6533b82dfe1ef96bd1291d2b

RESEARCH PRODUCT

Integration of GMR sensors with different technologies

Susana CardosoAndrea De MarcellisJordi MadrenasJoana L. SantosCandid ReigM.d. Cubells-beltranPaulo P. Freitas

subject

SystemEngineeringTechnologyPerformanceIntegrationThermal agitationintegration02 engineering and technologyMicroarraylcsh:Chemical technology01 natural sciencesBiochemistryAnalytical ChemistryGMR; integration; technology:Enginyeria electrònica::Instrumentació i mesura::Sensors i actuadors [Àrees temàtiques de la UPC]MicroelectronicsAtomic and Molecular Physicslcsh:TP1-1185Instrumentation010302 applied physicsElectrical engineeringGMRDetectors021001 nanoscience & nanotechnologyFunctional systemAtomic and Molecular Physics and Optics:Enginyeria electrònica::Microelectrònica [Àrees temàtiques de la UPC]CMOStechnology0210 nano-technologyCmosGiant magnetoresistanceMicroelectrònicaNoise (electronics)ArticleFabricationLow temperature deposition0103 physical sciencesElectronic engineeringElectronicsSensitivity (control systems)Electrical and Electronic Engineeringbusiness.industryGiant magnetoresistance sensorsMultilayersNanoparticlesand OpticsElectronicsbusinessGMR; Integration; Technology; Analytical Chemistry; Atomic and Molecular Physics and Optics; Biochemistry; Electrical and Electronic Engineering

description

Less than thirty years after the giant magnetoresistance (GMR) effect was described, GMR sensors are the preferred choice in many applications demanding the measurement of low magnetic fields in small volumes. This rapid deployment from theoretical basis to market and state-of-the-art applications can be explained by the combination of excellent inherent properties with the feasibility of fabrication, allowing the real integration with many other standard technologies. In this paper, we present a review focusing on how this capability of integration has allowed the improvement of the inherent capabilities and, therefore, the range of application of GMR sensors. After briefly describing the phenomenological basis, we deal on the benefits of low temperature deposition techniques regarding the integration of GMR sensors with flexible (plastic) substrates and pre-processed CMOS chips. In this way, the limit of detection can be improved by means of bettering the sensitivity or reducing the noise. We also report on novel fields of application of GMR sensors by the recapitulation of a number of cases of success of their integration with different heterogeneous complementary elements. We finally describe three fully functional systems, two of them in the bio-technology world, as the proof of how the integrability has been instrumental in the meteoric development of GMR sensors and their applications. Peer Reviewed

10.3390/s16060939https://hdl.handle.net/2117/89277