0000000001310681

AUTHOR

Jacques Pliquett

showing 10 related works from this author

Aza-BODIPY: A New Vector for Enhanced Theranostic Boron Neutron Capture Therapy Applications

2020

Boron neutron capture therapy (BNCT) is a radiotherapeutic modality based on the nuclear capture of slow neutrons by stable 10B atoms followed by charged particle emission that inducing extensive damage on a very localized level (&lt

Boron CompoundsBiodistributionboron compound[SDV.BIO]Life Sciences [q-bio]/BiotechnologyFluorophorein ovo modelAstrophysics::High Energy Astrophysical Phenomena[SDV]Life Sciences [q-bio]theranosticNuclear TheoryPhysics::Medical Physicsaza-BODIPY[SDV.CAN]Life Sciences [q-bio]/CancerBoron Neutron Capture Therapy010402 general chemistry01 natural sciencesSodium BorocaptateArticle03 medical and health scienceschemistry.chemical_compoundoptical imagingNIR-IMice0302 clinical medicine[SDV.CAN] Life Sciences [q-bio]/CancerPhysics::Atomic and Molecular ClustersAnimalsHumansNeutronNuclear Experiment10 B-BSHlcsh:QH301-705.5<sup>10</sup>B-BSHChemistryRadiochemistry10B-BSHGeneral MedicineFluorescence[SDV.BIO] Life Sciences [q-bio]/Biotechnology0104 chemical sciencesSWIR[SDV] Life Sciences [q-bio]Neutron capturelcsh:Biology (General)030220 oncology & carcinogenesisBNCTFemaleBODIPYEx vivoCells
researchProduct

Near-infrared emitting fluorescent homobimetallic gold(I) complexes displaying promising in vitro and in vivo therapeutic properties

2021

International audience; Boron neutron capture therapy (BNCT) has the potential to specifically destroy tumor cells without damaging the tissues infiltrated by the tumor. BNCT is a binary treatment method based on the combination of two agents that have no effect when applied individually: 10B and thermal neutrons. Exclusively, the combination of both produces an effect, whose extent depends on the amount of 10B in the tumor but also on the organs at risk. It is not yet possible to determine the 10B concentration in a specific tissue using non-invasive methods. At present, it is only possible to measure the 10B concentration in blood and to estimate the boron concentration in tissues based o…

Boron Compoundsinorganic chemicalsCell SurvivalInfrared RaysAntineoplastic Agents01 natural sciencesMiceStructure-Activity Relationship03 medical and health sciencesOptical imagingCoordination ComplexesIn vivoDrug DiscoveryTumor Cells CulturedAza-bodipyAnimalsHumans[CHIM]Chemical SciencesNir fluorescenceComputingMilieux_MISCELLANEOUSCell ProliferationFluorescent Dyes030304 developmental biologyPharmacologyAza CompoundsMice Inbred BALB C0303 health sciencesDose-Response Relationship DrugMolecular Structure010405 organic chemistryChemistryOptical ImagingOrganic ChemistryNear-infrared spectroscopyNeoplasms ExperimentalGeneral MedicineFluorescenceIn vitro3. Good health0104 chemical sciencesBiophysicsGoldDrug Screening Assays AntitumorCancer cell lines
researchProduct

A Promising Family of Fluorescent Water-Soluble aza-BODIPY Dyes for in Vivo Molecular Imaging.

2019

A new family of water-soluble and bioconjugatable aza-BODIPY fluorophores was designed and synthesized using a boron- functionalization strategy. These dissymmetric bis-ammonium aza-BODIPY dyes present optimal properties for a fluorescent probe; i.e., they are highly water-soluble, very stable in physiological medium; they do not aggregate in PBS, possess high quantum yield; and finally, they can be easily bioconjugated to antibodies. Preliminary in vitro and in vivo studies were performed for one of these fluorophores to image PD-L1 (Programmed Death-Ligand 1), highlighting the high potential of these new probes for future in vivo optical imaging studies.

Boron CompoundsBiomedical EngineeringPharmaceutical ScienceQuantum yieldBioengineering02 engineering and technology01 natural sciencesMiceIn vivoCell Line TumorAza-bodipyAnimalsHumansFluorescent DyesPharmacologyMice Inbred BALB C010405 organic chemistryChemistryOrganic ChemistryWater021001 nanoscience & nanotechnologyCombinatorial chemistryFluorescenceIn vitro0104 chemical sciences3. Good healthMolecular ImagingWater solubleSolubilitySurface modificationHeterograftsMolecular imaging0210 nano-technologyBiotechnologyBioconjugate chemistry
researchProduct

Water-Soluble Aza-BODIPYs: Biocompatible Organic Dyes for High Contrast In Vivo NIR-II Imaging

2020

International audience; A simple NIR-II emitting water-soluble system has been developed and applied in vitro and in vivo. In vitro, the fluorophore quickly accumulated in 2D and 3D cell cultures and rapidly reached the tumor in rodents, showing high NIR-II contrast for up to 1 week. This very efficient probe possesses all the qualities necessary for translation to the clinic as well as for the development of NIR-II emitting materials.

