0000000001315618

AUTHOR

Svenja Morsbach

showing 26 related works from this author

Protein Corona: Prevention of Dominant IgG Adsorption on Nanocarriers in IgG‐Enriched Blood Plasma by Clusterin Precoating (Adv. Sci. 10/2019)

2019

The development of nanocarriers for drug delivery is challenged by individual blood composition fluctuations. In article number 1802199, Svenja Morsbach and co‐workers report the accumulation of immunoglobulins in the protein corona of nanocarriers in IgG‐enriched blood plasma resulting in increased cell uptake. This could be prevented by pre‐coating the nanocarriers with the “stealth” protein clusterin. Cover design by Stefan Schuhmacher.

Back Coverstealth effectnanocarriersClusterinbiologyclusterinChemistryGeneral Chemical EngineeringGeneral EngineeringGeneral Physics and AstronomyMedicine (miscellaneous)Protein CoronaBiochemistry Genetics and Molecular Biology (miscellaneous)Molecular biologyImmunoglobulin Gimmunoglobulin Gprotein coronaAdsorptionBlood plasmabiology.proteinGeneral Materials ScienceNanocarriersAdvanced Science
researchProduct

Communication versus waterproofing: the physics of insect cuticular hydrocarbons

2019

Understanding the evolution of complex traits is among the major challenges in biology. One such trait is the cuticular hydrocarbon (CHC) layer in insects. It protects against desiccation and provides communication signals, especially in social insects. CHC composition is highly diverse within and across species. To understand the adaptive value of this chemical diversity, we must understand how it affects biological functionality. So far, CHCs received ample research attention, but their physical properties were little studied. We argue that these properties determine their biological functionality, and are vital to understand how CHC composition affects their adaptive value. We investigat…

0106 biological sciencesAdaptive valuePhysiologymedia_common.quotation_subjectInsectAquatic ScienceBiology010603 evolutionary biology01 natural sciences03 medical and health sciencesSpecies SpecificityFreezingAnimalsMolecular BiologymicrorheologyEcology Evolution Behavior and SystematicsComputingMilieux_MISCELLANEOUS030304 developmental biologymedia_commonPhysics0303 health sciencesCalorimetry Differential ScanningAntsViscosityHydrocarbonsAnimal CommunicationInsect ScienceChemical diversitycuticular hydrocarbonAnimal Science and ZoologyRheologyBiological system[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft]
researchProduct

Engineering von Proteinen an Oberflächen: Von komplementärer Charakterisierung zu Materialoberflächen mit maßgeschneiderten Funktionen

2018

Chemistry02 engineering and technologyGeneral Medicine010402 general chemistry021001 nanoscience & nanotechnology0210 nano-technology01 natural sciences0104 chemical sciencesAngewandte Chemie
researchProduct

Polymeric Nanoparticles: Polymeric Nanoparticles with Neglectable Protein Corona (Small 18/2020)

2020

BiomaterialsMaterials scienceChemical engineeringAsymmetrical Flow Field-Flow FractionationDrug deliveryGeneral Materials ScienceProtein CoronaGeneral ChemistryPolymeric nanoparticlesBiotechnologySmall
researchProduct

Nanoparticle Shape: The Influence of Nanoparticle Shape on Protein Corona Formation (Small 25/2020)

2020

BiomaterialsMaterials scienceChemical engineeringNanoparticleGeneral Materials ScienceProtein CoronaGeneral ChemistryBiotechnologyProtein adsorptionSmall
researchProduct

Denaturation via Surfactants Changes Composition of Protein Corona

2018

The use of nanocarriers as drug delivery vehicles brings them into contact with blood plasma proteins. Polymeric nanocarriers require some sort of surfactant to ensure colloidal stability. Formation of the protein corona is therefore determined not only by the intrinsic properties of the nanocarrier itself but also by the accompanying surfactant. Although it is well-known that surfactants have an impact on protein structure, only few studies were conducted on the specific effect of surfactants on the composition of protein corona of nanocarriers. Therefore, we analyzed the composition of the protein corona on "stealth" nanoparticles with additional surfactant (cetyltrimethylammonium chlorid…

