0000000001299336

AUTHOR

Imre Pápai

showing 43 related works from this author

Dual Hydrogen Bond - Enamine Catalysis Enables a Direct Enantioselective Three-Component Domino Reaction

2011

A dual system, composed of an enantioselective enamine catalyst and a multiple-hydrogen-bond catalyst achieves the three-component enantioselective aldehyde—nitroalkene—aldehyde domino reaction using either two similar or two different aldehydes.

Hydrogen bond catalysisComponent (thermodynamics)Hydrogen bondChemistryEnantioselective synthesisGeneral MedicineGeneral ChemistryCatalysisCatalysisEnaminechemistry.chemical_compoundCascade reactionOrganocatalysisOrganic chemistryta116Angewandte Chemie Intermational Edition
researchProduct

ChemInform Abstract: A Catalyst Designed for the Enantioselective Construction of Methyl- and Alkyl-Substituted Tertiary Stereocenters.

2016

Tertiary methyl-substituted stereocenters are present in numerous biologically active natural products. Reported herein is a catalytic enantioselective method for accessing these chiral building blocks using the Mukaiyama-Michael reaction between silyl ketene thioacetals and acrolein. To enable remote enantioface control on the nucleophile, a new iminium catalyst, optimized by three-parameter tuning and by identifying substituent effects on enantioselectivity, was designed. The catalytic process allows rapid access to chiral thioesters, amides, aldehydes, and ketones bearing an α-methyl stereocenter with excellent enantioselectivities, and allowed rapid access to the C4-C13 segment of (-)-b…

chemistry.chemical_classificationchemistry.chemical_compoundchemistryNucleophileOrganocatalysisEnantioselective synthesisSubstituentKeteneIminiumGeneral MedicineCombinatorial chemistryAlkylStereocenterChemInform
researchProduct

ChemInform Abstract: Dual Hydrogen-Bond/Enamine Catalysis Enables a Direct Enantioselective Three-Component Domino Reaction.

2011

A dual system, composed of an enantioselective enamine catalyst and a multiple-hydrogen-bond catalyst achieves the three-component enantioselective aldehyde—nitroalkene—aldehyde domino reaction using either two similar or two different aldehydes.

chemistry.chemical_compoundCascade reactionHydrogen bondComponent (thermodynamics)ChemistryOrganocatalysisEnantioselective synthesisGeneral MedicineCombinatorial chemistryCatalysisDual (category theory)EnamineChemInform
researchProduct

Stereocontrol in Diphenylprolinol Silyl Ether Catalyzed Michael Additions : Steric Shielding or Curtin-Hammett Scenario?

2017

The enantioselectivity of amine-catalyzed reactions of aldehydes with electrophiles is often explained by simple steric arguments emphasizing the role of the bulky group of the catalyst that prevents the approach of the electrophile from the more hindered side. This standard steric shielding model has recently been challenged by the discovery of stable downstream intermediates, which appear to be involved in the rate-determining step of the catalytic cycle. The alternative model, referred to as Curtin-Hammett scenario of stereocontrol, assumes that the enantioselectivity is related to the stability and reactivity of downstream intermediates. In our present computational study, we examine th…

Steric effectsmechanismProtonation010402 general chemistry01 natural sciencesBiochemistryDFTCatalysisCatalysisColloid and Surface ChemistryComputational chemistryOrganic chemistryReactivity (chemistry)organocatalysista116stereocontrol010405 organic chemistryChemistryGeneral Chemistry0104 chemical sciencesCatalytic cyclekineticsElectrophileMichael reactionStereoselectivityESI-MS screening
researchProduct

Stereoelectronic Requirements for Optimal Hydrogen-Bond-Catalyzed Enolization

2011

Protein crystallographic analysis of the active sites of enolizing enzymes and structural analysis of hydrogen-bonded carbonyl compounds in small molecule crystal structures, complemented by quantum chemical calculations on related model enolization reactions, suggest a new stereoelectronic model that accounts for the observed out-of-plane orientation of hydrogen-bond donors (HBDs) in the oxyanion holes of enolizing enzymes. The computational results reveal that the lone-pair directionality of HBDs characteristic for hydrogen-bonded carbonyls is reduced upon enolization, and the enolate displays almost no directional preference for hydrogen bonding. Positioning the HBDs perpendicular to the…

Models MolecularHydrogen bondOrganic ChemistryHydrogen BondingStereoisomerismOxyanionGeneral ChemistryCrystal structureKeto–enol tautomerismKetonesCarbon-Carbon Double Bond IsomerasesPhotochemistrySmall moleculeCatalysisMitochondriaCatalysischemistry.chemical_compoundCrystallographychemistryHumansThermodynamicsDensity functional theoryOxyanion holeAlgorithmsChemistry - A European Journal
researchProduct

Mukaiyama–Michael Reactions with trans-2,5-Diarylpyrrolidine Catalysts: Enantioselectivity Arises from Attractive Noncovalent Interactions, Not from …

2013

The scope of the enantioselective Mukaiyama-Michael reactions catalyzed by trans-2,5-diphenylpyrrolidine has been expanded to include both α- and β-substituted enals. However, the rationalization of the observed enantioselectivity is far from obvious since the catalyst is not very sterically hindered. DFT calculations were carried out to rationalize the observed stereoselectivities. Transition states of the C-C bond formation between iminium intermediates and silyloxyfurans were located and their relative energies were used to estimate the stereoselectivity data. We find excellent agreement between the predicted and observed stereoselectivities. The analysis of intermolecular forces reveals…

chemistry.chemical_classificationSteric effectsStereochemistryOrganic ChemistryIntermolecular forceEnantioselective synthesisIminiumGeneral ChemistryCatalysisTransition statechemistryComputational chemistryOrganocatalysisNon-covalent interactionsStereoselectivityta116Chemistry: A European journal
researchProduct

Cross-Dehydrogenative Couplings between Indoles and beta-Keto Esters: Ligand-Assisted Ligand Tautomerization and Dehydrogenation via a Proton-Assiste…

2014

Cross-dehydrogenative coupling reactions between β-ketoesters and electron-rich arenes, such as indoles, proceed with high regiochemical fidelity with a range of β-ketoesters and indoles. The mechanism of the reaction between a prototypical β-ketoester, ethyl 2-oxocyclopentanonecarboxylate, and N-methylindole has been studied experimentally by monitoring the temporal course of the reaction by (1)H NMR, kinetic isotope effect studies, and control experiments. DFT calculations have been carried out using a dispersion-corrected range-separated hybrid functional (ωB97X-D) to explore the basic elementary steps of the catalytic cycle. The experimental results indicate that the reaction proceeds v…

Indole testLigandGeneral ChemistryPhotochemistryBiochemistryTautomerCombinatorial chemistryCatalysisCoupling reactionchemistry.chemical_compoundElectron transferColloid and Surface ChemistrychemistryCatalytic cycleDehydrogenationEnoneta116Journal of the American Chemical Society
researchProduct

ChemInform Abstract: Cross-Dehydrogenative Couplings Between Indoles and β-Keto Esters: Ligand-Assisted Ligand Tautomerization and Dehydrogenation vi…

2014

Cross-dehydrogenative coupling reactions between β-ketoesters and electron-rich arenes, such as indoles, proceed with high regiochemical fidelity with a range of β-ketoesters and indoles. The mechanism of the reaction between a prototypical β-ketoester, ethyl 2-oxocyclopentanonecarboxylate, and N-methylindole has been studied experimentally by monitoring the temporal course of the reaction by (1)H NMR, kinetic isotope effect studies, and control experiments. DFT calculations have been carried out using a dispersion-corrected range-separated hybrid functional (ωB97X-D) to explore the basic elementary steps of the catalytic cycle. The experimental results indicate that the reaction proceeds v…

Indole testElectron transferchemistry.chemical_compoundchemistryCatalytic cycleLigandDehydrogenationGeneral MedicineCombinatorial chemistryTautomerEnoneCoupling reactionChemInform
researchProduct

ChemInform Abstract: Mukaiyama-Michael Reactions with trans-2,5-Diarylpyrrolidine Catalysts: Enantioselectivity Arises from Attractive Noncovalent In…

2014

The 2,5-diphenylpyrrolidine-catalyzed enantioselective Mukaiyama—Michael reaction between substituted furans and enals is studied.

Steric effectschemistry.chemical_classificationAddition reactionChemistryOrganocatalysisEnantioselective synthesisNon-covalent interactionsGeneral MedicineCombinatorial chemistryCatalysisChemInform
researchProduct

Dihydrooxazine Oxides as Key Intermediates in Organocatalytic Michael Additions of Aldehydes to Nitroalkenes

2012

Pause and play: dihydrooxazine oxides are stable intermediates that are protonated directly, without the intermediacy of the zwitterions, in organocatalytic Michael additions of aldehydes and nitroalkenes (see scheme, R=alkyl). Protonation of these species explains both the role of the acid co-catalyst in these reactions, and the observed stereochemistry when the reaction is conducted with α-alkylnitroalkenes.

chemistry.chemical_classificationchemistryOrganic chemistryProtonationGeneral ChemistryNuclear magnetic resonance spectroscopyGeneral Medicineta116CatalysisAlkylAngewandte Chemie
researchProduct

A Catalyst Designed for the Enantioselective Construction of Methyl- and Alkyl-Substituted Tertiary Stereocenters

2015

Tertiary methyl-substituted stereocenters are present in numerous biologically active natural products. Reported herein is a catalytic enantioselective method for accessing these chiral building blocks using the Mukaiyama-Michael reaction between silyl ketene thioacetals and acrolein. To enable remote enantioface control on the nucleophile, a new iminium catalyst, optimized by three-parameter tuning and by identifying substituent effects on enantioselectivity, was designed. The catalytic process allows rapid access to chiral thioesters, amides, aldehydes, and ketones bearing an α-methyl stereocenter with excellent enantioselectivities, and allowed rapid access to the C4-C13 segment of (-)-b…

natural productsSubstituentKetene010402 general chemistry01 natural sciencesCatalysisStereocenterchemistry.chemical_compoundNucleophileOrganic chemistryorganocatalysista116Alkylchemistry.chemical_classification010405 organic chemistryChemistryEnantioselective synthesisIminiumasymmetric catalysisGeneral MedicineGeneral Chemistrydiastereoselectivity0104 chemical sciences3. Good healthOrganocatalysisdensity functional calculationsAngewandte Chemie International Edition
researchProduct

Organocatalysts Fold to Generate an Active Site Pocket for the Mannich Reaction

2017

Catalysts containing urea, thiourea and tertiary amine groups fold into a three-dimensional organized structure in solution both in the absence as well as in the presence of substrates or substrate analogues, as indicated by solution NMR and computational studies. These foldamer catalysts promote Mannich reactions with both aliphatic and aromatic imines and malonate esters. Hammett plot and secondary kinetic isotope effects provide evidence for the C-C bond forming event as the turnoverlimiting step of the Mannich reaction. Computational studies suggest two viable pathways for the C-C bond formation step, differing in the activation modes of the malonate and imine substrates. The results sh…

inorganic chemicalsorganocatalysis bifunctional cooperativity mechanism kinetics computationsTertiary aminecooperativityIminemechanism010402 general chemistry01 natural sciencesCatalysischemistry.chemical_compoundHammett equationMannich reactionOrganic chemistryorganocatalysista116Mannich reactionbiology010405 organic chemistryChemistryFoldamerActive siteGeneral ChemistryCombinatorial chemistrycomputations0104 chemical sciencesbifunctionalMalonatekineticsOrganocatalysisbiology.protein
researchProduct

Dimerization of (+)-Lysergic Acid Esters

2007

Dimer isomer mixtures, characterized by a bridgehead C8-C8' bond, (6a-7a; 6b-7b) were obtained from (+)-lysergic acid methyl or ethyl ester (1b; 1c) in a solution of methanol or ethanol. The isomers were separated, and their structures were determined by detailed NMR measurements and X-ray analysis. Density functional theory was applied to provide insight into the reaction mechanism. Based on an extended examination and the theoretical calculations, a plausible reaction sequence leading to dimers is also presented. The proposed mechanism has been verified by detecting the formation of the superoxide radical anion (O 2 * -).

PharmacologyReaction mechanismEthanolStereochemistryDimerRadicalOrganic ChemistryMedicinal chemistryAnalytical ChemistryIonLysergic acidchemistry.chemical_compoundchemistryDensity functional theoryMethanolHETEROCYCLES
researchProduct

Folding Patterns in a Family of Oligoamide Foldamers

2015

A series of small, unsymmetrical pyridine-2,6-dicarboxylamide oligoamide foldamers with varying lengths and substituents at the end groups were synthetized to study their conformational properties and folding patterns. The @-type folding pattern resembled the oxyanion-hole motifs of enzymes, but several alternative folding patterns could also be characterized. Computational studies revealed several alternative conformers of nearly equal stability. These folding patterns differed from each other in their intramolecular hydrogen-bonding patterns and aryl-aryl interactions. In the solid state, the foldamers adopted either the globular @-type fold or the more extended S-type conformers, which w…

StereochemistryHydrogen bondChemistryOrganic Chemistrycrystal growthSolid-stateFoldamerGeneral ChemistryCatalysisoligomerizationCrystallographyLiquid stateIntramolecular forceprotein foldinghydrogen bondsMoleculeProtein foldingfoldamersConformational isomerismta116Chemistry: A European Journal
researchProduct

ChemInform Abstract: Dihydrooxazine Oxides as Key Intermediates in Organocatalytic Michael Additions of Aldehydes to Nitroalkenes.

2013

Pause and play: dihydrooxazine oxides are stable intermediates that are protonated directly, without the intermediacy of the zwitterions, in organocatalytic Michael additions of aldehydes and nitroalkenes (see scheme, R=alkyl). Protonation of these species explains both the role of the acid co-catalyst in these reactions, and the observed stereochemistry when the reaction is conducted with α-alkylnitroalkenes.

chemistry.chemical_classificationAddition reactionChemistryOrganocatalysisProtonationGeneral MedicineMedicinal chemistryAlkylChemInform
researchProduct

Total Synthesis of Stemoamide, 9a-epi-Stemoamide, and 9a,10-epi-Stemoamide: Divergent Stereochemistry of the Final Methylation Steps

2020

Total syntheses of stemoamide, 9a-epi-stemoamide, and 9a,10-epi-stemoamide by a convergent A + B ring-forming strategy is reported. The synthesis required a diastereoselective late-stage methylation of the ABC stemoamide core that successfully enabled access to three of the four possible diastereomeric structures. For the natural stemoamide series, the diastereoselectivity can be rationalized both by kinetic and thermodynamic arguments, whereas for the natural 9a-epi-stemoamide series, the kinetic selectivity is explained by the prepyramidalization of the relevant enolate.

010405 organic chemistryChemistryStereochemistryOrganic ChemistryDiastereomerTotal synthesisMethylation010402 general chemistrySelectivity01 natural sciencesStemoamide0104 chemical sciencesSynlett
researchProduct

Conformationally Locked Pyramidality Explains the Diastereoselectivity in the Methylation of trans-Fused Butyrolactones

2020

A stereoselectivity model inspired by the total synthesis of stemona alkaloids is developed to explain why enolate-derived 3,4-fused butyrolactones are methylated with a preference for syn alkylation. The model shows how conformational locking present in nonplanar enolate structures favors syn over anti methylation, due to less significant structural distortions in the syn pathway. The developed model was also successfully used to rationalize selectivities of previously documented methylation reactions. peerReviewed

StemonaLetterisomeriaStereochemistrytransition states010402 general chemistry01 natural sciencesBiochemistryenolatesheterocyclic compoundsPhysical and Theoretical Chemistryorgaaniset yhdisteetkemialliset reaktiotbiology010405 organic chemistryChemistryorganic chemicalsOrganic ChemistryselectivityTotal synthesisMethylationbiology.organism_classification0104 chemical sciencesalkaloiditchemical structureorganic reactionsStereoselectivityOrganic Letters
researchProduct

Cooperative Assistance in Bifunctional Organocatalysis: Enantioselective Mannich Reactions with Aliphatic and Aromatic Imines

2012

both of which contain a thiourea moiety (Scheme 1).The catalysts are capable of deprotonating suitable nucleo-philes, such as activated carbonyl compounds. This proton-transfer reaction generates an ion pair, which is composed ofthe protonated catalyst and the anionic nucleophile interact-ing through hydrogen bonds. At least one of the NH moietiesin the protonated catalyst is involved in activating theelectrophilic reaction partner.

Models MolecularHydrogen bond catalysisImineEnantioselective synthesisHydrogen BondingStereoisomerismGeneral MedicineGeneral ChemistryCrystallography X-RayMalonatesCatalysisCatalysischemistry.chemical_compoundchemistryNucleophileOrganocatalysisPolymer chemistryOrganic chemistryMoietyIminesAmino AcidsBifunctionalta116Angewandte Chemie International Edition
researchProduct

ChemInform Abstract: Cooperative Assistance in Bifunctional Organocatalysis: Enantioselective Mannich Reactions with Aliphatic and Aromatic Imines.

2013

both of which contain a thiourea moiety (Scheme 1).The catalysts are capable of deprotonating suitable nucleo-philes, such as activated carbonyl compounds. This proton-transfer reaction generates an ion pair, which is composed ofthe protonated catalyst and the anionic nucleophile interact-ing through hydrogen bonds. At least one of the NH moietiesin the protonated catalyst is involved in activating theelectrophilic reaction partner.

chemistry.chemical_compoundNucleophileThioureachemistryHydrogen bondOrganocatalysisEnantioselective synthesisMoietyGeneral MedicineBifunctionalCombinatorial chemistryCatalysisChemInform
researchProduct

Dynamic Refolding of Ion-Pair Catalysts in Response to Different Anions.

2019

Four distinct folding patterns were identified in two foldamer-type urea-thiourea catalysts bearing a basic dimethylamino unit by a combination of X-ray crystallography, solution NMR studies, and computational studies (DFT). These patterns are characterized by different intramolecular hydrogen bonding schemes that arise largely from different thiourea conformers. The free base forms of the catalysts are characterized by folds where the intramolecular hydrogen bonds between the urea and the thiourea units remain intact. In contrast, the catalytically relevant salt forms of the catalyst, where the catalyst forms an ion pair with the substrate or substrate analogues, appear in two entirely dif…

inorganic chemicalsBearing (mechanical)anionitcatalysis010405 organic chemistryChemistryorganic chemicalsOrganic Chemistryfolding anion bindingIon pairs010402 general chemistrykidetiede01 natural sciences0104 chemical sciencesCatalysislaw.inventionFolding (chemistry)X-rayCrystallographyconformational changelawkatalyysisolution structuresröntgenkristallografiaThe Journal of organic chemistry
researchProduct

Carboxylate catalyzed isomerization of β,γ‐unsaturated N-acetylcysteamine thioesters

2022

We demonstrate herein the capacity of simple carboxylate salts – tetrametylammonium and tetramethylguanidinium pivalate – to act as catalysts in the isomerization of β,γ-unsaturated thioesters to α,β-unsaturated thioesters. The carboxylate catalysts gave reaction rates comparable to those obtained with DBU, but with fewer side reactions. The reaction exhibits a normal secondary kinetic isotope effect ( k 1H / k 1D = 1.065±0.026) with a β,γ−deuterated substrate. Computational analysis of the mechanism provides a similar value ( k 1H / k 1D = 1.05) with a mechanism where γ-reprotonation of the enolate intermediate is rate determining. peerReviewed

thioesterskatalyytitkinetic isotope effectsisomeriakatalyysirikkiyhdisteetcarboxylatesreaction mechanismreaktiomekanismitbase catalysisisomerizationenolatesorgaaniset yhdisteet
researchProduct

CCDC 1901894: Experimental Crystal Structure Determination

2023

Related Article: Antti J. Neuvonen, Dimitris Noutsias, Filip Topić, Kari Rissanen, Tamás Földes, Imre Pápai, Petri M. Pihko|2019|J.Org.Chem.|84|15009|doi:10.1021/acs.joc.9b01980

Space GroupCrystallography2-[({2-[2-({[35-bis(trifluoromethyl)phenyl]carbamoyl}amino)-4-(trifluoromethyl)phenoxy]-23-dihydro-1H-inden-1-yl}carbamothioyl)amino]-NN-dimethylcyclohexan-1-aminium bromide benzene dichloromethane solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1973338: Experimental Crystal Structure Determination

2020

Related Article: Imre Pápai, Petri M. Pihko, Juha H. Siitonen, Dániel Csókás|2020|Synlett|31|1581|doi:10.1055/s-0040-1707201

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(1R3aS10aR10bS)-1-methyloctahydro-2H-furo[32-c]pyrrolo[12-a]azepine-28(1H)-dioneExperimental 3D Coordinates
researchProduct

CCDC 1038219: Experimental Crystal Structure Determination

2015

Related Article: Minna Kortelainen, Aku Suhonen, Andrea Hamza, Imre Pápai, Elisa Nauha, Sanna Yliniemelä-Sipari, Maija Nissinen, Petri M. Pihko|2015|Chem.-Eur.J.|21|9493|doi:10.1002/chem.201406521

Space GroupCrystallographyCrystal SystemCrystal StructureN-(2-(benzoylamino)phenyl)-N'-(2-((4-cyanobenzoyl)amino)phenyl)pyridine-26-dicarboxamide ethyl acetate solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1038222: Experimental Crystal Structure Determination

2015

Related Article: Minna Kortelainen, Aku Suhonen, Andrea Hamza, Imre Pápai, Elisa Nauha, Sanna Yliniemelä-Sipari, Maija Nissinen, Petri M. Pihko|2015|Chem.-Eur.J.|21|9493|doi:10.1002/chem.201406521

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D CoordinatesN-(2-(benzoylamino)phenyl)-N'-(2-(isobutyrylamino)phenyl)pyridine-26-dicarboxamide
researchProduct

CCDC 1038221: Experimental Crystal Structure Determination

2015

Related Article: Minna Kortelainen, Aku Suhonen, Andrea Hamza, Imre Pápai, Elisa Nauha, Sanna Yliniemelä-Sipari, Maija Nissinen, Petri M. Pihko|2015|Chem.-Eur.J.|21|9493|doi:10.1002/chem.201406521

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D CoordinatesN-(2-(benzoylamino)phenyl)-N'-(2-(isobutyrylamino)phenyl)pyridine-26-dicarboxamide
researchProduct

CCDC 1901892: Experimental Crystal Structure Determination

2023

Related Article: Antti J. Neuvonen, Dimitris Noutsias, Filip Topić, Kari Rissanen, Tamás Földes, Imre Pápai, Petri M. Pihko|2019|J.Org.Chem.|84|15009|doi:10.1021/acs.joc.9b01980

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters2-[({2-[2-({[35-bis(trifluoromethyl)phenyl]carbamoyl}amino)-4-(trifluoromethyl)phenoxy]-23-dihydro-1H-inden-1-yl}carbamothioyl)amino]-NN-dimethylcyclohexan-1-aminium fluoride benzene unknown solvateExperimental 3D Coordinates
researchProduct

CCDC 1556565: Experimental Crystal Structure Determination

2017

Related Article: Antti J. Neuvonen, Tamás Földes, Ádám Madarász, Imre Pápai, and Petri M. Pihko|2017|ACS Catalysis|7|3284|doi:10.1021/acscatal.7b00336

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersN-[35-bis(trifluoromethyl)phenyl]-N'-[2-{[1-({[2-(piperidin-1-yl)cyclohexyl]carbamothioyl}amino)-23-dihydro-1H-inden-2-yl]oxy}-5-(trifluoromethyl)phenyl]urea urea acetonitrile solvateExperimental 3D Coordinates
researchProduct

CCDC 1038220: Experimental Crystal Structure Determination

2015

Related Article: Minna Kortelainen, Aku Suhonen, Andrea Hamza, Imre Pápai, Elisa Nauha, Sanna Yliniemelä-Sipari, Maija Nissinen, Petri M. Pihko|2015|Chem.-Eur.J.|21|9493|doi:10.1002/chem.201406521

Space GroupCrystallographyN-(2-acetamidophenyl)-N'-(2-(benzoylamino)phenyl)pyridine-26-dicarboxamideCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1003178: Experimental Crystal Structure Determination

2014

Related Article: Mikko V. Leskinen , Ádám Madarász , Kai-Tai Yip , Aini Vuorinen , Imre Pápai , Antti J. Neuvonen , and Petri M. Pihko|2014|J.Am.Chem.Soc.|136|6453|doi:10.1021/ja501681y

Space GroupCrystallography5-methyl-2-(2-phenylpropan-2-yl)cyclohexyl 2-(1-methyl-1H-indol-3-yl)-5-oxocyclopentanecarboxylateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1038217: Experimental Crystal Structure Determination

2015

Related Article: Minna Kortelainen, Aku Suhonen, Andrea Hamza, Imre Pápai, Elisa Nauha, Sanna Yliniemelä-Sipari, Maija Nissinen, Petri M. Pihko|2015|Chem.-Eur.J.|21|9493|doi:10.1002/chem.201406521

Space GroupCrystallographyCrystal SystemCrystal StructureN-(2-(benzoylamino)phenyl)-N'-phenylpyridine-26-dicarboxamide NN-dimethylformamide solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1901895: Experimental Crystal Structure Determination

2023

Related Article: Antti J. Neuvonen, Dimitris Noutsias, Filip Topić, Kari Rissanen, Tamás Földes, Imre Pápai, Petri M. Pihko|2019|J.Org.Chem.|84|15009|doi:10.1021/acs.joc.9b01980

2-[({2-[2-({[35-bis(trifluoromethyl)phenyl]carbamoyl}amino)-4-(trifluoromethyl)phenoxy]-23-dihydro-1H-inden-1-yl}carbamothioyl)amino]-NN-dimethylcyclohexan-1-aminium fluoride cyclopentane unknown solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1003179: Experimental Crystal Structure Determination

2014

Related Article: Mikko V. Leskinen , Ádám Madarász , Kai-Tai Yip , Aini Vuorinen , Imre Pápai , Antti J. Neuvonen , and Petri M. Pihko|2014|J.Am.Chem.Soc.|136|6453|doi:10.1021/ja501681y

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(1-(ethoxycarbonyl)-2-((23-eta)-1-methyl-1H-indol-3-yl)-5-oxocyclopentyl)-bis(mu-trifluoroacetato)-di-palladiumExperimental 3D Coordinates
researchProduct

CCDC 1901899: Experimental Crystal Structure Determination

2023

Related Article: Antti J. Neuvonen, Dimitris Noutsias, Filip Topić, Kari Rissanen, Tamás Földes, Imre Pápai, Petri M. Pihko|2019|J.Org.Chem.|84|15009|doi:10.1021/acs.joc.9b01980

Space GroupCrystallography2-[({2-[2-({[35-bis(trifluoromethyl)phenyl]carbamoyl}amino)-4-(trifluoromethyl)phenoxy]-23-dihydro-1H-inden-1-yl}carbamothioyl)amino]-NN-dimethylcyclohexan-1-aminium 26-bis(trifluoromethyl)benzoate toluene solvate hemihydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1901897: Experimental Crystal Structure Determination

2023

Related Article: Antti J. Neuvonen, Dimitris Noutsias, Filip Topić, Kari Rissanen, Tamás Földes, Imre Pápai, Petri M. Pihko|2019|J.Org.Chem.|84|15009|doi:10.1021/acs.joc.9b01980

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates2-[({2-[2-({[35-bis(trifluoromethyl)phenyl]carbamoyl}amino)-4-(trifluoromethyl)phenoxy]-23-dihydro-1H-inden-1-yl}carbamothioyl)amino]-NN-dimethylcyclohexan-1-aminium trifluoroacetate dichloromethane unknown solvate
researchProduct

CCDC 1901898: Experimental Crystal Structure Determination

2023

Related Article: Antti J. Neuvonen, Dimitris Noutsias, Filip Topić, Kari Rissanen, Tamás Földes, Imre Pápai, Petri M. Pihko|2019|J.Org.Chem.|84|15009|doi:10.1021/acs.joc.9b01980

2-[({2-[2-({[35-bis(trifluoromethyl)phenyl]carbamoyl}amino)-4-(trifluoromethyl)phenoxy]-23-dihydro-1H-inden-1-yl}carbamothioyl)amino]-NN-dimethylcyclohexan-1-aminium diphenyl phosphate toluene solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1973339: Experimental Crystal Structure Determination

2020

Related Article: Imre Pápai, Petri M. Pihko, Juha H. Siitonen, Dániel Csókás|2020|Synlett|31|1581|doi:10.1055/s-0040-1707201

Space GroupCrystallography3-((2RS3RS)-5-oxo-3-((RS)-5-oxopyrrolidin-2-yl)tetrahydrofuran-2-yl)propyl 4-methylbenzenesulfonateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1038216: Experimental Crystal Structure Determination

2015

Related Article: Minna Kortelainen, Aku Suhonen, Andrea Hamza, Imre Pápai, Elisa Nauha, Sanna Yliniemelä-Sipari, Maija Nissinen, Petri M. Pihko|2015|Chem.-Eur.J.|21|9493|doi:10.1002/chem.201406521

Space GroupCrystallographyN-(2-(benzoylamino)phenyl)-N'-phenylpyridine-26-dicarboxamide acetonitrile solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1038223: Experimental Crystal Structure Determination

2015

Related Article: Minna Kortelainen, Aku Suhonen, Andrea Hamza, Imre Pápai, Elisa Nauha, Sanna Yliniemelä-Sipari, Maija Nissinen, Petri M. Pihko|2015|Chem.-Eur.J.|21|9493|doi:10.1002/chem.201406521

Space GroupCrystallographyN-(2-(benzoylamino)phenyl)-N'-(2-((22-dimethylpropanoyl)amino)phenyl)pyridine-26-dicarboxamideCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1038215: Experimental Crystal Structure Determination

2015

Related Article: Minna Kortelainen, Aku Suhonen, Andrea Hamza, Imre Pápai, Elisa Nauha, Sanna Yliniemelä-Sipari, Maija Nissinen, Petri M. Pihko|2015|Chem.-Eur.J.|21|9493|doi:10.1002/chem.201406521

Space GroupCrystallographyN-(2-(Benzoylamino)phenyl)-N'-phenylpyridine-26-dicarboxamideCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1038218: Experimental Crystal Structure Determination

2015

Related Article: Minna Kortelainen, Aku Suhonen, Andrea Hamza, Imre Pápai, Elisa Nauha, Sanna Yliniemelä-Sipari, Maija Nissinen, Petri M. Pihko|2015|Chem.-Eur.J.|21|9493|doi:10.1002/chem.201406521

Space GroupCrystallographyN-(2-(benzoylamino)phenyl)-N'-(2-((4-cyanobenzoyl)amino)phenyl)pyridine-26-dicarboxamideCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1901893: Experimental Crystal Structure Determination

2023

Related Article: Antti J. Neuvonen, Dimitris Noutsias, Filip Topić, Kari Rissanen, Tamás Földes, Imre Pápai, Petri M. Pihko|2019|J.Org.Chem.|84|15009|doi:10.1021/acs.joc.9b01980

Space GroupCrystallographyCrystal System2-[({2-[2-({[35-bis(trifluoromethyl)phenyl]carbamoyl}amino)-4-(trifluoromethyl)phenoxy]-23-dihydro-1H-inden-1-yl}carbamothioyl)amino]-NN-dimethylcyclohexan-1-aminium chloride benzene dichloromethane solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1901896: Experimental Crystal Structure Determination

2023

Related Article: Antti J. Neuvonen, Dimitris Noutsias, Filip Topić, Kari Rissanen, Tamás Földes, Imre Pápai, Petri M. Pihko|2019|J.Org.Chem.|84|15009|doi:10.1021/acs.joc.9b01980

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates2-[({2-[2-({[35-bis(trifluoromethyl)phenyl]carbamoyl}amino)-4-(trifluoromethyl)phenoxy]-23-dihydro-1H-inden-1-yl}carbamothioyl)amino]-NN-dimethylcyclohexan-1-aminium bromide toluene solvate
researchProduct