Fluorophore[SDV]Life Sciences [q-bio]Biomedical EngineeringPharmaceutical ScienceBioengineering02 engineering and technology01 natural scienceschemistry.chemical_compoundIn vivoneoplasmsPharmacology[SDV.IB] Life Sciences [q-bio]/BioengineeringHigh contrast010405 organic chemistryOrganic Chemistrytechnology industry and agriculture021001 nanoscience & nanotechnologyBiocompatible materialequipment and suppliesFluorescenceIn vitro3. Good health0104 chemical sciences[SDV] Life Sciences [q-bio]Water solublesurgical procedures operativechemistryBiophysics[SDV.IB]Life Sciences [q-bio]/Bioengineering0210 nano-technologyPreclinical imagingBiotechnology
researchProduct

Design of a multifunctionalizable BODIPY platform for the facile elaboration of a large series of gold(i)-based optical theranostics.

2018

A simple trifunctional BODIPY platform was designed. The high potential of this platform was validated via the elaboration of twelve optical theranostics. More specifically, we reported on the synthesis, the characterization, the photophysical properties, and the evaluation of the hydrophilicity properties of the different BODIPY derivatives, as well as a theoretical rationalization of the intriguing chemical behavior of some of them. The antiproliferative evaluation and confocal imaging of the different compounds in three human and murine cancer cell lines were performed and analysed, along with the measurement of gold(I) uptake in one cancer cell line via ICP-MS.

Materials science010405 organic chemistryLarge seriesNanotechnology010402 general chemistry01 natural sciences0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundchemistryConfocal imagingBODIPYCancer cell linesHigh potentialElaborationDalton transactions (Cambridge, England : 2003)
researchProduct

Development of fluorescent platforms for the design of multifunctional compounds for in vitro and in vivo applications in molecular imaging

2018

The objective of this thesis was the development and evaluation of new molecular platformsfor optical fluorescence imaging applications. This work sought to develop new tools that caneasily be modified and adapted to the specific needs of the intended use. This is required asthe fluorophore will influence the final properties and should thus be incorporated beforestructural optimization of the selected agent rather than at the very end. Two main axes wereexplored; the use of BODIPYs for the development of trackable therapeutic agents that areprimarily intended for in vitro applications and the use of azaBODIPYs for the design of an invivo compatible fluorescent platform.In the first part tw…

AzaBODIPYTraçable[SPI.OPTI] Engineering Sciences [physics]/Optics / PhotonicImagerieBodipyTrackable[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicTheranostiqueTheranosticsFluorescenceImaging
researchProduct

CCDC 1825949: Experimental Crystal Structure Determination

2018

Related Article: Jacques Pliquett, Souheila Amor, Miguel Ponce-Vargas, Myriam Laly, Cindy Racoeur, Yoann Rousselin, Franck Denat, Ali Bettaïeb, Paul Fleurat-Lessard, Catherine Paul, Christine Goze, Ewen Bodio|2018|Dalton Trans.|47|11203|doi:10.1039/C8DT02364F

methyl 4-(37-dichloro-55-difluoro-5H-4lambda55lambda5-dipyrrolo[12-c:2'1'-f][132]diazaborinin-10-yl)benzoateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1825950: Experimental Crystal Structure Determination

2018

Related Article: Jacques Pliquett, Souheila Amor, Miguel Ponce-Vargas, Myriam Laly, Cindy Racoeur, Yoann Rousselin, Franck Denat, Ali Bettaïeb, Paul Fleurat-Lessard, Catherine Paul, Christine Goze, Ewen Bodio|2018|Dalton Trans.|47|11203|doi:10.1039/C8DT02364F

Space GroupCrystallographyCrystal SystemCrystal Structure4-(37-dichloro-55-difluoro-5H-4lambda55lambda5-dipyrrolo[12-c:2'1'-f][132]diazaborinin-10-yl)benzoic acidCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1825951: Experimental Crystal Structure Determination

2018

Related Article: Jacques Pliquett, Souheila Amor, Miguel Ponce-Vargas, Myriam Laly, Cindy Racoeur, Yoann Rousselin, Franck Denat, Ali Bettaïeb, Paul Fleurat-Lessard, Catherine Paul, Christine Goze, Ewen Bodio|2018|Dalton Trans.|47|11203|doi:10.1039/C8DT02364F

({2-[(5-chloro-1H-pyrrol-2-yl)(phenyl)methylidene]-N-[2-(diphenylphosphanyl)ethyl]-2H-pyrrol-5-aminato}(difluoro)boron)-chloro-gold(i) dichloromethane solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1825952: Experimental Crystal Structure Determination

2018

Related Article: Jacques Pliquett, Souheila Amor, Miguel Ponce-Vargas, Myriam Laly, Cindy Racoeur, Yoann Rousselin, Franck Denat, Ali Bettaïeb, Paul Fleurat-Lessard, Catherine Paul, Christine Goze, Ewen Bodio|2018|Dalton Trans.|47|11203|doi:10.1039/C8DT02364F

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters({4-[(5-chloro-1H-pyrrol-2-yl)(5-chloro-2H-pyrrol-2-ylidene)methyl]-N-[2-(diphenylphosphanyl)ethyl]benzamidato}(difluoro)boron)-chloro-gold(i) dichloromethane solvateExperimental 3D Coordinates
researchProduct