Protein Denaturationendocrine systemPolymers and PlasticsNanoparticleBioengineeringProtein Corona02 engineering and technology010402 general chemistry01 natural sciencesBiomaterialsSurface-Active AgentsProtein structurePulmonary surfactantMaterials ChemistryDenaturation (biochemistry)ClusterinbiologyCetrimoniumChemistry021001 nanoscience & nanotechnology0104 chemical sciencesDrug deliverybiology.proteinBiophysicsProtein CoronaNanocarriers0210 nano-technologyBiomacromolecules
researchProduct

Biomaterial Surface Hydrophobicity-Mediated Serum Protein Adsorption and Immune Responses.

2019

The nature of the protein corona forming on biomaterial surfaces can affect the performance of implanted devices. This study investigated the role of surface chemistry and wettability on human serum-derived protein corona formation on biomaterial surfaces and the subsequent effects on the cellular innate immune response. Plasma polymerization, a substrate-independent technique, was employed to create nanothin coatings with four specific chemical functionalities and a spectrum of surface charges and wettability. The amount and type of protein adsorbed was strongly influenced by surface chemistry and wettability but did not show any dependence on surface charge. An enhanced adsorption of the …

Materials scienceTHP-1 Cellsplasma polymerizationwettabilityBiomaterial Surface ModificationsProtein CoronaBiocompatible Materials02 engineering and technology010402 general chemistry01 natural sciencesAdsorptionHumansGeneral Materials ScienceSurface chargeOpsoninInnate immune systemMacrophagesbiomaterialBiomaterialBlood Proteins021001 nanoscience & nanotechnologyhuman serumprotein adsorptionimmune responsesImmunity Innate0104 chemical sciencesBiophysicsProtein CoronaAdsorption0210 nano-technologyHydrophobic and Hydrophilic InteractionsProtein adsorptionACS applied materialsinterfaces
researchProduct

Engineering Proteins at Interfaces: From Complementary Characterization to Material Surfaces with Designed Functions

2018

Abstract Once materials come into contact with a biological fluid containing proteins, proteins are generally—whether desired or not—attracted by the material's surface and adsorb onto it. The aim of this Review is to give an overview of the most commonly used characterization methods employed to gain a better understanding of the adsorption processes on either planar or curved surfaces. We continue to illustrate the benefit of combining different methods to different surface geometries of the material. The thus obtained insight ideally paves the way for engineering functional materials that interact with proteins in a predetermined manner.

Surface (mathematics)Protein FoldingMaterials scienceSurface PropertiesengineeringReviewsNanotechnology02 engineering and technologyReview010402 general chemistryProtein Engineering01 natural sciencesCatalysisBiological fluidTheranostic NanomedicineNanomaterialsinterfacesAdsorptionPlanarCharacterization methodscharacterizationnanomaterialsDrug CarriersProteinsGeneral Chemistry021001 nanoscience & nanotechnologyprotein adsorption0104 chemical sciencesCharacterization (materials science)NanostructuresProtein Corona0210 nano-technologyProtein adsorptionProtein BindingAngewandte Chemie (International Ed. in English)
researchProduct

Bio-orthogonal triazolinedione (TAD) crosslinked protein nanocapsules affect protein adsorption and cell interaction

2020

Albumin-based protein nanocarriers have been widely exploited as drug delivery systems, since they show excellent degradability, low toxicity, but at the same time provide high loading capacity and relevant uptake into cells. For the formation of protein nanocapsules, bio-orthogonal reactions are important so that the material to be encapsulated is not affected by the shell formation. We show that protein nanocapsules with narrow size distributions and low protein adsorption upon contact with blood serum can be synthesized by inverse miniemulsion and interfacial crosslinking of the protein using triazolinediones (TADs) as powerful dienophiles and enophiles, which smoothly perform electrophi…

Low proteinPolymers and PlasticsChemistryOrganic ChemistryBioengineeringBiochemistryBlood proteinsNanocapsulesMiniemulsionBlood serumDrug deliveryBiophysicsNanocarriersProtein adsorption
researchProduct

Polymeric Nanoparticles with Neglectable Protein Corona

2020

Small : nano micro 16(18), 1907574 (2020). doi:10.1002/smll.201907574

540 Chemistry and allied sciencesDispersity610 Medizinmicellar structuresNanoparticleProtein Corona02 engineering and technology010402 general chemistry01 natural sciencesPolyethylene GlycolsBiomaterialschemistry.chemical_compoundAdsorption610 Medical sciencesHumansGeneral Materials ScienceParticle SizeGel electrophoresisChemistryasymmetrical flow field-flow fractionationSarcosineGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesChemical engineering540 Chemiedrug deliveryNanoparticlesParticleProtein CoronaParticle sizePeptides0210 nano-technologyHydrophobic and Hydrophilic InteractionsEthylene glycolBiotechnologySmall
researchProduct

Temperature‐Responsive Nanoparticles Enable Specific Binding of Apolipoproteins from Human Plasma

2021

Apolipoproteins are an important class of proteins because they provide a so-called stealth effect to nanoparticles. The stealth effect on nanocarriers leads to a reduced unspecific uptake into immune cells and thereby to a prolonged blood circulation time. Herein, a novel strategy to bind apolipoproteins specifically on nanoparticles by adjusting the temperature during their incubation in human plasma is presented. This specific binding, in turn, allows a control of the stealth behavior of the nanoparticles. Nanoparticles with a well-defined poly(N-isopropylacrylamide) shell are prepared, displaying a reversible change of hydrophobicity at a temperature around 32 °C. It is shown by label-f…

Apolipoprotein EbiologyChemistryTemperatureNanoparticleProtein CoronaGeneral ChemistryPlasma protein bindingbiology.organism_classificationBiomaterialsHeLaApolipoproteinsBiophysicsbiology.proteinHumansNanoparticlesSurface modificationProtein CoronaGeneral Materials ScienceApolipoprotein A1NanocarriersHeLa CellsBiotechnologySmall
researchProduct

The Influence of Nanoparticle Shape on Protein Corona Formation

2020

Nanoparticles have become an important utility in many areas of medical treatment such as targeted drug and treatment delivery as well as imaging and diagnostics. These advances require a complete understanding of nanoparticles' fate once placed in the body. Upon exposure to blood, proteins adsorb onto the nanoparticles surface and form a protein corona, which determines the particles' biological fate. This study reports on the protein corona formation from blood serum and plasma on spherical and rod‐shaped nanoparticles. These two types of mesoporous silica nanoparticles have identical chemistry, porosity, surface potential, and size in the y ‐dimension, one being a sphere and the other a …

rod shapeSurface Propertiesnanoparticle shapeNanoparticleProtein Corona02 engineering and technology010402 general chemistry01 natural sciencesBiomaterialsCorona (optical phenomenon)protein coronaAdsorptionBlood serumDrug Delivery SystemsGeneral Materials ScienceChemistryAlbuminsphere shapeGeneral ChemistryMesoporous silica021001 nanoscience & nanotechnologySilicon Dioxideprotein adsorption0104 chemical sciences3. Good healthBiophysicsbio-nanoparticle interactionsNanoparticlesProtein Corona0210 nano-technologymesoporous nanoparticlesBiotechnologyProtein adsorption
researchProduct

From Hexaphenylbenzene to 1,2,3,4,5,6-Hexacyclohexylcyclohexane

2020

The hydrogenation of hexaphenylbenzene was studied, affording novel partially hydrogenated hexacyclohexylbenzene (HCB) as well as fully hydrogenated 1,2,3,4,5,6-hexacyclohexylcyclohexane (HCC) as an unprecedented “oligocyclohexyl” molecule. The reaction process was analyzed by mass spectrometry with atmospheric pressure chemical ionization and high-performance liquid chromatography. From a crude product mixture, two different crystals with flake- and block-shapes could be grown and analyzed by X-ray crystallography, revealing their structures as HCB and HCC. While a geared arrangement of cyclohexyl substitutes was found in HCB, two isomeric structures were identified in HCC crystal with cha…

CyclohexaneCommunicationAtmospheric-pressure chemical ionizationGeneral ChemistryMass spectrometryBiochemistryCatalysisCrystalchemistry.chemical_compoundCrystallographyColloid and Surface ChemistrychemistryX-ray crystallographyMoleculeHexaphenylbenzeneJournal of the American Chemical Society
researchProduct

Prevention of Dominant IgG Adsorption on Nanocarriers in IgG‐Enriched Blood Plasma by Clusterin Precoating

2019

Abstract Nanocarriers for medical applications must work reliably within organisms, independent of the individual differences in the blood proteome. Variation in the blood proteome, such as immunoglobulin levels, is a result of environmental, nutrition, and constitution conditions. This variation, however, should not influence the behavior of nanocarriers in biological media. The composition of the protein corona is investigated to understand the influence varying immunoglobulin levels in the blood plasma have on the interactions with nanocarriers. Specifically, the composition of the nanocarriers' coronas is analyzed after incubation in plasma with normal or elevated immunoglobulin G (IgG)…

clusterinGeneral Chemical Engineeringmedia_common.quotation_subjectGeneral Physics and AstronomyMedicine (miscellaneous)Protein Corona02 engineering and technology010402 general chemistry01 natural sciencesBiochemistry Genetics and Molecular Biology (miscellaneous)Immunoglobulin Gimmunoglobulin Gprotein coronaBlood plasmaGeneral Materials ScienceReceptorInternalizationlcsh:Sciencemedia_commonstealth effectbiologyFull PapernanocarriersChemistryGeneral EngineeringFull Papers021001 nanoscience & nanotechnology0104 chemical sciencesIgG bindingBiophysicsbiology.proteinlcsh:QNanocarriersAntibody0210 nano-technologyAdvanced Science
researchProduct

Preservation of the soft protein corona in distinct flow allows identification of weakly bound proteins.

2018

Abstract Nanocarriers that are used for targeted drug delivery come in contact with biological liquids and subsequently proteins will adsorb to the nanocarriers’ surface to form the so called ‘protein corona’. The protein corona defines the biological identity and determines the biological response towards the nanocarriers in the body. To make nanomedicine safe and reliable it is required to get a better insight into this protein corona and, therefore, the adsorbed proteins have to be characterized. Currently, centrifugation is the common method to isolate the protein corona for further investigations. However, with this method it is only possible to investigate the strongly bound proteins,…

endocrine systemBiomedical EngineeringNanoparticleProtein CoronaSerum Albumin Human02 engineering and technologyCommon method010402 general chemistry01 natural sciencesBiochemistryBiomaterialsCorona (optical phenomenon)HumansMolecular BiologyDrug CarriersChemistryGeneral Medicine021001 nanoscience & nanotechnology0104 chemical sciencesAsymmetric flow field flow fractionationTargeted drug deliveryBiophysicsNanomedicineNanoparticlesProtein CoronaNanocarriers0210 nano-technologyBiotechnologyHeLa CellsActa biomaterialia
researchProduct

Phosphonylation Controls the Protein Corona of Multifunctional Polyglycerol-Modified Nanocarriers.

