0000000001299367

AUTHOR

Anton Wiebe

showing 42 related works from this author

Modern Electrochemical Aspects for the Synthesis of Value‐Added Organic Products

2017

The use of electricity instead of stoichiometric amounts of oxidizers or reducing agents in synthesis is very appealing for economic and ecological reasons, and represents a major driving force for research efforts in this area. To use electron transfer at the electrode for a successful transformation in organic synthesis, the intermediate radical (cation/anion) has to be stabilized. Its combination with other approaches in organic chemistry or concepts of contemporary synthesis allows the establishment of powerful synthetic methods. The aim in the 21st Century will be to use as little fossil carbon as possible and, for this reason, the use of renewable sources is becoming increasingly impo…

Value (ethics)Organic product010405 organic chemistrybusiness.industryGeneral Chemistry010402 general chemistry01 natural sciencesCatalysis0104 chemical sciencesFossil carbonRenewable energychemistry.chemical_compoundchemistryOrganic synthesisBiochemical engineeringBusinessElectricityRenewable resourceAngewandte Chemie International Edition
researchProduct

Innenrücktitelbild: Metall- und reagensfreie dehydrierende formale Benzyl-Aryl-Kreuzkupplung durch anodische Aktivierung in 1,1,1,3,3,3-Hexafluorprop…

2018

010405 organic chemistryChemistryGeneral Medicine010402 general chemistry01 natural sciences0104 chemical sciencesAngewandte Chemie
researchProduct

Elektrifizierung der organischen Synthese

2018

Materials science010405 organic chemistryGeneral Medicine010402 general chemistry01 natural sciences0104 chemical sciencesAngewandte Chemie
researchProduct

Einfache und doppelte metall- und reagensfreie anodische C-C-Kreuzkupplung von Phenolen mit Thiophenen

2017

Erstmals ist es gelungen, eine elektrochemische dehydrierende C-C-Kreuzkupplung von Thiophenen mit Phenolen durchzufuhren. Diese nachhaltige und einfache anodische Kreuzkupplung eroffnet den Zugang zu zwei besonders interessanten Substanzklassen. Das Anwendungsgebiet der C-H-aktivierenden elektrochemischen Kreuzkupplung wurde dabei um Schwefelheterocyclen erweitert. Bisher konnten nur verschiedene benzoide aromatische Systeme umgesetzt werden, wohingegen die Verwendung von Heterocyclen bei der C-H-aktivierenden elektrochemischen Kreuzkupplung nicht erfolgreich war. In diesem Fall bieten reagens- und metallfreie Bedingungen einen nachhaltigen elektrochemischen Weg und damit einen vielverspre…

010405 organic chemistryGeneral Medicine010402 general chemistry01 natural sciences0104 chemical sciencesAngewandte Chemie
researchProduct

Selektive Synthese teilgeschützter unsymmetrischer Biphenole durch reagens‐ und metallfreie anodische Kreuzkupplung

2016

010405 organic chemistryChemistryGeneral Medicine010402 general chemistry01 natural sciences0104 chemical sciencesAngewandte Chemie
researchProduct

Metal- and Reagent-Free Dehydrogenative Formal Benzyl-Aryl Cross-Coupling by Anodic Activation in 1,1,1,3,3,3-Hexafluoropropan-2-ol

2018

A selective dehydrogenative electrochemical functionalization of benzylic positions that employs 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP) has been developed. The electrogenerated products are versatile intermediates for subsequent functionalizations as they act as masked benzylic cations that can be easily activated. Herein, we report a sustainable, scalable, and reagent- and metal-free dehydrogenative formal benzyl-aryl cross-coupling. Liberation of the benzylic cation was accomplished through the use of acid. Valuable diarylmethanes are accessible in the presence of aromatic nucleophiles. The direct application of electricity enables a safe and environmentally benign chemical transformati…

Green chemistryChemical transformation010405 organic chemistryChemistryArylGeneral Chemistry010402 general chemistryElectrochemistry01 natural sciencesCombinatorial chemistryCatalysis0104 chemical sciencesMetalchemistry.chemical_compoundNucleophileReagentvisual_artvisual_art.visual_art_mediumSurface modificationAngewandte Chemie International Edition
researchProduct

Moderne Aspekte der Elektrochemie zur Synthese hochwertiger organischer Produkte

2018

010405 organic chemistryChemistryGeneral Medicine010402 general chemistry01 natural sciences0104 chemical sciencesAngewandte Chemie
researchProduct

Selective Formation of 4,4'-Biphenols by Anodic Dehydrogenative Cross- and Homo-Coupling Reaction.

