and at high reverse bias. Schottky barrier height of the Al/CdTe con…

PhysicspolarizationNuclear and High Energy PhysicsSchottky contactbusiness.industrySchottky barrierSettore FIS/01 - Fisica SperimentaleSchottky diodeCdTeThermal conductionSpace chargeCadmium telluride photovoltaicsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Settore FIS/03 - Fisica Della MateriaAnodeX-ray and gamma ray spectroscopypixel detectorOptoelectronicsPolarization (electrochemistry)businessCdTe; Schottky contacts; polarization; pixel detectors; X-ray and gamma ray spectroscopyInstrumentationVoltage
researchProduct

M-VIF: A machine-vision based on information fusion

2002

The authors describe a new architecture for machine vision, which is based on information fusion approach. Its general design has been developed by using a formal computation model that integrates three main ingredients of the visual computation: the data, the models, and the algorithms. The hardware design and the software environment of M-VIF are also given. The simulation of M-VIF is under development on the HERMIA-machine.

Settore INF/01 - InformaticaMachine visionComputer sciencebusiness.industryComputationMachine learningcomputer.software_genreAbstract machineInformation fusionSoftwareComputer architectureactive vision machine vision image analysis parallel processing.Artificial intelligenceArchitecturebusinesscomputer
researchProduct

Performance of a digital CdTe X-ray spectrometer in low and high counting rate environment

2010

Abstract The high performances of CdTe detectors for X-ray and gamma ray spectroscopy are already well known. Among the traditional semiconductor spectrometers, CdTe detectors show high detection efficiency and good room temperature performance and are well suited for the development of compact detection systems. In this work, we investigated the performance of a CdTe detector coupled with a custom digital pulse processing (DPP) system for X-ray spectroscopy. The DPP method, implemented on a PC platform, performs a pile-up inspection and a pulse height analysis of the preamplifier output pulses, digitized by a 14-bit, 100 MHz ADC. The spectroscopic results point out the excellent performanc…

PhysicsNuclear and High Energy PhysicsX-ray spectroscopySpectrometerPhysics::Instrumentation and Detectorsbusiness.industryPreamplifierSettore FIS/01 - Fisica SperimentaleDetectorSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Photon countingOpticsSemiconductorGamma spectroscopyCdTe detectors X-ray spectroscopy Digital pulse processingbusinessSpectroscopyInstrumentationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

High Bias Voltage CZT Detectors for High-flux Measurements

2017

In this work, we present the performance of new travelling heater method (THM) grown CZT detectors, recently developed at IMEM-CNR Parma, Italy. Thick planar detectors (3 mm thick) with gold electroless contacts on CZT crystals grown by Redlen Technologies (Victoria BC, Canada) were realized, with a planar cathode covering the detector surface (4.1 x 4.1 mm(2)) and a central anode (2 x 2 mm(2)) surrounded by a guard ring electrode. The detectors, characterized by low leakage currents at room temperature (4.7 nA/cm(2) at 1000 V/cm), allow good room temperature operation even at high bias voltages (> 7000 V/cm). At low rates, the detectors exhibit an energy resolution around 4 % FWIEM at 59.5…

radiation detectorRadiology Nuclear Medicine and ImagingMaterials sciencePreamplifier02 engineering and technology01 natural scienceslaw.inventionlawpixel0103 physical sciencesInstrumentationNuclear and High Energy Physic010308 nuclear & particles physicsbusiness.industryDetectorSettore FIS/01 - Fisica SperimentaleElectrical engineeringBiasing021001 nanoscience & nanotechnologyPhoton countingCathodeSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)AnodeElectronic Optical and Magnetic MaterialsCZTFull width at half maximumHigh Fluxhigh bias voltageOptoelectronicssemiconductor detector0210 nano-technologybusinessVoltage
researchProduct

Digital CZT detector system for high flux energy-resolved X-ray imaging

2017

Photon counting arrays with energy resolving capabilities are recently desired for the next-generation X-ray imaging systems. In this work, we present the performance of a 2 mm thick CZT pixel detector, with pixel pitches of 500 mu m and 250 mu m, coupled to a fast and low noise ASIC (PIXIE ASIC), characterized by only the preamplifier stage. A 16-channel digital readout electronics was used to continuously digitize and process each output channel from the PIXIE ASIC, performing multi-parameter analysis (event arrival time, pulse shape, pulse height) at low and high input counting rates (ICRs). The spectroscopic response of the system to monochromatic X-ray and gamma ray sources, at both lo…

Radiology Nuclear Medicine and ImagingPhysics::Instrumentation and DetectorsPreamplifier01 natural sciences030218 nuclear medicine & medical imagingCharge sharing03 medical and health sciences0302 clinical medicineOptics0103 physical sciencesInstrumentationNuclear and High Energy PhysicPhysicsPixel010308 nuclear & particles physicsbusiness.industryDetectorSettore FIS/01 - Fisica SperimentaleGamma raySMALL PIXEL; CDTE; PERFORMANCE; RESOLUTION; PROGRESS; CTPhoton countingSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Electronic Optical and Magnetic MaterialsPixieMonochromatic colorbusiness
researchProduct

High-rate dead-time corrections in a general purpose digital pulse processing system

2015

The abilities on dead-time correction of a real-time digital pulse processing (DPP) system for high-rate high-resolution radiation measurements are presented. The DPP system, through a fast and slow analysis of the output waveform from radiation detectors, is able to perform an accurate estimation of the true input counting rate (ICR), a fine pulse height (energy) and shape (peaking time) analysis even at high ICRs.

PhysicsNuclear and High Energy Physicsdigital pulse processingRadiationcascade of dead-timesbusiness.industryDetectorDead timeResearch PapersParticle detectorSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Pulse (physics)Cascade of dead-timeOpticstime interval distributionWaveformdead-timebusinessThroughput (business)InstrumentationPulse-width modulationEnergy (signal processing)Nuclear and High Energy PhysicJournal of Synchrotron Radiation
researchProduct

Direct Measurement of Mammographic X-Ray Spectra with a Digital CdTe Detection System

2012

In this work we present a detection system, based on a CdTe detector and an innovative digital pulse processing (DPP) system, for high-rate X-ray spectroscopy in mammography (1–30 keV). The DPP system performs a height and shape analysis of the detector pulses, sampled and digitized by a 14-bit, 100 MHz ADC. We show the results of the characterization of the detection system both at low and high photon counting rates by using monoenergetic X-ray sources and a nonclinical X-ray tube. The detection system exhibits excellent performance up to 830 kcps with an energy resolution of 4.5% FWHM at 22.1 keV. Direct measurements of clinical molybdenum X-ray spectra were carried out by using a pinhole…

digital pulse processingmammographyAnalytical chemistrylcsh:Chemical technologyBiochemistryArticleAnalytical ChemistryCdTe detectorsCdTe detectorOpticsmedicineCadmium CompoundsMammographylcsh:TP1-1185Computer SimulationElectrical and Electronic EngineeringInstrumentationPhysicsDosimetermedicine.diagnostic_testbusiness.industryAttenuationSpectrum AnalysisX-RaysDetectorSettore FIS/01 - Fisica Sperimentalehigh photon counting rateCdTe detectors Digital Pulse Processing MammographySignal Processing Computer-AssistedAtomic and Molecular Physics and OpticsPhoton countingSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Full width at half maximumX-ray spectroscopy; high photon counting rate; CdTe detectors; digital pulse processing; mammographyIonization chamberX-ray spectroscopyTelluriumbusinessHalf-value layerSensors; Volume 12; Issue 6; Pages: 8390-8404
researchProduct

Spectroscopic response of a CdZnTe multiple electrode detector

2007

Abstract The spectroscopic performances of a CdZnTe detector (crystal size: 5×5×0.9 mm 3 ) with five electrodes (cathode, anode and three steering electrodes) were studied. The anode layout, which consists of a circular electrode ( φ =80 μm) surrounded by two ring electrodes (gap=100 μm; radial width Δ r =100 μm) and by one electrode that extends to the edge of the crystal, is mostly sensitive to the electron carriers, overcoming the well known effect of the hole trapping in the measured spectra. We report on the spectroscopic response of the detector at different bias voltages of the electrodes and at various photon energies ( 109 Cd, 241 Am and 57 Co sources). The CdZnTe detector exhibits…

PhysicsNuclear and High Energy PhysicsSpectrometerbusiness.industryCdZnTe detectorSteering electrodeDetectorMultiple electrode detectorElectronSmall pixel effectCathodeAnodelaw.inventionCrystalFull width at half maximumX-ray and gamma ray spectroscopylawElectrodeOptoelectronicsbusinessInstrumentationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

A model of M87 nuclear emission without ADAF

2007

We present a simple physical model of the central source emission in the M87 galaxy. It is well known that the observed X‐ray luminosity from this galactic nucleus is much lower than the predicted one, if a standard radiative efficiency is assumed. Up to now the main model invoked to explain such a luminosity is the ADAF (Advection‐Dominated‐Accretion‐Flow) model. Our approach supposes only a simple axis‐symmetric adiabatic accretion with a low angular momentum together with the bremsstrahlung emission process in the accreting gas. With no other special hypothesis on the dynamics of the system, this model agrees well enough with the luminosity value measured by Chandra.

PhysicsAngular momentumActive galactic nucleusAstrophysics::High Energy Astrophysical PhenomenaBremsstrahlungAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsGalactic nucleiGalaxyAccretion (astrophysics)Radiative efficiencyAstrophysics::Solar and Stellar AstrophysicsAdiabatic processAstrophysics::Galaxy Astrophysics
researchProduct

Development of new CdZnTe detectors for room-temperature high-flux radiation measurements

2017

Recently, CdZnTe (CZT) detectors have been widely proposed and developed for room-temperature X-ray spectroscopy even at high fluxes, and great efforts have been made on both the device and the crystal growth technologies. In this work, the performance of new travelling-heater-method (THM)-grown CZT detectors, recently developed at IMEM-CNR Parma, Italy, is presented. Thick planar detectors (3 mm thick) with gold electroless contacts were realised, with a planar cathode covering the detector surface (4.1 mm × 4.1 mm) and a central anode (2 mm × 2 mm) surrounded by a guard-ring electrode. The detectors, characterized by low leakage currents at room temperature (4.7 nA cm−2 at 1000 V cm−1), a…

Nuclear and High Energy PhysicsPreamplifier02 engineering and technologydigital pulse shape analysiRadiation01 natural scienceslaw.inventionPlanarOpticstravelling heater methodlaw0103 physical scienceshigh fluxInstrumentationenergy-resolved photon-counting detectorsNuclear and High Energy PhysicPhysicsRadiationdigital pulse shape analysis010308 nuclear & particles physicsbusiness.industryCdZnTe detectorsCdZnTe detectorDetectorSettore FIS/01 - Fisica SperimentaleX-ray and γ-ray detectorenergy-resolved photon-counting detector021001 nanoscience & nanotechnologyCathodeSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Anodegold electroless contactFull width at half maximumX-ray and -ray detectors0210 nano-technologybusinessVoltage
researchProduct

Characterization of Al-Schottky CdTe detectors

2011

In the last decades, great efforts are being devoted to the development of CdTe detectors for high resolution X-ray and gamma ray spectroscopy. Recently, new rectifying contacts based on aluminum (Al) are very appealing in the development of CdTe detectors with low leakage currents and anode pixellization. In this work, we report on preliminary results of electrical and spectroscopic investigations on Schottky CdTe diode detectors (4.1 × 4.1 × 0.75 and 4.1 × 4.1 × 2 mm3) with Au/Ti/Al/CdTe/Pt electrode configuration. The detectors are characterized by very low leakage currents even at room temperature (26 pA at 25 °C under a bias voltage of −100 V for the 2 mm thick detector). Polarization …

PhysicsX-ray spectroscopySpectrometerbusiness.industrySettore FIS/01 - Fisica SperimentaleDetectorSchottky diodeBiasingSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)AnodeCdTe detectorFull width at half maximumX-ray and gamma ray spectroscopyOpticsOptoelectronicsGamma spectroscopybusiness2011 IEEE Nuclear Science Symposium Conference Record
researchProduct

Dual-polarity pulse processing and analysis for charge-loss correction in cadmium–zinc–telluride pixel detectors

2018

Charge losses at the inter-pixel gap are typical drawbacks in cadmium–zinc–telluride (CZT) pixel detectors. In this work, an original technique able to correct charge losses occurring after the application of charge-sharing addition (CSA) is presented. The method, exploiting the strong relation between the energy after CSA and the beam position at the inter-pixel gap, allows the recovery of charge losses and improvements in energy resolution. Sub-millimetre CZT pixel detectors were investigated with both uncollimated radiation sources and collimated synchrotron X-rays, at energies below and above the K-shell absorption energy of the CZT material. The detectors are DC coupled to fast and low…

0301 basic medicine030103 biophysicsNuclear and High Energy PhysicsMaterials sciencePreamplifierPhysics::Instrumentation and Detectors01 natural sciencesCollimated lightCharge sharinglaw.invention03 medical and health scienceschemistry.chemical_compoundOpticslawcharge losse0103 physical sciencesInstrumentationenergy-resolved photon-counting detectorsNuclear and High Energy Physiccharge lossescharge sharingRadiationPixel010308 nuclear & particles physicsbusiness.industryCdZnTe detectorsCdZnTe detectorDetectorSettore FIS/01 - Fisica Sperimentaleenergy-resolved photon-counting detectorSynchrotronSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Cadmium zinc tellurideX-ray and gamma-ray detectorschemistryDirect couplingbusinessX-ray and gamma-ray detector
researchProduct

Digital filtering and analysis for a semiconductor X-ray detector data acquisition

2007

Abstract Pile-up distortion is a major drawback in X-ray spectroscopy at high count rate. Pulse width narrowing with shaping techniques can lead to the reduction of the pile-up distortion, but a low shaping time reduces the noise filtration and leads to a poor energy resolution. Thus, only a best compromise solution between the pile-up and the noise requirements is achievable. The hardware manipulation needed to adjust the parameters of the traditional electronic shaping amplifiers makes it uneasy to tests various settings in different conditions. Digital techniques can help to overcome such difficulties. A digital signal processing and analysis system for X-ray spectroscopy is described in…

Digital shapingPhysicsSemiconductor detectorNuclear and High Energy PhysicsAnalogue electronicsNoise (signal processing)Preamplifierbusiness.industrySignalData acquisitionDistortionX-ray spectroscopyElectronic engineeringbusinessInstrumentationEnergy (signal processing)Digital signal processingPile-upNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Imaging Performance of FIGARO-IV, A Large Area γ-Ray Telescope Above 100 MeV.

1995

We are developing a new telescope, named FIGARO-IV, for γ-ray astronomy above 100 MeV, in which the electron-positron pairs, produced by photons in lead converters, are tracked in several independent planes of Limited Streamer Tubes (LST). Because of its large sensitive area and good angular resolution, this telescope is well suitable, and competitive with respect to satellite-based detectors as EGRET, to localise discrete γ-ray sources in a relatively short observation time, to detect high-energy γ-ray bursts and to investigate both periodic and random time variability on -ray sources.

PhysicsObservation timePhotonbiologyAstrophysics::High Energy Astrophysical PhenomenaDetectorAstronomybiology.organism_classificationlaw.inventionTelescopelawEgretAngular resolutionSatellite
researchProduct

A Simple Model of Radiative Emission in M87

2005

We present a simple physical model of the central source emission in the M87 galaxy. It is well known that the observed X-ray luminosity from this galactic nucleus is much lower than the predicted one, if a standard radiative efficiency is assumed. Up to now the main model invoked to explain such a luminosity is the ADAF (Advection-Dominated-Accretion-Flow) model. Our approach supposes only a simple axis-symmetric adiabatic accretion with a low angular momentum together with the bremsstrahlung emission process in the accreting gas. With no other special hypothesis on the dynamics of the system, this model agrees well enough with the luminosity value measured by Chandra.

PhysicsAngular momentumAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)BremsstrahlungFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsAstrophysicsaccretion accretion disks black hole physics hydrodynamicsGalaxyAccretion (astrophysics)Space and Planetary ScienceRadiative efficiencyRadiative transferAstrophysics::Solar and Stellar AstrophysicsAdiabatic processAstrophysics::Galaxy AstrophysicsThe Astrophysical Journal
researchProduct

Electrical properties of Au/CdZnTe/Au detectors grown by the boron oxide encapsulated Vertical Bridgman technique

2016

Abstract In this work we report on the results of electrical characterization of new CdZnTe detectors grown by the Boron oxide encapsulated Vertical Bridgman technique (B-VB), currently produced at IMEM-CNR (Parma, Italy). The detectors, with gold electroless contacts, have different thicknesses (1 and 2.5 mm) and the same electrode layout, characterized by a central anode surrounded by a guard-ring electrode. Investigations on the charge transport mechanisms and the electrical contact properties, through the modeling of the measured current–voltage ( I – V ) curves, were performed. Generally, the detectors are characterized by low leakage currents at high bias voltages even at room tempera…

Nuclear and High Energy PhysicsTraveling heater method electrical propertie02 engineering and technology01 natural sciencesBoron oxide encapsulated Vertical Bridgman techniqueTraveling heater methodElectrical resistivity and conductivity0103 physical sciencesInstrumentationDeposition (law)010302 applied physicsPhysicsInterfacial layer-thermionic-diffusionbusiness.industryCdZnTe detectorsCdZnTe detectorSettore FIS/01 - Fisica SperimentaleBiasing021001 nanoscience & nanotechnologySettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Electrical contactsAnodeBoron oxideelectrical propertiesElectrodeOptoelectronics0210 nano-technologybusinessVoltageNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Investigation on pixellated CZT detectors coupled with a low power readout ASIC

2008

In this work, we investigated on the spectroscopic performances of two pixellated CZT detectors coupled with a custom low noise and low power readout ASIC. The detectors (10 x 10 x 1 mm3 and 10 x 10 x 2 mm3 single crystals) consist of an array of 256 pixels with a geometric pitch of 0.5 mm. The ASIC, fabricated in 0.8 μm BiCMOS technology, is equipped with eight independent channels (preamplifier and shaper) characterized by a dynamic range from 10 keV to 100 keV, low power consumption (0.5 mW/channel) and low noise (150–500 electrons r.m.s.). The spectroscopic results point out the good energy resolution of both detectors at room temperature (5.8 % FWHM at 59.5 keV for the 1 mm thick detec…

PhysicssezelePhysics::Instrumentation and DetectorsDynamic rangebusiness.industryPreamplifierDetectorX-ray detectorTemperature measurementCathodelaw.inventionFull width at half maximumlawOptoelectronicsCharge carrierbusinessCZT detectors
researchProduct

High-rate x-ray spectroscopy in mammography with a CdTe detector: A digital pulse processing approach

2010

Purpose:Direct measurement of mammographic x-ray spectra under clinical conditions is a difficult task due to the high fluence rate of the x-ray beams as well as the limits in the development of high resolution detection systems in a high counting rate environment. In this work we present a detection system, based on a CdTe detector and an innovative digital pulse processing (DPP) system, for high-rate x-ray spectroscopy in mammography. Methods: The DPP system performs a digital pile-up inspection and a digital pulse height analysis of the detector signals, digitized through a 14-bit, 100 MHz digitizer, for x-ray spectroscopy even at high photon counting rates. We investigated on the respon…

Physicsbusiness.industryDetectorX-ray detectorGeneral MedicinePhoton countingFull width at half maximumOpticsQuality (physics)Ionization chamberSpectroscopybusinessNuclear medicineHalf-value layerMedical Physics
researchProduct

Ballistic Deficit Pulse Processing in Cadmium-Zinc-Telluride Pixel Detectors for High-Flux X-ray Measurements.

2022

High-flux X-ray measurements with high-energy resolution and high throughput require the mitigation of pile-up and dead time effects. The reduction of the time width of the shaped pulses is a key approach, taking into account the distortions from the ballistic deficit, non-linearity, and time instabilities. In this work, we will present the performance of cadmium–zinc–telluride (CdZnTe or CZT) pixel detectors equipped with digital shapers faster than the preamplifier peaking times (ballistic deficit pulse processing). The effects on energy resolution, throughput, energy-linearity, time stability, charge sharing, and pile-up are shown. The results highlight the absence of time instabilities …

X-ray and gamma ray detectorsPhysics::Instrumentation and DetectorsX-RaysBiochemistrySettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Atomic and Molecular Physics and OpticsCdTe detectorsAnalytical ChemistryZincElectrical and Electronic EngineeringTelluriumInstrumentationCZT detectors; CdTe detectors; X-ray and gamma ray detectorsCZT detectorsCadmiumSensors (Basel, Switzerland)
researchProduct

Energy resolution and throughput of a new real time digital pulse processing system for x-ray and gamma ray semiconductor detectors

2013

New generation spectroscopy systems have advanced towards digital pulse processing (DPP) approaches. DPP systems, based on direct digitizing and processing of detector signals, have recently been favoured over analog pulse processing electronics, ensuring higher flexibility, stability, lower dead time, higher throughput and better spectroscopic performance. In this work, we present the performance of a new real time DPP system for X-ray and gamma ray semiconductor detectors. The system is based on a commercial digitizer equipped with a custom DPP firmware, developed by our group, for on-line pulse shape and height analysis. X-ray and gamma ray spectra measurements with cadmium telluride (Cd…

Materials scienceAnalogue electronicsFirmwarebusiness.industryPreamplifierSettore FIS/01 - Fisica SperimentaleDetectorElectrical engineeringX-ray detectorsDead timecomputer.software_genreSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Semiconductor detectorDigital signal processing (DSP)OptoelectronicsElectronicsbusinessInstrumentationThroughput (business)computerMathematical PhysicsJournal of Instrumentation
researchProduct

Charge carrier transport mechanisms in CdZnTe detectors grown by the vertical Bridgman technique

2016

In this work, we report on the results of electrical characterization of CdZnTe (CZT) detectors, with gold electroless contacts, grown by the boron oxide encapsulated vertical Bridgman technique (B-VB), currently produced at IMEM-CNR (Parma, Italy). The detectors, with different thicknesses (1 and 2.5 mm), have the same electrode layout: the anode is a central electrode (2 x 2 mm(2)) surrounded by a guard ring electrode. The cathode is a planar electrode covering the detector surface (4.1 x 4.1 mm(2)). Current-voltage (I-V) characteristics were measured at different temperatures in order to study the charge transport and the electrical properties. These detectors were compared with the trav…

Radiology Nuclear Medicine and ImagingMaterials sciencebusiness.industryDetectorSettore FIS/01 - Fisica SperimentaleBiasingCathodePhoton countingSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Anodelaw.inventionDetectors; Crystals; Conductivity; Temperature measurement; Leakage currents; Surface treatment; TemperaturelawElectrodeOptoelectronicsCharge carrierbusinessInstrumentationVoltageNuclear and High Energy Physic
researchProduct

Energy Recovery of Multiple Charge Sharing Events in Room Temperature Semiconductor Pixel Detectors

2021

Multiple coincidence events from charge-sharing and fluorescent cross-talk are typical drawbacks in room-temperature semiconductor pixel detectors. The mitigation of these distortions in the measured energy spectra, using charge-sharing discrimination (CSD) and charge-sharing addition (CSA) techniques, is always a trade-off between counting efficiency and energy resolution. The energy recovery of multiple coincidence events is still challenging due to the presence of charge losses after CSA. In this work, we will present original techniques able to correct charge losses after CSA even when multiple pixels are involved. Sub-millimeter cadmium–zinc–telluride (CdZnTe or CZT) pixel detectors we…

Physics::Instrumentation and DetectorsCZT pixel detectors030303 biophysicsTP1-1185Radiation01 natural sciencesBiochemistryCoincidenceCollimated lightArticleAnalytical ChemistryCharge sharingcharge-sharing correction03 medical and health sciencesOptics0103 physical sciencesElectrical and Electronic EngineeringInstrumentationPhysics0303 health sciencesCharge sharing; Charge-sharing correction; CZT pixel detectors; Semiconductor pixel detectorscharge sharingPixel010308 nuclear & particles physicsbusiness.industryChemical technologyCounting efficiencyDetectorsemiconductor pixel detectorsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Atomic and Molecular Physics and OpticsPhoton countingbusinessSensors
researchProduct

A heterogeneous and reconfigurable machine-vision system

1995

This paper describes a new machine-vision system, a HERMIA heterogeneous and reconfigurable machine for image analysis. The architecture topology of the HERMIA machine is reconfigurable; moreover, the integration of its special modules allows a search for optimal strategies to solve vision problems. The general architecture and the hardware implementation are described. The software environment of the HERMIA machine provides a full iconic interface and a pictorial language oriented to vision in multiprocessor architectures. The preliminary system evaluation and applications are shown. © 1995 Springer-Verlag.

Visual languageSettore INF/01 - InformaticaIconic environmentMachine visionComputer Science ApplicationsHuman-Computer InteractionHardware and ArchitectureControl and Systems EngineeringArtificial IntelligenceParallel processingReconfigurabilityComputer Vision and Pattern RecognitionImage analysiHeterogeneityElectrical and Electronic EngineeringSoftware1707
researchProduct

Charge Sharing and Cross Talk Effects in High-Z and Wide-Bandgap Compound Semiconductor Pixel Detectors

2023

Intense research activities have been made in the development of high-Z and wide-bandgap compound semiconductor pixel detectors for the next generation X-ray and gamma ray spectroscopic imagers. Cadmium telluride (CdTe) and cadmium-zinc-telluride (CdZnTe or CZT) pixel detectors have shown impressive performance in X-ray and gamma ray detection from energies of few keV up to 1 MeV. Charge sharing and cross-talk phenomena represent the typical drawbacks in sub-millimeter pixel detectors, with severe distortions in both energy and spatial resolution. In this chapter, we review the effects of these phenomena on the response of CZT/CdTe pixel detectors, with particular emphasis on the current st…

X-ray and gamma ray detectorsCdZnTe detectorsCompound semiconductor detectorsCross talkSpectroscopic X-ray imagingSettore FIS/01 - Fisica SperimentaleCharge sharingSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)CdTe detectors
researchProduct

Spectroscopic response and charge transport properties of CdZnTe detectors grown by the vertical Bridgman technique

2015

In this work, we present the results of spectroscopic investigations on CdZnTe (CZT) detectors grown by the boron oxide encapsulated vertical Bridgman technique (1MEM-CNR, Parma, Italy). The detectors, with different thicknesses (1 and 2.5 mm), are characterized by the same electrode layout (gold electroless contacts): the anode is a central electrode (2 x 2 mm(2)) surrounded by a guard-ring electrode, while the cathode is a planar electrode covering the detector surface (4.1 x 4.1 mm(2)). The results of electrical investigations point out the low leakage currents of these detectors even at high bias voltages: 38 nA/cm(2) (T = 25 degrees C) at 10000 V/cm. The time stability and the spectros…

Zinc tellurideRadiology Nuclear Medicine and ImagingMaterials sciencebusiness.industryInstrumentationDetectorSettore FIS/01 - Fisica SperimentaleElectrical engineeringTemperature measurementCathodePhoton countingSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)law.inventionAnodelawElectrodeCadmium alloysOptoelectronicsCadmium telluridePhotonicsbusinessInstrumentationNuclear and High Energy Physic
researchProduct

Potentialities of High-Resolution 3-D CZT Drift Strip Detectors for Prompt Gamma-Ray Measurements in BNCT

2022

Recently, new high-resolution cadmium–zinc–telluride (CZT) drift strip detectors for room temperature gamma-ray spectroscopic imaging were developed by our group. The CZT detectors equipped with orthogonal anode/cathode collecting strips, drift strips and dedicated pulse processing allow a detection area of 6 × 20 mm2 and excellent room temperature spectroscopic performance (0.82% FWHM at 661.7 keV). In this work, we investigated the potentialities of these detectors for prompt gamma-ray spectroscopy (PGS) in boron neutron capture therapy (BNCT). The detectors, exploiting the measurement of the 478 keV prompt gamma rays emitted by 94% 7Li nuclides from the 10B(n, α)7…

Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaSettore FIS/01 - Fisica SperimentalePhysics::Medical PhysicsBNCT; CZT detectors; X-ray and gamma-ray detectorsBoron Neutron Capture TherapyCZT detectors; X-ray and gamma-ray detectors; BNCTBiochemistrySettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Atomic and Molecular Physics and OpticsAnalytical ChemistryZincX-ray and gamma-ray detectorsGamma RaysBNCTTelluriumElectrical and Electronic EngineeringInstrumentationCadmiumCZT detectors
researchProduct

Why Canonical Disks Cannot Produce Advection-dominated Flows

2001

Using simple arguments we show that the canonical thin keplerian accretion disks cannot smoothly match any plain advection dominated flow (ADAF) model. By 'plain' ADAF model we mean the ones with zero cooling. The existence of sonic points in exact solutions is critical and imposes constraints that cannot be surpassed adopting 'reasonable' physical conditions at the hypothetical match point. Only the occurrence of new critical physical phenomena may produce a transition. We propose that exact advection models are a class of solutions which don't necessarily involve the standard thin cool disks and suggest a different scenario in which good ADAF solutions could eventually occur.

PhysicsAdvectionAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsMechanicsAstrophysicsFlow (mathematics)Accretion discSpace and Planetary ScienceSimple (abstract algebra)Physical phenomenaPoint (geometry)Astrophysics::Galaxy AstrophysicsThe Astrophysical Journal
researchProduct

High Resolution X-Ray Spectroscopy with Compound Semiconductor Detectors and Digital Pulse Processing Systems

2012

The advent of semiconductor detectors has revolutionized the broad field of X-ray spectroscopy. Semiconductor detectors, originally developed for particle physics, are now widely used for X-ray spectroscopy in a large variety of fields, as X-ray fluorescence analysis, X-ray astronomy and diagnostic medicine. The success of semiconductor detectors is due to several unique properties that are not available with other types of detectors: the excellent energy resolution, the high detection efficiency and the possibility of development of compact detection systems. Among the semiconductors, silicon (Si) detectors are the key detectors in the soft X-ray band (15 keV) and will continue to be the c…

Materials scienceSpectrometerPhysics::Instrumentation and Detectorsbusiness.industryDetectorSettore FIS/01 - Fisica SperimentaleWide-bandgap semiconductorDead timeCadmium telluride photovoltaicsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Semiconductor detectorCadmium zinc telluridechemistry.chemical_compoundSemiconductorchemistryElectronic engineeringX-ray spectroscopyOptoelectronicsbusiness
researchProduct

Real time digital pulse processing for X-ray and gamma ray semiconductor detectors

2013

Abstract Digital pulse processing (DPP) systems, based on direct digitizing and processing of detector signals, have recently been favoured over analog electronics, ensuring higher flexibility, stability, lower dead time and better spectroscopic performance. In this work, we present the performance of a new real time DPP system for X-ray and gamma ray semiconductor detectors. The system is based on a commercial digitizer equipped with a custom DPP firmware, developed by our group, for on-line pulse height and shape analysis. X-ray and gamma ray spectra measurements with cadmium telluride (CdTe) and germanium (Ge) detectors highlight the excellent performance of the system both at low and hi…

Nuclear and High Energy PhysicsComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONchemistry.chemical_elementPulse height analysiGermaniumcomputer.software_genreHigh photon counting rateX-ray and gamma ray spectroscopyOpticsInstrumentationPulse shape analysiPhysicsAnalogue electronicsFirmwarebusiness.industrySettore FIS/01 - Fisica SperimentaleDetectorGamma rayDead timeSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Cadmium telluride photovoltaicsSemiconductor detectorDigital pulse processingchemistryReal time processingbusinesscomputerNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Room-Temperature X-ray response of cadmium-zinc-Telluride pixel detectors grown by the vertical Bridgman technique

2020

In this work, the spectroscopic performances of new cadmium–zinc–telluride (CZT) pixel detectors recently developed at IMEM-CNR of Parma (Italy) are presented. Sub-millimetre arrays with pixel pitch less than 500 µm, based on boron oxide encapsulated vertical Bridgman grown CZT crystals, were fabricated. Excellent room-temperature performance characterizes the detectors even at high-bias-voltage operation (9000 V cm−1), with energy resolutions (FWHM) of 4% (0.9 keV), 1.7% (1 keV) and 1.3% (1.6 keV) at 22.1, 59.5 and 122.1 keV, respectively. Charge-sharing investigations were performed with both uncollimated and collimated synchrotron X-ray beams with particular attention to the mitigation o…

Nuclear and High Energy PhysicsPhotonMaterials scienceCdZnTe pixel detectorDot pitchCollimated lightCharge sharinglaw.inventionspectroscopic X-ray imagingchemistry.chemical_compoundlawcharge losseInstrumentationRadiationcharge sharingbusiness.industrySettore FIS/01 - Fisica SperimentaleX-raySynchrotronSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Cadmium zinc tellurideFull width at half maximumCdZnTe pixel detectors; charge losses; charge sharing; spectroscopic X-ray imaging; vertical Bridgman technique; X-ray and gamma-ray detectorsX-ray and gamma-ray detectorschemistryOptoelectronicsvertical Bridgman techniquebusinessX-ray and gamma-ray detector
researchProduct

The "Livio Scarsi" X-Ray Facility at University of Palermo for Device Testing

2015

In this work, we report on the characteristics of the Livio Scarsi X-ray facility at University of Palermo. The facility is able to produce low energy X rays, within the energy range of 0.1-60 keV, with fluence rates ranging from 105-108 photons/mm2 s. The laboratory is equipped with an innovative digital detection system, based on semiconductor detectors (Si and CdTe detectors), able to provide accurate and precise estimation of the fluence rate, the energy and the exposure of X rays, even at high counting rate conditions. Instrumentation for electrical characterization (DC-AC) of semiconductor devices, for both off-line and on-line (i.e. during the irradiation) measurements, is also avail…

EngineeringPhotonbusiness.industrySettore FIS/01 - Fisica SperimentaleX-rayGamma raySemiconductor deviceFluenceSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Semiconductor detectorX-ray facility semiconductor detectors digital pulse processing rad-hard MOSFETs total ionizing testsOpticsAbsorbed doseIrradiationbusinessTelecommunications2015 15th European Conference on Radiation and Its Effects on Components and Systems (RADECS)
researchProduct

X-ray response of CdZnTe detectors grown by the vertical Bridgman technique: Energy, temperature and high flux effects

2016

Abstract Nowadays, CdZnTe (CZT) is one of the key materials for the development of room temperature X-ray and gamma ray detectors and great efforts have been made on both the device and the crystal growth technologies. In this work, we present the results of spectroscopic investigations on new boron oxide encapsulated vertical Bridgman (B-VB) grown CZT detectors, recently developed at IMEM-CNR Parma, Italy. Several detectors, with the same electrode layout (gold electroless contacts) and different thicknesses (1 and 2.5 mm), were realized: the cathode is a planar electrode covering the detector surface (4.1×4.1 mm2), while the anode is a central electrode (2×2 mm2) surrounded by a guard-rin…

0301 basic medicine030103 biophysicsNuclear and High Energy PhysicsHigh fluxDigital pulse shape analysi01 natural sciencesBoron oxide encapsulated vertical Bridgmanlaw.invention03 medical and health scienceslaw0103 physical sciencesPolarization (electrochemistry)InstrumentationPhysicsX-ray and gamma ray detectors010308 nuclear & particles physicsbusiness.industryCdZnTe detectorsCdZnTe detectorEnergy-resolved photon counting detectorSettore FIS/01 - Fisica SperimentaleDetectorGamma raySettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)CathodePhoton countingAnodeFull width at half maximumElectrodeEnergy-resolved photon counting detectorsOptoelectronicsDigital pulse shape analysisbusinessNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Perspectives

2004

We discuss a special case of formation of axisymmetric shocks in the accretion flow of ideal gas onto a Schwarzschild black hole: when the total energy of the flow is negative. The result of our analysis enlarges the parameter space for which these steady shocks are exhibited in the accretion of gas rotating around relativistic stellar objects. Since keplerian disks have negative total energy, we guess that, in this energy range, the production of the shock phenomenon might be easier than in the case of positive energy. So our outcome reinforces the view that sub-keplerian flows of matter may significantly affect the physics of the high energy radiation emission from black hole candidates. …

PhysicsLinguistics and LanguageAstrophysics::High Energy Astrophysical PhenomenaYoung stellar objectRotational symmetryAstrophysicsMechanicsParameter spaceLanguage and LinguisticsIdeal gasAccretion (astrophysics)Black holeSchwarzschild metricNegative energyAstrophysics::Galaxy AstrophysicsThe Modern Language Journal
researchProduct

Integration of a structural features-based preclassifier and a man-machine interactive classifier for a fast multi-stroke character recognition

2003

A transputer-based parallel machine for handwritten character recognition is proposed. An algorithm based on structural features and on a tree classifier was used to accomplish the pre-classification of the unknown sample in order to speed up the recognition process. The algorithm for the final classification is based on the description of the strokes through Fourier descriptors. The learning phase is accomplished through a man-machine interactive process. The proposed system can expand its knowledge base. A special representation of this knowledge base is proposed in order to record a great amount of data in a suitable way. A fast multistroke handwritten isolated character recognition syst…

Settore INF/01 - InformaticaComputer scienceIntelligent character recognitionbusiness.industrySketch recognitionPattern recognitionDocument processingIntelligent word recognitionComputingMethodologies_PATTERNRECOGNITIONFeature (machine learning)Artificial intelligencebusinessClassifier (UML)Man machine systems Character recognition Humans Handwriting recognition Pattern recognition Parallel machines System testing Performance evaluation Prototypes Energy management
researchProduct

Low Level Languages for the PAPIA Machine

1986

The paper presents the low-level languages implemented up to date to program the PAPIA machine. The parallel assembly-level P-MAGRO package, the microcode level instruction set and a machine simulating environment are described.

PAPIA Language Architecture SIMD Processor Parallel-CScalar processorComputer scienceVirtual machineProgramming languageSimd processorParallel computingArchitecturePyramid algorithmcomputer.software_genreLow-level programming languagecomputer
researchProduct

A new heterogeneous and reconfigurable architecture for image analysis

1993

In the paper a new architecture for image analysis: HERMIA (Heterogeneous and Reconfigurable Machine for Image Analysis) is presented. It has bt:en developed at the University of Palermo, inside the Progetto Finalizzato of the ltalian Council of Researches (CNR): Sistemi informatici e Calcolo Parallelo. The architecture of the HERMIA-machine is reconfigurable, moreover the integration of heterogeneous module, oriented to the solution of specific problems, allows to salve complex problems by search of optimal strategies. Signa! processing units allows the user to handle and integrate multi-sensors signals (from video, scanner, music recorder). Here the generai architecture, the hardware impl…

ScannerDigital signal processorSignal processingHPC Signal Processing Image Analysis reconfigurable architecture.Settore INF/01 - InformaticaComputer architectureComputer scienceApplications architectureSystem evaluationArchitectureComplex problemsImage (mathematics)
researchProduct

Microscale X-ray mapping of CZT arrays: Spatial dependence of amplitude, shape and multiplicity of detector pulses

2018

In this work, we present the results of a microscale X-ray mapping of a 2 mm thick CZT pixel detector, with pixel pitches of 500 μm and 250 μm, using collimated synchrotron X-ray sources at the Diamond Light source (U. K.). The detector is dc coupled to a fast and low noise ASIC (PIXIE ASIC), characterized only by the preamplifier stage. A custom 16-channel digital readout electronics was used, able to perform online fast pulse shape and height analysis (PSHA), with low dead time and reasonable energy resolution at both low and high fluxes. The detector allows high bias voltage operation (> 5000 V/cm) and good energy resolution at room temperature (5.3 %, 2.3 % and 2.1 % FWHM at 22.1, 59…

radiation detectorRadiology Nuclear Medicine and ImagingNuclear and High Energy PhysicsMaterials sciencePreamplifier01 natural sciencesCollimated light030218 nuclear medicine & medical imagingCharge sharinglaw.invention03 medical and health sciences0302 clinical medicineOpticslaw0103 physical scienceshigh fluxmappingInstrumentation010308 nuclear & particles physicsbusiness.industryASICDetectorBiasingDead timeSynchrotronSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)CZTFull width at half maximumsinchrotron radiationbusiness
researchProduct

New Results on High-Resolution 3-D CZT Drift Strip Detectors

2020

Intense research activities have been carry out in the development of room temperature gamma ray spectroscopic imagers, aiming to compete with the excellent energy resolution of high-purity germanium (HPGe) detectors (0.3 % FWHM at 662 keV) obtained after cryogenic cooling. Cadmium-zinc-telluride (CZT) detectors equipped with pixel, strip and virtual Frisch-grid electrode structures represented an appealing solution for room temperature measurements. In this work, we present the performance of new high-resolution CZT drift strip detectors (19.4 x 19.4 x 6 mm3), recently fabricated at IMEM-CNR of Parma (Italy) in collaboration with due2lab company (Reggio Emilia, Italy). The detectors, worki…

Materials scienceX-ray and gamma ray detectorsbusiness.industryDetectorSettore FIS/01 - Fisica SperimentaleGamma raychemistry.chemical_elementGermaniumCZT detectorTemperature measurementCathodeSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Semiconductor detectorlaw.inventionAnodeOpticsPlanarchemistrylawbusiness
researchProduct

The FIGARO II experiment: a general outline of the mission and the principal scientific results

1992

The FIGARO II (French Italian Gamma-Ray Observatory) experiment has been launched successfully three times: in July 1986 from Milo (Trapani), in November 1988 from Charleville (Australia) and in July 1990 again from Milo. In the first flight the observational program was limited to the Crab pulsar PSR0531+21 only because of a telemetry failure: the high sensitivity of FIGARO II allowed an accurate study of the pulse shape as well as a phase-resolved spectroscopy. It was also possible to evaluate the dispersion measure of the Crab pulsar at the flight date from the time delay between gamma-ray and radio pulses. The major results of the second flight were a stringent upper limit to the low-en…

PhysicsPulsarObservatoryCrab PulsarAstrophysics::High Energy Astrophysical PhenomenaGalactic CenterAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstrophysicsGamma-ray astronomyVelaGalaxyPulse (physics)Il Nuovo Cimento C
researchProduct

Window-Based Energy Selecting X-ray Imaging and Charge Sharing in Cadmium Zinc Telluride Linear Array Detectors for Contaminant Detection

2023

The spectroscopic and imaging performance of energy-resolved photon counting detectors, based on new sub-millimetre boron oxide encapsulated vertical Bridgman cadmium zinc telluride linear arrays, are presented in this work. The activities are in the framework of the AVATAR X project, planning the development of X-ray scanners for contaminant detection in food industry. The detectors, characterized by high spatial (250 µm) and energy (<3 keV) resolution, allow spectral X-ray imaging with interesting image quality improvements. The effects of charge sharing and energy-resolved techniques on contrast-to-noise ratio (CNR) enhancements are investigated. The benefits of a new energy-resolved …

energy-resolved X-ray imagingcharge sharingsemiconductor pixel detectorsX-ray detectorsElectrical and Electronic EngineeringCZT detectors; charge sharing; semiconductor pixel detectors; X-ray detectors; energy-resolved X-ray imaging; contaminant detectionBiochemistryInstrumentationAtomic and Molecular Physics and Opticscontaminant detectionSettore FIS/03 - Fisica Della MateriaAnalytical ChemistryCZT detectors
researchProduct

X-ray spectroscopy and dosimetry with a portable CdTe device.

2007

Abstract X-ray spectra and dosimetry information are very important for quality assurance (QA) and quality control (QC) in medical diagnostic X-ray systems. An accurate knowledge of the diagnostic X-ray spectra would improve the patient dose optimization, without compromising image information. In this work, we performed direct diagnostic X-ray spectra measurements with a portable device, based on a CdTe solid-state detector. The portable device is able to directly measure X-ray spectra at high photon fluence rates, as typical of clinical radiography. We investigated on the spectral performances of the system in the mammographic energy range (up to ∼40 keV). Good system response to monoener…

PhysicsX-ray spectroscopy CdTe detectorsNuclear and High Energy Physicsmedicine.medical_specialtyReproducibilitybusiness.industryDetectorExposure HVLFluenceFull width at half maximumQuality (physics)OpticsmedicineDosimetryMedical physicsSpectroscopybusinessInstrumentationHalf-value layer
researchProduct

Time-dependent current-voltage characteristics of Al/p-CdTe/Pt x-ray detectors

2012

Current-voltage (I-V) characteristics of Schottky Al/p-CdTe/Pt detectors were investigated in dark and at different temperatures. CdTe detectors with Al rectifying contacts, very appealing for high resolution x-ray and gamma ray spectroscopy, suffer from bias-induced polarization phenomena which cause current increasing with the time and severe worsening of the spectroscopic performance. In this work, we studied the time-dependence of the I-V characteristics of the detectors, both in reverse and forward bias, taking into account the polarization effects. The I-V measurements, performed at different time intervals between the application of the bias voltage and the measurement of the current…

X-ray spectroscopySchottky contactX-ray and gamma ray detectorsMaterials sciencebusiness.industrySettore FIS/01 - Fisica SperimentaleContact resistanceX-ray detectorGeneral Physics and AstronomySchottky diodeBiasingThermionic emissionSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Settore FIS/03 - Fisica Della MateriaCdTe detectorPolarizationOptoelectronicsGamma spectroscopybusinessPolarization (electrochemistry)Journal of Applied Physics
researchProduct

Incomplete Charge Collection at Inter-Pixel Gap in Low- and High-Flux Cadmium Zinc Telluride Pixel Detectors.

2022

The success of cadmium zinc telluride (CZT) detectors in room-temperature spectroscopic X-ray imaging is now widely accepted. The most common CZT detectors are characterized by enhanced-charge transport properties of electrons, with mobility-lifetime products μeτe > 10−2 cm2/V and μhτh > 10−5 cm2/V. These materials, typically termed low-flux LF-CZT, are successfully used for thick electron-sensing detectors and in low-flux conditions. Recently, new CZT materials with hole mobility-lifetime product enhancements (μhτh > 10−4 cm2/V and μeτe > 10−3 cm2/V) have been fabricated for high-flux measurements (high-flux HF-CZT detectors).…

Charge-sharing correctionPhotonsPhysics::Instrumentation and DetectorsX-RaysSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsIncomplete charge collectionBiochemistrySemiconductor pixel detectorsAtomic and Molecular Physics and OpticsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)CZT detectors; charge sharing; incomplete charge collection; charge-sharing correction; semiconductor pixel detectorsAnalytical ChemistryZincCadmium CompoundsElectrical and Electronic EngineeringCharge sharingTelluriumInstrumentationCZT detectorsCadmiumSensors (Basel, Switzerland)
researchProduct

Room-temperature performance of 3 mm-thick cadmium-zinc-telluride pixel detectors with sub-millimetre pixelization.

2020

Cadmium–zinc–telluride (CZT) pixel detectors represent a consolidated choice for the development of room-temperature spectroscopic X-ray imagers, finding important applications in medical imaging, often as detection modules of a variety of new SPECT and CT systems. Detectors with 3–5 mm thicknesses are able to efficiently detect X-rays up to 140 keV giving reasonable room-temperature energy resolution. In this work, the room-temperature performance of 3 mm-thick CZT pixel detectors, recently developed at IMEM/CNR of Parma (Italy), is presented. Sub-millimetre detector arrays with pixel pitch less than 500 µm were fabricated. The detectors are characterized by good room-temperature performan…

Nuclear and High Energy PhysicsMaterials sciencePhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical Phenomena02 engineering and technology01 natural sciencesDot pitchCollimated lightlaw.inventionCharge sharingchemistry.chemical_compoundOpticslaw0103 physical sciencesInstrumentation010302 applied physicsX-ray and gamma ray detectors; CdZnTe pixel detectors; charge sharing; charge losses; charge-sharing correction; spectroscopic X-ray imagingRadiationPixelbusiness.industrySettore FIS/01 - Fisica SperimentaleDetectorCdZnTe pixel detectors charge losses charge sharing charge-sharing correction spectroscopic X-ray imaging X-ray and gamma ray detectors021001 nanoscience & nanotechnologySettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)SynchrotronCadmium zinc telluridechemistry0210 nano-technologyPixelizationbusinessJournal of synchrotron radiation
researchProduct

Digital fast pulse shape and height analysis on cadmium-zinc-telluride arrays for high-flux energy-resolved X-ray imaging.

2017

Cadmium-zinc-telluride (CZT) arrays with photon-counting and energy-resolving capabilities are widely proposed for next-generation X-ray imaging systems. This work presents the performance of a 2â...mm-thick CZT pixel detector, with pixel pitches of 500 and 250â...μm, dc coupled to a fast and low-noise ASIC (PIXIE ASIC), characterized only by the preamplifier stage. A custom 16-channel digital readout electronics was used, able to digitize and process continuously the signals from each output ASIC channel. The digital system performs on-line fast pulse shape and height analysis, with a low dead-time and reasonable energy resolution at both low and high fluxes. The spectroscopic response …

0301 basic medicine030103 biophysicsNuclear and High Energy PhysicsMaterials sciencePreamplifierInstrumentationenergy-resolved photon counting detectordigital pulse shape analysienergy-resolved photon counting detectors01 natural sciencesCharge sharing03 medical and health scienceschemistry.chemical_compoundOpticshigh flux0103 physical sciencesInstrumentationX-ray and ?-ray detectorsNuclear and High Energy Physiccharge sharingRadiationdigital pulse shape analysisPixel010308 nuclear & particles physicsbusiness.industryCdZnTe detectorsCdZnTe detectorSettore FIS/01 - Fisica SperimentaleDetectorX-ray and γ-ray detectorBiasingSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Cadmium zinc telluridechemistryDirect couplingbusinessJournal of synchrotron radiation
researchProduct

FIGARO IV: Large-area balloon-borne telescope to study rapid time variabilities in the gamma-ray sources at energies above 50 MeV

1993

We present a new γ-ray telescope based on the Limited Streamer Tube technology, used as tracking chambers to detect photons above 100 MeV. This technique allows to obtain very large sensitive areas (16 m2 in our experiment), together with a good angular resolution for payloads embarcable in high-altitude balloon flights. The capability to collect a large signal in a short exposure time makes the telescope particularly suitable and competitive with respect to satellite-based detectors for studying both periodic and random time variabilities on galactic and extragalactic γ-ray sources.

PhysicsPhotonbusiness.industryAstrophysics::High Energy Astrophysical PhenomenaDetectorAstrophysics::Instrumentation and Methods for AstrophysicsGamma rayAstronomyTracking (particle physics)law.inventionTelescopeOpticslawBalloon-borne telescopeSatelliteAngular resolutionbusinessIl Nuovo Cimento C
researchProduct

Performance enhancements of compound semiconductor radiation detectors using digital pulse processing techniques

2011

Abstract The potential benefits of using compound semiconductors for X-ray and gamma ray spectroscopy are already well known. Radiation detectors based on high atomic number and wide band gap compound semiconductors show high detection efficiency and good spectroscopic performance even at room temperature. Despite these appealing properties, incomplete charge collection is a critical issue. Generally, incomplete charge collection, mainly due to the poor transport properties of the holes, produces energy resolution worsening and the well known hole tailing in the measured spectra. In this work, we present a digital pulse processing (DPP) system for high resolution spectroscopy with compound …

PhysicsNuclear and High Energy PhysicsSpectrometerPreamplifierbusiness.industryDetectorSettore FIS/01 - Fisica SperimentaleCompound semiconductors CdTe detectors X-ray and gamma ray spectroscopy Digital pulse processing Pulse height analysis Pulse shape analysisParticle detectorPulse (physics)OpticsGamma spectroscopySpectroscopybusinessInstrumentationShape analysis (digital geometry)
researchProduct

Experimental results from Al/p-CdTe/Pt X-ray detectors

2013

Abstract Recently, Al/CdTe/Pt detectors have been proposed for the development of high resolution X-ray spectrometers. Due to the low leakage currents, these detectors allow high electric fields and the pixellization of anodes with the possibility to realize single charge carrier sensing detectors. In this work, we report on the results of electrical and spectroscopic investigations on CdTe diode detectors with Al/CdTe/Pt electrode configuration (4.1×4.1×0.75 and 4.1×4.1×2 mm 3 ). The detectors are characterized by very low leakage currents in the reverse bias operation: 0.3 nA at 25 °C and 2.4 pA at −25 °C under a bias voltage of −1000 V. The spectroscopic performance of the detectors at b…

PhysicsNuclear and High Energy PhysicsSpectrometerbusiness.industryDetectorX-ray detectorBiasingPhoton countingFull width at half maximumElectric fieldOptoelectronicsCharge carrierbusinessInstrumentationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Recent advances in the development of high-resolution 3D cadmium-zinc-telluride drift strip detectors.

2020

In the last two decades, great efforts have been made in the development of 3D cadmium–zinc–telluride (CZT) detectors operating at room temperature for gamma-ray spectroscopic imaging. This work presents the spectroscopic performance of new high-resolution CZT drift strip detectors, recently developed at IMEM-CNR of Parma (Italy) in collaboration with due2lab (Italy). The detectors (19.4 mm × 19.4 mm × 6 mm) are organized into collecting anode strips (pitch of 1.6 mm) and drift strips (pitch of 0.4 mm) which are negatively biased to optimize electron charge collection. The cathode is divided into strips orthogonal to the anode strips with a pitch of 2 mm. Dedicated pulse processing analysis…

Nuclear and High Energy PhysicsMaterials sciencePhysics::Instrumentation and Detectors030303 biophysics3D CdZnTe detectorsSTRIPS01 natural sciencesElectric chargelaw.invention03 medical and health scienceschemistry.chemical_compounddrift strip detectorslaw0103 physical sciencesInstrumentation0303 health sciencesRadiation010308 nuclear & particles physicsbusiness.industryDetectorElectrostatic inductionSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)CathodeCadmium zinc tellurideAnodeFull width at half maximumX-ray and gamma-ray detectorschemistryX-ray and gamma-ray detectors; 3D CdZnTe detectors; drift strip detectors; spectroscopic X-ray and gamma-ray imagingOptoelectronicsbusinessspectroscopic X-ray and gamma-ray imagingJournal of synchrotron radiation
researchProduct

Digital techniques for high-rate high-resolution radiation measurements

2014

Digital pulse processing (DPP) techniques are increasingly used in the development of modern spectroscopic systems. DPP systems, based on direct digitizing and processing of detector signals (preamplifier output signals), ensure higher flexibility, stability, lower dead time, higher throughput and better energy resolution than traditional pulse processing systems. In this work, we present our progress in the development of DPP systems for high-rate high-resolution radiation measurements. An innovative digital system, able to perform multi-parameter analysis (input counting rate, pulse height, pulse shape, event arrival time, etc.) even at high photon counting rates is presented. Experimenta…

EngineeringPixelPulse (signal processing)business.industryPreamplifierDetectorSettore FIS/01 - Fisica SperimentaleDead timePhoton countingDigital Pulse processing High photon counting rate semiconductor detectorsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)OpticsElectronic engineeringbusinessThroughput (business)Energy (signal processing)
researchProduct

Laboratorio a contaminazione controllata per tecniche fisiche applicate ai beni culturali

2007

researchProduct

Digital Techniques for High-Rate High-Resolution Radiation Measurements

2014

Digital pulse processing (DPP) techniques are increasingly used in the development of modern spectroscopic systems. DPP systems, based on direct digitizing and processing of detector signals (preamplifier output signals), ensure higher flexibility, stability, lower dead time, higher throughput and better energy resolution than traditional pulse processing systems. In this work, we present our progress in the development of DPP systems for high-rate high-resolution radiation measurements. An innovative digital system, able to perform multi-parameter analysis (input counting rate, pulse height, pulse shape, event arrival time, etc.) even at high photon counting rates is presented. Experimenta…

Digital pulse processingSettore FIS/01 - Fisica SperimentaleSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)
researchProduct

Experimental results from Al/p-CdTe/Pt X-ray detectors

2013

Recently, Al/CdTe/Pt detectors have been proposed for the development of high resolution X-ray spectrometers. Due to the low leakage currents, these detectors allow high electric fields and the pixellization of anodes with the possibility to realize single charge carrier sensing detectors. In this work, we report on the results of electrical and spectroscopic investigations on CdTe diode detectors with Al/CdTe/Pt electrode configuration (4.1×4.1×0.75 and 4.1×4.1×2 mm3). The detectors are characterized by very low leakage currents in the reverse bias operation: 0.3 nA at 25 °C and 2.4 pA at -25 °C under a bias voltage of -1000 V. The spectroscopic performance of the detectors at both low and…

CdTe detectorHigh photon counting rateX-ray and gamma ray spectroscopyDigital pulse processingSettore FIS/01 - Fisica SperimentaleSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)
researchProduct

Study of spectral response of a CZT multiple-electrode detectors

2007

researchProduct

Parallelization of a Smoothed Particle Hydrodynamic Code for Simulation of Shocks in Accretion Disks

2004

researchProduct

High-rate x-ray spectroscopy in mammography with a CdTe detector: A digital pulse processing approach

2010

Purpose:Direct measurement of mammographic x-ray spectra under clinical conditions is a difficult task due to the high fluence rate of the x-ray beams as well as the limits in the development of high resolution detection systems in a high counting rate environment. In this work we present a detection system, based on a CdTe detector and an innovative digital pulse processing (DPP) system, for high-rate x-ray spectroscopy in mammography. Methods: The DPP system performs a digital pile-up inspection and a digital pulse height analysis of the detector signals, digitized through a 14-bit, 100 MHz digitizer, for x-ray spectroscopy even at high photon counting rates. We investigated on the respon…

x-ray spectroscopy CdTe detectors high photon counting rate digital pulse processing mammography
researchProduct

Digital Pulse-Processing Techniques for X-Ray and Gamma-Ray Semiconductor Detectors

2017

Over the last decade, digital pulse-processing (DPP) electronics have been widely proposed and used for new generation x- and gamma-ray spectrometers. DPP systems, based on direct digitizing and processing of detector signals, lead to better results than the traditional analog pulse-processing electronics in terms of stability, flexibility, reproducibility, energy resolution, throughput, and dead time. In this chapter, we will review the principles of operation of conventional analog electronic chains for x- and gamma-ray semiconductor detectors, with special emphasis on the benefits of the digital approach. The characteristics of a new real-time DPP system, developed by our group, are disc…

X-ray and gamma ray detectorsMaterials scienceDigital electonicSettore FIS/01 - Fisica SperimentaleElectronic engineeringSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Time to digital conversion
researchProduct

Un sistema digitale innovativo per la caratterizzazione energia-flusso di fasci X diagnostici

2016

La conoscenza della distribuzione energetica e del rateo di fluenza dei fasci X è essenziale nei controlli di qualità in medicina diagnostica, sia in termini dosimetrici che della qualità delle immagini. Gli spettri energetici possono essere utilizzati per stime accurate delle tensioni dei tubi (kVp), per la correzione di distorsioni dovute al beam-hardening e per la corretta implementazione delle nuove tecniche dual-energy [1]. In mammografia, gli spettri energetici possono essere usati per stimare l’esposizione, il kerma in aria e la distribuzione energetica della dose assorbita nei tessuti, superando gli inconvenienti dovuti alla dipendenza energetica della risposta dei dosimetri (a stat…

digital pulse processingdosimetrySettore FIS/01 - Fisica SperimentaleX-ray spectroscopySettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)
researchProduct

Digital pulse processing techniques for X-ray and gamma ray semiconductor detectors

2012

Digital pulse processing (DPP) systems, based on direct digitizing and processing of detector signals, have recently been favoured over analog electronics, ensuring higher flexibility, stability and lower dead time. We present our research activities on the development of X-ray and gamma ray spectrometers based on semiconductor detectors and DPP systems. We developed off-line and real-time DPP systems able to perform precise height and shape analysis of detector pulses. X-ray and gamma ray spectra measurements with cadmium telluride (CdTe) and germanium (Ge) detectors highlight the excellent performance of the systems both at low and high rate environments (up to 800 kcps).

digital pulse processing semiconductor detectorsSettore FIS/01 - Fisica SperimentaleSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)
researchProduct

CDTE AND CDZNTE PIXEL DETECTORS FOR X-RAY SPECTROSCOPIC IMAGING

2012

Cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) wide band gap semiconductors for x-ray detectors have experienced a rather rapid development in the last few years. Among the traditional x-ray detectors based on silicon (Si) and germanium (Ge), CdTe and CdZnTe detectors show higher detection efficiency at high energies and good room temperature performance and are well suited for the development of compact detection systems and pixel arrays for simultaneous measurements of photon interaction position and energy. This chapter is an introduction to the physics and the technology of CdTe and CdZnTe pixel detectors for x-ray spectroscopy and imaging. The physical properties of CdTe …

X-ray detectorSettore FIS/01 - Fisica SperimentaleCdZnTeimagingCdTeSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)
researchProduct

Performance of a new real time digital pulse processing system for X-ray and gamma ray semiconductor detectors

2014

New generation spectroscopy systems have advanced towards digital pulse processing (DPP) approaches. DPP systems, based on direct digitizing and processing of detector signals, have recently been favoured over analog pulse processing electronics, ensuring better performance. In this work, we present the performance of a new real time DPP system for X-ray and gamma ray semiconductor detectors. The system is based on a commercial digitizer equipped with a custom DPP firmware, developed by our group, for on-line pulse shape and height analysis. X-ray and gamma ray spectra measurements with cadmium telluride (CdTe) and germanium (Ge) detectors, coupled to resistive feedback preamplifiers, will …

Digital Pulse Processing Semiconductor detectors X-ray and gamma ray spectroscopySettore FIS/01 - Fisica SperimentaleSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)
researchProduct

The thermal instability collapse in radiation pressure dominated discs

2004

researchProduct

A simple model of radiative emission in M87

2005

researchProduct