2018

Nanocarriers are a platform for modern drug delivery. In contact with blood, proteins adsorb to nanocarriers, altering their behavior in vivo. To reduce unspecific protein adsorption and unspecific cellular uptake, nanocarriers are modified with hydrophilic polymers like poly(ethylene glycol) (PEG). However, with PEG the attachment of further functional structures such as targeting units is limited. A method to introduce multifunctionality via polyglycerol (PG) while maintaining the hydrophilicity of PEG is introduced. Different amounts of negatively charged phosphonate groups (up to 29 mol%) are attached to the multifunctional PGs (Mn 2-4 kg mol-1 , Ð < 1.36) by post-modification. PGs are …

GlycerolPolymers and PlasticsPolymersBioengineeringProtein Corona02 engineering and technology010402 general chemistry01 natural sciencesPolyethylene GlycolsBiomaterialschemistry.chemical_compoundPEG ratioMaterials ChemistryHumansDrug Carriers021001 nanoscience & nanotechnologyPhosphonate0104 chemical sciencesMiniemulsionchemistryDrug deliveryBiophysicsNanoparticlesProtein CoronaAdsorptionNanocarriers0210 nano-technologyEthylene glycolBiotechnologyProtein adsorptionMacromolecular bioscience
researchProduct

A bio-orthogonal functionalization strategy for site-specific coupling of antibodies on vesicle surfaces after self-assembly

2019

Attaching targeting ligands on the surface of self-assembled drug delivery systems is the key request for a controlled transport of the drug to a desired location. Most commonly, the amphiphilic molecules (blockcopolymers, lipids etc.) are therefore pre-functionalized before the self-assembly takes place. However, this strategy cannot be applied, if it interferes with the self-assembly process, if the introduced functional groups react with loaded cargo or if natural carriers like extracellular vesicles should be functionalized. Here, we present the site-specific coupling of antibodies to the surface of amino group-terminated liposomes via bio-orthogonal copper-free click chemistry after li…

chemistry.chemical_classificationLiposomePolymers and PlasticsOrganic ChemistryAlkyneBioengineering02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesBiochemistryCombinatorial chemistryCycloaddition0104 chemical scienceschemistry.chemical_compoundchemistryDrug deliveryClick chemistrySurface modificationAzide0210 nano-technologyLinkerPolymer Chemistry
researchProduct

Core Cross-Linked Polymeric Micelles for Specific Iron Delivery: Inducing Sterile Inflammation in Macrophages.

2021

Iron is an essential co-factor for cellular processes. In the immune system, it can activate macrophages and represents a potential therapeutic for various diseases. To specifically deliver iron to macrophages, iron oxide nanoparticles are embedded in polymeric micelles of reactive polysarcosine-block-poly(S-ethylsulfonyl-l-cysteine). Upon surface functionalization via dihydrolipoic acid, iron oxide cores act as crosslinker themselves and undergo chemoselective disulfide bond formation with the surrounding poly(S-ethylsulfonyl-l-cysteine) block, yielding glutathione-responsive core cross-linked polymeric micelles (CCPMs). When applied to primary murine and human macrophages, these nanoparti…

PolymersIronBiomedical EngineeringMacrophage polarizationIron oxidePharmaceutical Science02 engineering and technology010402 general chemistry01 natural sciencesBiomaterialschemistry.chemical_compoundMiceImmune systemDihydrolipoic acidMacrophageAnimalsMicellesInflammationMacrophages021001 nanoscience & nanotechnologyControlled release0104 chemical scienceschemistryBiophysics0210 nano-technologyIron oxide nanoparticlesIntracellularAdvanced healthcare materials
researchProduct

Lateral Size Dependence in FRET between Semiconductor Nanoplatelets and Conjugated Fluorophores

2020

Sensitization of organic molecules by semiconductor nanocrystals is a promising way to boost the absorption of the former, important for applications in fluorescence labeling and photocatalysis. Se...