2019

A simple and selective electrochemical synthesis by dehydrogenative coupling of unprotected 2,6- or 2,5-substituted phenols to the desired 4,4'-biphenols is reported. Using electricity as the oxidizing reagent avoids pre-functionalization of the starting materials, since a selective activation of the substrates takes place. Without the necessity for metal-catalysts or the use of stoichiometric reagents it is an economic and environmentally friendly transformation. The elaborated electrochemical protocol leads to a broad variety of the desired 4,4'-biphenols in a very simplified manner compared to classical approaches. This is particular the case for the cross-coupled products.

010405 organic chemistryChemistryOrganic ChemistryGeneral Chemistry010402 general chemistryElectrochemistry01 natural sciencesEnvironmentally friendlyCombinatorial chemistryCatalysisCoupling reaction0104 chemical sciencesAnodeReagentOxidizing agentDehydrogenationStoichiometryChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Selective Synthesis of Partially Protected Nonsymmetric Biphenols by Reagent‐ and Metal‐Free Anodic Cross‐Coupling Reaction

2016

The oxidative cross-coupling of aromatic substrates without the necessity of leaving groups or catalysts is described. The selective formation of partially protected nonsymmetric 2,2'-biphenols via electroorganic synthesis was accomplished with a high yield of isolated product. Since electric current is employed as the terminal oxidant, the reaction is reagent-free; no reagent waste is generated as only electrons are involved. The reaction is conducted in an undivided cell, and is suitable for scale-up and inherently safe. The implementation of O-silyl-protected phenols in this transformation results in both significantly enhanced yields and higher selectivity for the desired nonsymmetric 2…

Silylation010405 organic chemistryChemistrySubstrate (chemistry)General Chemistry010402 general chemistry01 natural sciencesCombinatorial chemistryCatalysisCoupling reaction0104 chemical sciencesCatalysisReagentYield (chemistry)Organic chemistryMoietySelectivityAngewandte Chemie International Edition
researchProduct

Cover Picture: Source of Selectivity in Oxidative Cross-Coupling of Aryls by Solvent Effect of 1,1,1,3,3,3-Hexafluoropropan-2-ol (Chem. Eur. J. 35/20…

2015

Coupling (electronics)Hydrogen bondChemistryOrganic ChemistryOrganic chemistryGeneral ChemistrySolvent effectsSelectivityMedicinal chemistryCatalysisChemistry - A European Journal
researchProduct

ChemInform Abstract: Synthesis of meta-Terphenyl-2,2′′-diols by Anodic C-C Cross-Coupling Reactions.

2016

The anodic C−C cross-coupling reaction is a versatile synthetic approach to symmetric and non-symmetric biphenols and arylated phenols. We herein present a metal-free electrosynthetic method that provides access to symmetric and non-symmetric meta-terphenyl-2,2′′-diols in good yields and high selectivity. Symmetric derivatives can be obtained by direct electrolysis in an undivided cell. The synthesis of non-symmetric meta-terphenyl-2,2′′-diols required two electrochemical steps. The reactions are easy to conduct and scalable. The method also features a broad substrate scope, and a large variety of functional groups are tolerated. The target molecules may serve as [OCO]3− pincer ligands.

ElectrolysisSubstrate (chemistry)General MedicineElectrochemistryCombinatorial chemistryCoupling reactionlaw.inventionPincer movementAnodechemistry.chemical_compoundchemistrylawTerphenylMoleculeChemInform
researchProduct

Source of Selectivity in Oxidative Cross-Coupling of Aryls by Solvent Effect of 1,1,1,3,3,3-Hexafluoropropan-2-ol

2015

Abstract Solvents such as 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) with a high capacity for donating hydrogen bonds generate solvates that enter into selective cross-coupling reactions of aryls upon oxidation. When electric current is employed for oxidation, reagent effects can be excluded and a decoupling of nucleophilicity from oxidation potential can be achieved. The addition of water or methanol to the electrolyte allows a shift of oxidation potentials in a specific range, creating suitable systems for selective anodic cross-coupling reactions. The shift in the redox potentials depends on the substitution pattern of the substrate employed. The concept has been expanded from arene-phenol…

NucleophileChemistryReagentOrganic ChemistrySubstrate (chemistry)Oxidative coupling of methaneElectrolyteGeneral ChemistrySolvent effectsSelectivityPhotochemistryRedoxCatalysisChemistry - A European Journal
researchProduct

ChemInform Abstract: Source of Selectivity in Oxidative Cross-Coupling of Aryls by Solvent Effect of 1,1,1,3,3,3-Hexafluoropropan-2-ol.

2016

Abstract Solvents such as 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) with a high capacity for donating hydrogen bonds generate solvates that enter into selective cross-coupling reactions of aryls upon oxidation. When electric current is employed for oxidation, reagent effects can be excluded and a decoupling of nucleophilicity from oxidation potential can be achieved. The addition of water or methanol to the electrolyte allows a shift of oxidation potentials in a specific range, creating suitable systems for selective anodic cross-coupling reactions. The shift in the redox potentials depends on the substitution pattern of the substrate employed. The concept has been expanded from arene-phenol…

NucleophileChemistryReagentSubstrate (chemistry)Oxidative coupling of methaneGeneral MedicineElectrolyteSolvent effectsSelectivityPhotochemistryRedoxChemInform
researchProduct

Metall- und reagensfreie dehydrierende formale Benzyl-Aryl-Kreuzkupplung durch anodische Aktivierung in 1,1,1,3,3,3-Hexafluorpropan-2-ol

2018

010405 organic chemistryChemistryGeneral Medicine010402 general chemistry01 natural sciences0104 chemical sciencesAngewandte Chemie
researchProduct

Synthesis ofmeta-Terphenyl-2,2′′-diols by Anodic C−C Cross-Coupling Reactions

2016

The anodic C-C cross-coupling reaction is a versatile synthetic approach to symmetric and non-symmetric biphenols and arylated phenols. We herein present a metal-free electrosynthetic method that provides access to symmetric and non-symmetric meta-terphenyl-2,2''-diols in good yields and high selectivity. Symmetric derivatives can be obtained by direct electrolysis in an undivided cell. The synthesis of non-symmetric meta-terphenyl-2,2''-diols required two electrochemical steps. The reactions are easy to conduct and scalable. The method also features a broad substrate scope, and a large variety of functional groups are tolerated. The target molecules may serve as [OCO](3-) pincer ligands.

Electrolysis010405 organic chemistrySubstrate (chemistry)General Chemistry010402 general chemistryElectrochemistry01 natural sciencesCombinatorial chemistryCatalysisCoupling reaction0104 chemical scienceslaw.inventionPincer movementAnodechemistry.chemical_compoundchemistrylawTerphenylOrganic chemistryMoleculeAngewandte Chemie International Edition
researchProduct

Synthese vonmeta-Terphenyl-2,2′′-diolen durch anodische C-C-Kreuzkupplungen

2016

Die anodische C-C-Kreuzkupplung ist eine vielseitig einsetzbare Transformation, die eine gezielte Synthese von Biphenolen und arylierten Phenolen ermoglicht. Wir berichten uber einen ebenfalls elektrosynthetischen, metallfreien Ansatz, der einen Zugang zu symmetrischen und nichtsymmetrischen meta-Terphenyl-2,2′′-diolen in guten Ausbeuten und hoher Selektivitat ermoglicht. Symmetrische Derivate konnen durch eine direkte Synthese in einer ungeteilten Zelle gewonnen werden, wohingegen nichtsymmetrische meta-Terphenyl-2,2′′-diole zwei elektrochemische Stufen benotigen. Die milde Methode ist einfach durchzufuhren und skalierbar. Auserdem konnte erstmalig eine breite Substratvariabilitat aufgezei…

010405 organic chemistryGeneral Medicine010402 general chemistry01 natural sciences0104 chemical sciencesAngewandte Chemie
researchProduct

The Catalytic Effect of Fluoroalcohol Mixtures Depends on Domain Formation

2017

In the present contribution, we investigated catalytically active mixtures of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and aqueous H2O2 by molecular dynamics simulations. It is clearly observable that the HFIP molecule strongly binds to the H2O2, which is necessary for the desired catalytic reaction to occur. Upon the addition of the substrate cyclooctene to the solution, this interaction is enhanced, which suggests that the catalytic activity is increased by the presence of the hydrocarbon. We could clearly observe the microheterogeneous structure of the mixture, which is the result of the separation of the hydroxyl groups, water, and H2O2 from the fluorinated alkyl moiety in the form of l…

chemistry.chemical_classificationAqueous solution010405 organic chemistrySubstrate (chemistry)General Chemistry010402 general chemistryPhotochemistry01 natural sciencesCatalysis0104 chemical sciencesCatalysischemistry.chemical_compoundHydrocarbonchemistryCycloocteneMoietyOrganic chemistryMoleculeAlkylACS Catalysis
researchProduct

Inside Back Cover: Metal- and Reagent-Free Dehydrogenative Formal Benzyl-Aryl Cross-Coupling by Anodic Activation in 1,1,1,3,3,3-Hexafluoropropan-2-o…

2018

Green chemistryChemistryArylGeneral ChemistryElectrochemistryMedicinal chemistryCatalysisAnodeCoupling (electronics)Metalchemistry.chemical_compoundvisual_artReagentvisual_art.visual_art_mediumAngewandte Chemie International Edition
researchProduct

A solvent-directed stereoselective and electrocatalytic synthesis of diisoeugenol.

2018

A stereoselective and electrocatalytic coupling reaction of isoeugenol has been reported for the first time in a 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)/boron-doped diamond (BDD) electrode system. This particular C-C bond formation and diastereoselectivity is driven by a solvate interaction between the radical species and another isoeugenol molecule. Due to an electrocatalytic cycle, only understoichiometric amounts of charge are necessary. Since electric current is directly employed as the oxidant, the reaction is metal and reagent-free. In addition, the electrolysis can be conducted in a very simple undivided beaker-type cell under constant current conditions. Therefore, the protocol is …

010402 general chemistry01 natural sciencesCatalysisCoupling reactionlaw.inventionMetalchemistry.chemical_compoundlawMaterials ChemistryMoleculeElectrolysis010405 organic chemistryMetals and AlloysGeneral ChemistryCombinatorial chemistry0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSolventIsoeugenolchemistryvisual_artElectrodeCeramics and Compositesvisual_art.visual_art_mediumStereoselectivityChemical communications (Cambridge, England)
researchProduct

Unexpected high robustness of electrochemical cross-coupling for a broad range of current density

2017

Solvent effect enables electrosynthesis of organic compounds with strong variation of electric current at constant efficacy.

CouplingMultidisciplinaryMaterials science010405 organic chemistrySciAdv r-articlesNanotechnologyElectrolyte010402 general chemistry01 natural sciences0104 chemical sciencesAnodeChemical physicsRobustness (computer science)Yield (chemistry)ElectrochemistryConstant currentCurrent densityOrder of magnitudeResearch ArticlesResearch ArticleScience Advances
researchProduct

Cover Picture: Selective Synthesis of Partially Protected Nonsymmetric Biphenols by Reagent‐ and Metal‐Free Anodic Cross‐Coupling Reaction (Angew. Ch…

2016

010405 organic chemistryChemistryINTGeneral Chemistry010402 general chemistryElectrochemistry01 natural sciencesCatalysisCoupling reaction0104 chemical sciencesAnodeC c couplingMetal freeReagentPolymer chemistryOrganic chemistryCover (algebra)Angewandte Chemie International Edition
researchProduct

Titelbild: Selektive Synthese teilgeschützter unsymmetrischer Biphenole durch reagens‐ und metallfreie anodische Kreuzkupplung (Angew. Chem. 39/2016)

2016

General MedicineAngewandte Chemie
researchProduct

Single and Twofold Metal- and Reagent-Free Anodic C-C Cross-Coupling of Phenols with Thiophenes.

2017

The first electrochemical dehydrogenative C-C cross-coupling of thiophenes with phenols has been realized. This sustainable and very simple to perform anodic coupling reaction enables access to two classes of compounds of significant interest. The scope for electrochemical C-H-activating cross-coupling reactions was expanded to sulfur heterocycles. Previously, only various benzoid aromatic systems could be converted, while the application of heterocycles was not successful in the electrochemical C-H-activating cross-coupling reaction. Here, reagent- and metal-free reaction conditions offer a sustainable electrochemical pathway that provides an attractive synthetic method to a broad variety …

Coupling010405 organic chemistryChemistrychemistry.chemical_elementGeneral Chemistry010402 general chemistryElectrochemistry01 natural sciencesSulfurCatalysisCoupling reaction0104 chemical sciencesAnodeMetalchemistry.chemical_compoundReagentvisual_artvisual_art.visual_art_mediumOrganic chemistryPhenolsAngewandte Chemie (International ed. in English)
researchProduct

Electrifying Organic Synthesis

2018

Abstract The direct synthetic organic use of electricity is currently experiencing a renaissance. More synthetically oriented laboratories working in this area are exploiting both novel and more traditional concepts, paving the way to broader applications of this niche technology. As only electrons serve as reagents, the generation of reagent waste is efficiently avoided. Moreover, stoichiometric reagents can be regenerated and allow a transformation to be conducted in an electrocatalytic fashion. However, the application of electroorganic transformations is more than minimizing the waste footprint, it rather gives rise to inherently safe processes, reduces the number of steps of many synth…

Reaction conditionsoxidation010405 organic chemistrybusiness.industryComputer scienceReviewsThe RenaissancereductionReviewGeneral Chemistry010402 general chemistry01 natural sciencesCatalysis0104 chemical scienceschemistry.chemical_compoundTerminal (electronics)chemistryElectrochemistrysynthetic methodssustainable chemistryOrganic synthesisBiochemical engineeringElectricitybusinessRenewable resourceAngewandte Chemie International Edition
researchProduct

ChemInform Abstract: Selective Synthesis of Partially Protected Nonsymmetric Biphenols by Reagent- and Metal-Free Anodic Cross-Coupling Reaction.

2016

The oxidative cross-coupling of aromatic substrates without the necessity of leaving groups or catalysts is described. The selective formation of partially protected nonsymmetric 2,2'-biphenols via electroorganic synthesis was accomplished with a high yield of isolated product. Since electric current is employed as the terminal oxidant, the reaction is reagent-free; no reagent waste is generated as only electrons are involved. The reaction is conducted in an undivided cell, and is suitable for scale-up and inherently safe. The implementation of O-silyl-protected phenols in this transformation results in both significantly enhanced yields and higher selectivity for the desired nonsymmetric 2…

SilylationChemistryReagentYield (chemistry)Substrate (chemistry)MoietyGeneral MedicineSelectivityCombinatorial chemistryCoupling reactionCatalysisChemInform
researchProduct

CCDC 1485994: Experimental Crystal Structure Determination

2016

Related Article: Sebastian Lips, Anton Wiebe, Bernd Elsler, Dieter Schollmeyer, Katrin M. Dyballa, Robert Franke, Siegfried R. Waldvogel|2016|Angew.Chem.,Int.Ed.|55|10872|doi:10.1002/anie.201605865

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates33''4'6'-tetramethoxy-55''-dimethyl-11':3'1''-terphenyl-22''-diol dichloromethane solvate
researchProduct

CCDC 1840041: Experimental Crystal Structure Determination

2018

Related Article: Yasushi Imada, Johannes L. Röckl, Anton Wiebe, Tile Gieshoff, Dieter Schollmeyer, Kazuhiro Chiba, Robert Franke, Siegfried R. Waldvogel|2018|Angew.Chem.,Int.Ed.|57|12136|doi:10.1002/anie.201804997

Space GroupCrystallography7-hydroxy-3-[(4-hydroxy-35-dimethylphenyl)methyl]-4-methyl-2H-1-benzopyran-2-oneCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1569308: Experimental Crystal Structure Determination

2018

Related Article: Anton Wiebe, Sebastian Lips, Dieter Schollmeyer, Robert Franke, Siegfried R. Waldvogel|2017|Angew.Chem.,Int.Ed.|56|14727|doi:10.1002/anie.201708946

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters22'-(34-diphenylthiene-25-diyl)bis(6-t-butyl-4-methoxyphenol)Experimental 3D Coordinates
researchProduct

CCDC 1476308: Experimental Crystal Structure Determination

2016

Related Article: Anton Wiebe, Dieter Schollmeyer, Katrin M. Dyballa, Robert Franke, Siegfried R. Waldvogel|2016|Angew.Chem.,Int.Ed.|55|11801|doi:10.1002/anie.201604321

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters3-t-butyl-4'55'-trimethoxy-2'-((triisopropylsilyl)oxy)biphenyl-2-olExperimental 3D Coordinates
researchProduct

CCDC 1485996: Experimental Crystal Structure Determination

2016

Related Article: Sebastian Lips, Anton Wiebe, Bernd Elsler, Dieter Schollmeyer, Katrin M. Dyballa, Robert Franke, Siegfried R. Waldvogel|2016|Angew.Chem.,Int.Ed.|55|10872|doi:10.1002/anie.201605865

Space GroupCrystallography34'5''6'-tetramethoxy-4''5-dimethyl-11':3'1''-terphenyl-22''-diolCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1858697: Experimental Crystal Structure Determination

2019

Related Article: Benedikt Dahms, Philipp J. Kohlpaintner, Anton Wiebe, Rolf Breinbauer, Dieter Schollmeyer, Siegfried R. Waldvogel|2019|Chem.-Eur.J.|25|2713|doi:10.1002/chem.201805737

Space GroupCrystallographyCrystal SystemCrystal Structure35-dimethoxy-3'5'-bis(propan-2-yl)[11'-biphenyl]-44'-diolCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1476309: Experimental Crystal Structure Determination

2016

Related Article: Anton Wiebe, Dieter Schollmeyer, Katrin M. Dyballa, Robert Franke, Siegfried R. Waldvogel|2016|Angew.Chem.,Int.Ed.|55|11801|doi:10.1002/anie.201604321

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters3-t-butyl-5'-isopropyl-5-methoxy-4'-methyl-2'-((triisopropylsilyl)oxy)biphenyl-2-olExperimental 3D Coordinates
researchProduct

CCDC 1008816: Experimental Crystal Structure Determination

2015

Related Article: Bernd Elsler, Anton Wiebe, Dieter Schollmeyer, Katrin M. Dyballa, Robert Franke, Siegfried R. Waldvogel|2015|Chem.-Eur.J.|21|12321|doi:10.1002/chem.201501604

2'3-Dimethoxy-2-hydroxy-4'55'-trimethylbiphenylSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1008819: Experimental Crystal Structure Determination

2015

Related Article: Bernd Elsler, Anton Wiebe, Dieter Schollmeyer, Katrin M. Dyballa, Robert Franke, Siegfried R. Waldvogel|2015|Chem.-Eur.J.|21|12321|doi:10.1002/chem.201501604

Space GroupCrystallographyCrystal System2'-amino-3'-chloro-3-methoxy-55'-dimethylbiphenyl-24'-diol dichloromethane solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1485995: Experimental Crystal Structure Determination

2016

Related Article: Sebastian Lips, Anton Wiebe, Bernd Elsler, Dieter Schollmeyer, Katrin M. Dyballa, Robert Franke, Siegfried R. Waldvogel|2016|Angew.Chem.,Int.Ed.|55|10872|doi:10.1002/anie.201605865

Space GroupCrystallographyCrystal SystemCrystal Structure3-t-butyl-3''4'56'-tetramethoxy-5''-methyl-11':3'1''-terphenyl-22''-diolCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1008820: Experimental Crystal Structure Determination

2015

Related Article: Bernd Elsler, Anton Wiebe, Dieter Schollmeyer, Katrin M. Dyballa, Robert Franke, Siegfried R. Waldvogel|2015|Chem.-Eur.J.|21|12321|doi:10.1002/chem.201501604

N-(3'-t-butyl-2'-hydroxy-45-dimethoxy-5'-methylbiphenyl-2-yl)acetamide methanol solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1569307: Experimental Crystal Structure Determination

2018

Related Article: Anton Wiebe, Sebastian Lips, Dieter Schollmeyer, Robert Franke, Siegfried R. Waldvogel|2017|Angew.Chem.,Int.Ed.|56|14727|doi:10.1002/anie.201708946

Space GroupCrystallography2-t-butyl-6-(3-hexylthiophen-2-yl)-4-methoxyphenolCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1008818: Experimental Crystal Structure Determination

2015

Related Article: Bernd Elsler, Anton Wiebe, Dieter Schollmeyer, Katrin M. Dyballa, Robert Franke, Siegfried R. Waldvogel|2015|Chem.-Eur.J.|21|12321|doi:10.1002/chem.201501604

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters2'3-Dimethoxy-4'5-dimethyl-2-hydroxy-5'-(methylethyl)biphenylExperimental 3D Coordinates
researchProduct

CCDC 1008817: Experimental Crystal Structure Determination

2015

Related Article: Bernd Elsler, Anton Wiebe, Dieter Schollmeyer, Katrin M. Dyballa, Robert Franke, Siegfried R. Waldvogel|2015|Chem.-Eur.J.|21|12321|doi:10.1002/chem.201501604

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters34'-Dimethoxy-2-hydroxy-2'55'-trimethylbiphenylExperimental 3D Coordinates
researchProduct

CCDC 1485997: Experimental Crystal Structure Determination

2016

Related Article: Sebastian Lips, Anton Wiebe, Bernd Elsler, Dieter Schollmeyer, Katrin M. Dyballa, Robert Franke, Siegfried R. Waldvogel|2016|Angew.Chem.,Int.Ed.|55|10872|doi:10.1002/anie.201605865

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters2''-hydroxy-3''-isopropyl-34'5''6'-tetramethoxy-5-methyl-11':3'1''-terphenyl-2-yl acetateExperimental 3D Coordinates
researchProduct

CCDC 1858698: Experimental Crystal Structure Determination

2019

Related Article: Benedikt Dahms, Philipp J. Kohlpaintner, Anton Wiebe, Rolf Breinbauer, Dieter Schollmeyer, Siegfried R. Waldvogel|2019|Chem.-Eur.J.|25|2713|doi:10.1002/chem.201805737

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates3'5'-dimethoxy-25-dimethyl[11'-biphenyl]-44'-diol
researchProduct

CCDC 1840040: Experimental Crystal Structure Determination

2018

Related Article: Yasushi Imada, Johannes L. Röckl, Anton Wiebe, Tile Gieshoff, Dieter Schollmeyer, Kazuhiro Chiba, Robert Franke, Siegfried R. Waldvogel|2018|Angew.Chem.,Int.Ed.|57|12136|doi:10.1002/anie.201804997

2-[(4-hydroxy-35-dimethylphenyl)methyl]-4-methoxy-7H-furo[32-g][1]benzopyran-7-oneSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct