0000000001299035

AUTHOR

S. Nummelin

showing 26 related works from this author

Crystal structures of 2,2′-bipyridin-1-ium 1,1,3,3-tetracyano-2-ethoxyprop-2-en-1-ide and bis(2,2′-bipyridin-1-ium) 1,1,3,3-tetracyano-2-(dicyanometh…

2015

In each of the title compounds, the anion shows evidence of extensive electronic delocalization. A combination of N—H⋯N and X—H⋯N hydrogen bonds links the ions in (I) into a ribbon of alternating centrosymmetric (18) and (26) rings, and those in (II) into simple (7) chains of alternating cations and anion with further cations pendent from the chain.

Hydrogen bondingcrystal structurebipyridinium cationsCrystal structureDihedral angleRing (chemistry)Research CommunicationsIonchemistry.chemical_compoundDelocalized electronpolynitrile anionsPropaneQDGeneral Materials ScienceEthyl groupmol­ecular conformationta116Crystallographyta114Hydrogen bondCrystal structureDASGeneral ChemistryMolecular conformationhydrogen bondingQD ChemistryCondensed Matter PhysicsBipyridinium cationsCrystallographymolecular conformationMol­ecular conformationchemistryQD901-999Polynitrile anionsActa Crystallographica Section E Crystallographic Communications
researchProduct

Generic Method for Modular Surface Modification of Cellulosic Materials in Aqueous Medium by Sequential Click-Reaction and Adsorption

2012

A generic approach for heterogeneous surface modification of cellulosic materials in aqueous medium, applicable for a wide range of functionalizations, is presented. In the first step, carboxymethyl cellulose (CMC) modified with azide or alkyne functionality, was adsorbed on a cellulosic substrate, thus, providing reactive sites for azide–alkyne cycloaddition click reactions. In the second step, functional units with complementary click units were reacted on the cellulose surface, coated by the click-modified CMC. Selected model functionalizations on diverse cellulosic substrates are shown to demonstrate the generality of the approach. The concept by sequentially combining the robust physic…

AzidesMagnetic Resonance SpectroscopyPolymers and PlasticsSurface Propertiesta221BioengineeringMicroscopy Atomic ForceCatalysisNanocellulosePolyethylene GlycolsmaterialsBiomaterialschemistry.chemical_compoundAdsorptionSpectroscopy Fourier Transform Infraredotorhinolaryngologic diseasesMaterials ChemistrymedicineOrganic chemistryAnimalsCotton FiberCelluloseta216ta116ta215ta218nanocelluloseFluorescent Dyesta214ta114Photoelectron Spectroscopyclick-reactionsSubstrate (chemistry)WaterSerum Albumin BovineCombinatorial chemistrycelluloseCarboxymethyl cellulosefunctionalchemistryadsorptionAlkynesCarboxymethylcellulose SodiumSurface functionalizationClick chemistrySurface modificationCattleAzidemedicine.drugBIOMACROMOLECULES
researchProduct

Thermal and X-ray powder diffraction studies of aliphatic polyester dendrimers

2004

The syntheses and thermal and X-ray powder diffraction analyses of three sets of aliphatic polyester dendrimers based on 2,2-bis(hydroxymethyl)propionic acid as a repeating unit and 2,2-dimethyl-1,3-propanediol, 1,5-pentanediol, and 1,1,1-tris(hydroxymethyl)ethane as core molecules are reported. These dendritic polyesters were prepared in high yields with the divergent method. The thermal properties of these biodendrimers were evaluated with thermogravimetric analysis and differential scanning calorimetry. The thermal decomposition of the compounds occurred around 250 °C for the hydroxyl-ended dendrimers and around 150 °C for the acetonide-protected dendrimers. In addition, the crystallinit…

Thermogravimetric analysisDendrimersPolymers and PlasticsChemistryThermogravimetric analysis (TGA)2-bis(hydroxymethyl)propionic acid (bis-MPA)Organic ChemistryThermal decomposition2Differential scanning calorimetry (DSC)PolyesterCrystallinitychemistry.chemical_compoundDifferential scanning calorimetryDendrimerPolymer chemistryMaterials Chemistry22-bis(hydroxymethyl)propionic acid (bis-MPA)Physical chemistryAliphatic polyestersHydroxymethylPowder diffraction
researchProduct

Bisfunctionalized Janus Molecules

2004

[reaction: see text] Bisfunctionalized dendritic multiester molecules were synthesized by combined protection-deprotection and divergent-convergent-divergent sequences in high yields leading to dendritic molecules that combine two functionally different surfaces, polar aliphatic arborol and nonpolar gallate ether moieties, resulting in a two-faced Janus molecule.

chemistry.chemical_compoundchemistryStereochemistryOrganic ChemistryMoleculeEtherJanusGallatePhysical and Theoretical ChemistryBiochemistryCombinatorial chemistryOrganic Letters
researchProduct

3,4,5-Trimethoxy-4'-methylbiphenyl

2013

In the title compound, C16H18O3, the dihedral angle between the benzene rings is 33.4 (2)°. In the crystal, mol­ecules are packed in a zigzag arrangement along the b-axis and are inter­connected via weak C—H⋯O hydrogen bonds, and C—H⋯π inter­actions involving the meth­oxy groups and the benzene rings of neighbouring molecules.

röntgendiffraktiocrystal structure010405 organic chemistryHydrogen bonddendrimeeri prekursoriGeneral ChemistrykiderakenneDihedral angle010402 general chemistryCondensed Matter Physics01 natural sciencesOrganic Papers3. Good health0104 chemical sciencesX-ray diffractionCrystalchemistry.chemical_compoundCrystallographychemistryZigzagdendrimer precursorMoleculeGeneral Materials ScienceBenzeneta116Acta Crystallographica Section E-Structure Reports Online
researchProduct

3,4-Dimethoxy-4'-methylbiphenyl

2013

In the title compound, C15H16O2, the dihedral angle between the planes of the aromatic rings is 30.5 (2). In the crystal, molecules are linked via C—HO hydrogen bonds and C— H interactions, forming a two-dimensional network lying parallel to (100). peerReviewed

röntgendiffraktiocrystal structuredendrimeeri prekursori010405 organic chemistryHydrogen bondChemistryAromaticitykiderakenneGeneral ChemistryDihedral angle010402 general chemistryCondensed Matter Physics01 natural sciencesOrganic PapersX-ray diffraction0104 chemical sciences3. Good healthCrystalCrystallographydendrimer precursorGeneral Materials Scienceta116Acta Crystallographica Section E-Structure Reports Online
researchProduct

3,5-Dimethoxy-4'-methylbiphenyl

2013

The title compound, C15H16O2, crystallizes with three independent mol­ecules in the asymmetric unit. The intra­molecular torsion angle between the aromatic rings of each mol­ecule are −36.4 (3), 41.3 (3) and −37.8 (3)°. In the crystal, the complicated packing of the mol­ecules forms wave-like layers along the b and c axes. The mol­ecules are connected via extensive meth­oxy–phenyl C—H…π inter­actions. A weak C—H…O hydrogen-bonding network also exists between meth­oxy O atoms and aromatic or meth­oxy H atoms.

röntgendiffraktiocrystal structuredendrimeeri prekursori010405 organic chemistryChemistryX-ray DiffractionAromaticitykiderakenneGeneral ChemistryDihedral angle010402 general chemistryCondensed Matter PhysicsBioinformaticsOrganic Papers01 natural sciences0104 chemical sciences3. Good healthCrystalCrystallographydendrimer precursorGeneral Materials Scienceta116
researchProduct

Methyl 3',5'-dimethoxybiphenyl-4-carboxylate

2013

In the title compound, C16H16O4, the dihedral angle between the benzene rings is 28.9 (2)°. In the crystal, mol­ecules are packed in layers parallel to the b axis in which they are connected via weak inter­molecular C-H...O contacts. Face-to-face π-π inter­actions also exist between the benzene rings of adjacent mol­ecules, with centroid-centroid and plane-to-plane shift distances of 3.8597 (14) and 1.843 (2) Å, respectively.

röntgendiffraktiocrystal structuredendrimeeri prekursorikiderakenneDihedral angle010402 general chemistryBioinformatics01 natural sciencesOrganic PapersCrystalchemistry.chemical_compoundGeneral Materials ScienceBenzeneta116Biphenyl010405 organic chemistryHydrogen bondGeneral ChemistryMeth-Condensed Matter PhysicsX-ray diffraction0104 chemical sciences3. Good healthCrystallographychemistrydendrimer precursorLayer (electronics)
researchProduct

Dynamic DNA Origami Devices: from Strand-Displacement Reactions to External-Stimuli Responsive Systems

2018

DNA nanotechnology provides an excellent foundation for diverse nanoscale structures that can be used in various bioapplications and materials research. Among all existing DNA assembly techniques, DNA origami proves to be the most robust one for creating custom nanoshapes. Since its invention in 2006, building from the bottom up using DNA advanced drastically, and therefore, more and more complex DNA-based systems became accessible. So far, the vast majority of the demonstrated DNA origami frameworks are static by nature; however, there also exist dynamic DNA origami devices that are increasingly coming into view. In this review, we discuss DNA origami nanostructures that exhibit controlled…

Computer sciencemechanical movementnanotekniikka02 engineering and technologyReview01 natural sciencesrobotiikkalcsh:Chemistrychemistry.chemical_compoundDNA origamiNanotechnologyDNA nanotechnologylcsh:QH301-705.5SpectroscopyroboticsPhysicsGeneral Medicineself-assembly021001 nanoscience & nanotechnologyMechanical engineeringComputer Science ApplicationsChemistryNanorobotics0210 nano-technologyBiotechnologyeducationNanotechnology010402 general chemistryMedical sciencesCatalysisDNA sequencingInorganic ChemistryDisplacement reactionsmolecular devicesDNA nanotechnologyAnimalsHumansPhysical and Theoretical ChemistryMolecular BiologyBase SequenceOrganic ChemistryResponsive systemsDNA0104 chemical sciencesNanostructureslcsh:Biology (General)lcsh:QD1-999chemistryTargeted drug deliveryNucleic Acid ConformationDNA origamiDNAInternational Journal of Molecular Sciences
researchProduct

Self-assembly of janus dendrimers into uniform dendrimersomes and other complex architectures

2010

Janus Drug Delivery Vehicle Efficient drug delivery vehicles need to be produced in a limited size range and with uniform size distribution. The self-assembly of traditional small-molecule and polymeric amphiphiles has led to the production of micelles, liposomes, polymeric micelles, and polymersomes for use in drug delivery applications. Now, Percec et al. (p. 1009 ) describe the self-assembly of Janus-type (i.e., two-headed) dendrimers to produce monodisperse supramolecular constructs, termed “dendrimersomes,” and other complex architectures. The structures, which showed long-term stability as well as very narrow size distributions, were easily produced by the injection of an ethanolic so…

Models MolecularDendrimersMaterials scienceSurface Propertiesta221Complex ArchitecturesNanotechnologyMolecular Dynamics SimulationSurface-Active AgentsBiomimetic MaterialsDendrimerAmphiphileJanusta218LiposomeDrug Carriersta214MultidisciplinaryAntibiotics Antineoplasticta114Molecular StructureVesicleCryoelectron MicroscopyWaterMembranes ArtificialNanostructuresJanus DendrimersSelf-AssemblyMembraneUniform DendrimersomesDoxorubicinPolymersomeSelf-assemblyHydrophobic and Hydrophilic InteractionsScience
researchProduct

Polyester and Ester Functionalized Dendrimers

2000

Demand for smart and functional materials has raised the importance of the research of dendritic (Greek = tree-like) molecules in organic and polymer chemistry due to their novel physical and mechanical properties. The properties of linear polymers as well as small discrete molecules are combined in this new architectural class of macromolecules, that can be divided into two families: dendrimers and hyperbranched macromolecules, that differ in their branching sequences. Dendrimers contain symmetrically arranged branches emanating from a core molecule together with a well-defined number of end groups corresponding to each generation. This results in an almost monodisperse three-dimensional g…

Materials scienceMolecular recognitionChemical engineeringDendrimerDispersityPolymer chemistrySupramolecular chemistryMoleculeBranching (polymer chemistry)MicelleMacromolecule
researchProduct

DNA-Based Enzyme Reactors and Systems

2016

During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme) cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular…

DNA sensorsGeneral Chemical EngineeringeducationNanotechnologyDNA nanodevice02 engineering and technologyReviewBiology010402 general chemistry01 natural scienceslcsh:Chemistrychemistry.chemical_compoundDna nanostructuresDNA nanotechnologyDNA origamiGeneral Materials ScienceDNA nanotechnologychemistry.chemical_classificationPhysicsfood and beveragesself-assemblycascade reactions021001 nanoscience & nanotechnologyBiocompatible materialnanolääketiedenanomedicineDrug-deliveryMaterials science0104 chemical sciencesdrug-deliveryChemistryenzymeEnzymechemistrylcsh:QD1-999drug deliveryNanomedicineDNA origami0210 nano-technologyDNABiotechnologyNanomaterials
researchProduct

High-Generation Amphiphilic Janus-Dendrimers as Stabilizing Agents for Drug Suspensions

2018

Pharmaceutical nanosuspensions are formed when drug crystals are suspended in aqueous media in the presence of stabilizers. This technology offers a convenient way to enhance the dissolution of poorly water-soluble drug compounds. The stabilizers exert their action through electrostatic or steric interactions, however, the molecular requirements of stabilizing agents have not been studied extensively. Here, four structurally related amphiphilic Janus-dendrimers were synthesized and screened to determine the roles of different macromolecular domains on the stabilization of drug crystals. Physical interaction and nanomilling experiments have substantiated that Janus-dendrimers with fourth gen…

Recrystallization (geology)huumeetPolymers and Plastics116 Chemical sciences02 engineering and technology01 natural sciencesdrugsContact angleMaterials ChemistryHUMAN LECTINSSurface plasmon resonanceta116chemistry.chemical_classificationChemistryBIOLOGICAL-MEMBRANES021001 nanoscience & nanotechnologyPROGRAMMABLE GLYCAN LIGANDSINDOMETHACIN317 PharmacyCLICK CHEMISTRYfarmaseuttinen kemia0210 nano-technologyHydrophobic and Hydrophilic InteractionsDendrimersSURFACEBioengineeringPoloxamer010402 general chemistryRSPOORLY SOLUBLE DRUGBiomaterialsHydrophobic effectSurface-Active AgentsSuspensionslääkeyhdisteetDendrimerAmphiphileGLYCODENDRIMERSOMESta216ta215AlkylMODULAR SYNTHESISWaterPoloxamerCombinatorial chemistry0104 chemical scienceslääkkeet1182 Biochemistry cell and molecular biologypharmaceutical nanosuspensionsCOMPLEX ARCHITECTURESBiomacromolecules
researchProduct

Methyl 3',4',5'-trimethoxybiphenyl-4-carboxylate

2013

In the title compound, C17H18O5, the dihedral angle between the benzene rings is 31.23 (16)°. In the crystal, the mol­ecules are packed in an anti­parallel fashion in layers along the a axis. In each layer, very weak C-H...O hydrogen bonds occur between the meth­oxy and methyl ester groups. Weak C-H...[pi] inter­actions between the 4'- and 5'-meth­oxy groups and neighbouring benzene rings [meth­oxy-C-ring centroid distances = 4.075 and 3.486 Å, respectively] connect the layers.

röntgendiffraktiocrystal structuredendrimeeriprekursorikiderakenneDihedral angle010402 general chemistry010403 inorganic & nuclear chemistryAntiparallel (biochemistry)01 natural sciencesOrganic PapersCrystalchemistry.chemical_compoundMoleculeGeneral Materials ScienceCarboxylateBenzeneta116ChemistryHydrogen bondGeneral ChemistryCondensed Matter Physics3. Good health0104 chemical sciencesX-ray diffractionCrystallographydendrimer precursorSingle crystal
researchProduct

CCDC 1496221: Experimental Crystal Structure Determination

2016

Related Article: F. Setifi, A. Valkonen, Z. Setifi, S. Nummelin, R. Touzani, C. Glidewell|2016|Acta Crystallogr.,Sect.E:Cryst.Commun.|72|1246|doi:10.1107/S2056989016012160

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(44-bipyridine) 44'-bipyridinium bis(1133-tetracyano-2-ethoxyprop-2-en-1-ide) trihydrateExperimental 3D Coordinates
researchProduct

CCDC 954260: Experimental Crystal Structure Determination

2013

Related Article: M. Lahtinen and S. Nummelin|2013|Acta Crystallogr.,Sect.E:Struct.Rep.Online|69|o681|doi:10.1107/S1600536813008957

Space GroupCrystallographyCrystal SystemCrystal Structure34-Dimethoxy-4'-methylbiphenylCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 250577: Experimental Crystal Structure Determination

2005

Related Article: S.Nummelin, D.Falabu, A.Shivanyuk, K.Rissanen|2004|Org.Lett.|6|2869|doi:10.1021/ol049179z

Space GroupCrystallographyCrystal System281420-Tetra-n-pentyl-5111723-tetrakis(ethoxymethyl)-46101216182224-octahydroxycalix(4)areneCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 250578: Experimental Crystal Structure Determination

2005

Related Article: S.Nummelin, D.Falabu, A.Shivanyuk, K.Rissanen|2004|Org.Lett.|6|2869|doi:10.1021/ol049179z

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters281420-Tetraethyl-5111723-tetrakis(bromomethyl)-46101216182224-octaacetoxycalix(4)arene dichloromethane solvateExperimental 3D Coordinates
researchProduct

CCDC 1059033: Experimental Crystal Structure Determination

2015

Related Article: Z. Setifi, A. Valkonen, M.A. Fernandes, S. Nummelin, H. Boughzala, F. Setifi, C. Glidewell|2015|Acta Crystallogr.,Sect.E:Cryst.Commun.|71|509|doi:10.1107/S2056989015007306

Space GroupCrystallographyCrystal SystemCrystal Structure22'-bipyridin-1-ium 1133-tetracyano-2-ethoxyprop-2-en-1-ideCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 956780: Experimental Crystal Structure Determination

2013

Related Article: M. Lahtinen, K. Nättinen and S. Nummelin|2013|Acta Crystallogr.,Sect.E:Struct.Rep.Online|69|o810|doi:10.1107/S1600536813010969

345-Trimethoxy-4'-methylbiphenylSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 935635: Experimental Crystal Structure Determination

2013

Related Article: M.Lahtinen,K.Nattinen,S.Nummelin|2013|Acta Crystallogr.,Sect.E:Struct.Rep.Online|69|o510|doi:10.1107/S1600536813006053

35-Dimethoxy-4'-methylbiphenylSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 250576: Experimental Crystal Structure Determination

2005

Related Article: S.Nummelin, D.Falabu, A.Shivanyuk, K.Rissanen|2004|Org.Lett.|6|2869|doi:10.1021/ol049179z

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters281420-Tetraethyl-5111723-tetrakis(propoxymethyl)-46101216182224-octahydroxycalix(4)areneExperimental 3D Coordinates
researchProduct

CCDC 935539: Experimental Crystal Structure Determination

2013

Related Article: M.Lahtinen,K.Nattinen,S.Nummelin|2013|Acta Crystallogr.,Sect.E:Struct.Rep.Online|69|o460|doi:10.1107/S1600536813005333

Space GroupCrystallographyMethyl 3'5'-dimethoxybiphenyl-4-carboxylateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 250579: Experimental Crystal Structure Determination

2005

Related Article: S.Nummelin, D.Falabu, A.Shivanyuk, K.Rissanen|2004|Org.Lett.|6|2869|doi:10.1021/ol049179z

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters281420-Tetraethyl-5111723-tetrakis(acetoxymethyl)-46101216182224-octaacetoxycalix(4)arene dichloromethane ethanol solvate monohydrateExperimental 3D Coordinates
researchProduct

CCDC 1059034: Experimental Crystal Structure Determination

2015

Related Article: Z. Setifi, A. Valkonen, M.A. Fernandes, S. Nummelin, H. Boughzala, F. Setifi, C. Glidewell|2015|Acta Crystallogr.,Sect.E:Cryst.Commun.|71|509|doi:10.1107/S2056989015007306

bis(22'-bipyridin-1-ium) 1133-tetracyano-2-(dicyanomethylene)propane-13-diideSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 935488: Experimental Crystal Structure Determination

2013

Related Article: M.Lahtinen,K.Nattinen,S.Nummelin|2013|Acta Crystallogr.,Sect.E:Struct.Rep.Online|69|o383|doi:10.1107/S1600536813004133

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersMethyl 3'4'5'-trimethoxybiphenyl-4-carboxylateExperimental 3D Coordinates
researchProduct