Materials sciencebusiness.industryNanotechnology02 engineering and technologyConjugated system010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesFluorescence0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOrganic moleculesGeneral EnergyFörster resonance energy transferSemiconductorPhotocatalysisPhysical and Theoretical Chemistry0210 nano-technologybusinessAbsorption (electromagnetic radiation)Size dependence
researchProduct

Protein denaturation caused by heat inactivation detrimentally affects biomolecular corona formation and cellular uptake

2018

Adsorption of blood proteins to the surface of nanocarriers is known to be the critical factor influencing cellular interactions and eventually determining the successful application of nanocarriers as drug carriers in vivo. There is an increasing number of reports summarizing large data sets of all identified corona proteins. However, to date our knowledge about the multiple mechanisms mediating interactions between proteins and nanocarriers is still limited. In this study, we investigate the influence of protein structure on the adsorption process and focus on the effect of heat inactivation of serum and plasma, which is a common cell culture procedure used to inactivate the complement sy…

0301 basic medicineProtein DenaturationHot TemperatureProtein Corona02 engineering and technologyMass SpectrometryMice03 medical and health sciencesProtein structureAdsorptionIn vivoAnimalsGeneral Materials ScienceChromatography High Pressure LiquidCalorimetry Differential ScanningChemistryBlood Proteins021001 nanoscience & nanotechnologyBlood proteinsProtein Structure TertiaryComplement systemClusterinRAW 264.7 Cells030104 developmental biologyBiophysicsNanoparticlesPolystyrenesElectrophoresis Polyacrylamide GelProtein CoronaNanocarriers0210 nano-technologyDrug carrier
researchProduct

Quantification of fluorescent dyes in organ tissue samples via HPLC analysis

2017

Abstract The determination of regional blood flow via the accumulation of fluorescent microspheres is a concept regularly used in medical research. Typically, the microbeads get extracted from the tissue of interest and are then quantified by measuring the absorption or fluorescence of the incorporated dyes without further separation from the medium. However, in that case the absorption spectra of different dyes can overlap when used simultaneously, leading to an overestimation of the concentration. Additionally, background absorption from the medium can be problematic. Therefore, a high performance liquid chromatography method for the simultaneous detection of four dyes (orange, crimson, y…

MaleAbsorption spectroscopySwineClinical BiochemistryKidney010402 general chemistry01 natural sciencesBiochemistryAnalytical ChemistryMicrosphereFluorescent microspheresLimit of DetectionBiological mediaAnimalsTissue DistributionChromatography High Pressure LiquidFluorescent DyesHplc analysisChromatographyChemistryMyocardium010401 analytical chemistryBrainCell BiologyGeneral MedicineReversed-phase chromatographyFluorescenceMicrospheres0104 chemical sciencesRegional Blood FlowLinear ModelsPerfusionJournal of Chromatography B
researchProduct

Controlling protein interactions in blood for effective liver immunosuppressive therapy by silica nanocapsules

2020

Immunosuppression with glucocorticoids is a common treatment for autoimmune liver diseases and after liver transplant, which is however associated with severe side-effects. Targeted delivery of glucocorticoids to inflammatory cells, e.g. liver macrophages and Kupffer cells, is a promising approach for minimizing side effects. Herein, we prepare core–shell silica nanocapsules (SiO2 NCs) via a sol–gel process confined in nanodroplets for targeted delivery of dexamethasone (DXM) for liver immunosuppressive therapy. DXM with concentrations up to 100 mg mL−1 in olive oil are encapsulated while encapsulation efficiency remains over 95% after 15 days. Internalization of NCs by non-parenchymal muri…

Apolipoprotein BCell SurvivalLiver cytologyPharmacologybehavioral disciplines and activitiesDexamethasoneNanocapsulesProinflammatory cytokine//purl.org/becyt/ford/1 [https]MiceDrug Delivery SystemsDrug StabilityNanocapsulesQuímica Coloidalmental disordersBlood plasma//purl.org/becyt/ford/1.4 [https]AnimalsHumansIMMUNOSUPPRESSIVE THERAPYTissue DistributionGeneral Materials ScienceColloidsImmunosuppression TherapybiologyClusterinChemistryCiencias QuímicasSILICA NANOCAPSULESSilicon DioxideBlood proteinsPROTEIN INTERACTIONSDEXAMETHASONELiverbiology.proteinPEGylationCytokinesCIENCIAS NATURALES Y EXACTASImmunosuppressive AgentsHeLa CellsNanoscale
researchProduct

Functionalization of Liposomes with Hydrophilic Polymers Results in Macrophage Uptake Independent of the Protein Corona

2019

Liposomes are established drug carriers that are employed to transport and deliver hydrophilic drugs in the body. To minimize unspecific cellular uptake, nanocarriers are commonly modified with poly(ethylene glycol) (PEG), which is known to minimize unspecific protein adsorption. However, to date, it has not been studied whether this is an intrinsic and specific property of PEG or if it can be transferred to hyperbranched polyglycerol (hbPG) as well. Additionally, it remains unclear if the reduction of unspecific cell uptake is independent of the “basic” carrier at which a surface functionalization with polymers is usually applied. Therefore, we studied the protein corona of differently fun…

Polymers and PlasticsPolymersBioengineeringProtein Corona02 engineering and technology010402 general chemistry01 natural sciencesArticlePolyethylene GlycolsBiomaterialsMiceHydrophilic polymersMaterials ChemistryAnimalsHumansMacrophageDrug CarriersLiposomeChemistryMacrophagesBiological Transport021001 nanoscience & nanotechnology0104 chemical sciencesRAW 264.7 CellsLiposomesBiophysicsNanoparticlesSurface modificationProtein CoronaNanocarriers0210 nano-technologyDrug carrierHydrophobic and Hydrophilic InteractionsBiomacromolecules
researchProduct

How Low Can You Go? Low Densities of Poly(ethylene glycol) Surfactants Attract Stealth Proteins.

2018

It is now well-established that the surface chemistry and “stealth” surface functionalities such as poly(ethylene glycol) (PEG) chains of nanocarriers play an important role to decrease unspecific protein adsorption of opsonizing proteins, to increase the enrichment of specific stealth proteins, and to prolong the circulation times of the nanocarriers. At the same time, PEG chains are used to provide colloidal stability for the nanoparticles. However, it is not clear how the chain length and density influence the unspecific and specific protein adsorption keeping at the same time the stability of the nanoparticles in a biological environment. Therefore, this study aims at characterizing the…

Magnetic Resonance SpectroscopyPolymers and PlasticsNanoparticleBioengineeringProtein Corona02 engineering and technology010402 general chemistry01 natural sciencesPolyethylene Glycolsnanocarriers; poly(ethylene glycol); protein corona; stealth effect; surfactantsBiomaterialschemistry.chemical_compoundColloidMicePlasmaSurface-Active AgentsAdsorptionPEG ratioMaterials ChemistryAnimalsHumansColloidsChemistrySodium Dodecyl Sulfate021001 nanoscience & nanotechnology0104 chemical sciencesClusterinRAW 264.7 CellsChemical engineeringNanoparticlesPolystyrenesProtein CoronaAdsorptionNanocarriers0210 nano-technologyEthylene glycolBiotechnologyProtein adsorptionMacromolecular bioscience
researchProduct

CCDC 2000869: Experimental Crystal Structure Determination

2020

Related Article: Marcel Dillenburger, Zijie Qiu, Cheng-Wei Ju, Beate Müller, Svenja Morsbach, Dieter Schollmeyer, Akimitsu Narita, Klaus Müllen|2020|J.Am.Chem.Soc.|142|12916|doi:10.1021/jacs.0c04956

Space GroupCrystallography123456-hexacyclohexylcyclohexaneCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2000868: Experimental Crystal Structure Determination

2020

Related Article: Marcel Dillenburger, Zijie Qiu, Cheng-Wei Ju, Beate Müller, Svenja Morsbach, Dieter Schollmeyer, Akimitsu Narita, Klaus Müllen|2020|J.Am.Chem.Soc.|142|12916|doi:10.1021/jacs.0c04956

Hexacyclohexylbenzene chloroform solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct