Search results for " Automata"

showing 10 items of 436 documents

On the Convergence of Tsetlin Machines for the IDENTITY- and NOT Operators

2020

The Tsetlin Machine (TM) is a recent machine learning algorithm with several distinct properties, such as interpretability, simplicity, and hardware-friendliness. Although numerous empirical evaluations report on its performance, the mathematical analysis of its convergence is still open. In this article, we analyze the convergence of the TM with only one clause involved for classification. More specifically, we examine two basic logical operators, namely, the "IDENTITY"- and "NOT" operators. Our analysis reveals that the TM, with just one clause, can converge correctly to the intended logical operator, learning from training data over an infinite time horizon. Besides, it can capture arbit…

FOS: Computer and information sciencesComputer Science - Machine LearningTraining setLearning automataComputer Science - Artificial IntelligenceComputer sciencebusiness.industryApplied MathematicsTime horizonPropositional calculusLogical connectiveMachine Learning (cs.LG)Artificial Intelligence (cs.AI)Operator (computer programming)Computational Theory and MathematicsArtificial IntelligencePattern recognition (psychology)Convergence (routing)Identity (object-oriented programming)Computer Vision and Pattern RecognitionArtificial intelligencebusinessSoftwareInterpretabilityIEEE Transactions on Pattern Analysis and Machine Intelligence
researchProduct

Visibly pushdown modular games,

2014

Games on recursive game graphs can be used to reason about the control flow of sequential programs with recursion. In games over recursive game graphs, the most natural notion of strategy is the modular strategy, i.e., a strategy that is local to a module and is oblivious to previous module invocations, and thus does not depend on the context of invocation. In this work, we study for the first time modular strategies with respect to winning conditions that can be expressed by a pushdown automaton. We show that such games are undecidable in general, and become decidable for visibly pushdown automata specifications. Our solution relies on a reduction to modular games with finite-state automat…

FOS: Computer and information sciencesComputer Science::Computer Science and Game TheoryComputer Science - Logic in Computer ScienceTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESTheoretical computer scienceFormal Languages and Automata Theory (cs.FL)Computer scienceComputer Science - Formal Languages and Automata Theory0102 computer and information sciences02 engineering and technologyComputational Complexity (cs.CC)Pushdown01 natural scienceslcsh:QA75.5-76.95Theoretical Computer ScienceComputer Science - Computer Science and Game TheoryComputer Science::Logic in Computer Science0202 electrical engineering electronic engineering information engineeringTemporal logicRecursionbusiness.industrylcsh:MathematicsGames; Modular; Pushdown; Theoretical Computer Science; Information Systems; Computer Science Applications; Computational Theory and MathematicsPushdown automatonModular designDecision problemlcsh:QA1-939Logic in Computer Science (cs.LO)Computer Science ApplicationsUndecidable problemDecidabilityNondeterministic algorithmComputer Science - Computational ComplexityModularTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESComputational Theory and Mathematics010201 computation theory & mathematics020201 artificial intelligence & image processinglcsh:Electronic computers. Computer scienceGamesbusinessComputer Science::Formal Languages and Automata TheoryComputer Science and Game Theory (cs.GT)Information SystemsInformation and Computation
researchProduct

Properties of a Class of Toeplitz Words

2021

We study the properties of the uncountable set of Stewart words. These are Toeplitz words specified by infinite sequences of Toeplitz patterns of the form $\alpha\beta\gamma$, where $\alpha,\beta,\gamma$ is any permutation of the symbols 0,1,?. We determine the critical exponent of the Stewart words, prove that they avoid the pattern $xxyyxx$, find all factors that are palindromes, and determine their subword complexity. An interesting aspect of our work is that we use automata-theoretic methods and a decision procedure for automata to carry out the proofs.

FOS: Computer and information sciencesDecision procedureSubword complexityDiscrete Mathematics (cs.DM)Combinatorics on wordsSettore INF/01 - InformaticaGeneral Computer ScienceFormal Languages and Automata Theory (cs.FL)Computer Science - Formal Languages and Automata TheoryToeplitz wordTheoretical Computer ScienceComputer Science::Discrete MathematicsPattern avoidanceFOS: MathematicsAutomatic sequenceMathematics - CombinatoricsCombinatorics (math.CO)Computer Science::Formal Languages and Automata TheoryComputer Science - Discrete Mathematics
researchProduct

Algorithms for Computing Abelian Periods of Words

2012

Constantinescu and Ilie (Bulletin EATCS 89, 167--170, 2006) introduced the notion of an \emph{Abelian period} of a word. A word of length $n$ over an alphabet of size $\sigma$ can have $\Theta(n^{2})$ distinct Abelian periods. The Brute-Force algorithm computes all the Abelian periods of a word in time $O(n^2 \times \sigma)$ using $O(n \times \sigma)$ space. We present an off-line algorithm based on a $\sel$ function having the same worst-case theoretical complexity as the Brute-Force one, but outperforming it in practice. We then present on-line algorithms that also enable to compute all the Abelian periods of all the prefixes of $w$.

FOS: Computer and information sciencesDiscrete Mathematics (cs.DM)Abelian repetitionElementary abelian groupRank of an abelian groupCombinatoricsComputer Science - Data Structures and AlgorithmsFOS: MathematicsDiscrete Mathematics and CombinatoricsMathematics - CombinatoricsData Structures and Algorithms (cs.DS)Abelian groupOnline algorithmMathematicsArithmetic of abelian varietiesDiscrete mathematicsCombinatorics on wordsApplied MathematicsAbelian periodText algorithmWeak repetitionPrefixCombinatorics on wordsDesign of algorithmCombinatorics (math.CO)AlgorithmWord (computer architecture)Computer Science::Formal Languages and Automata TheoryComputer Science - Discrete Mathematics
researchProduct

Algorithms for Anti-Powers in Strings

2018

Abstract A string S [ 1 , n ] is a power (or tandem repeat) of order k and period n / k if it can be decomposed into k consecutive equal-length blocks of letters. Powers and periods are fundamental to string processing, and algorithms for their efficient computation have wide application and are heavily studied. Recently, Fici et al. (Proc. ICALP 2016) defined an anti-power of order k to be a string composed of k pairwise-distinct blocks of the same length ( n / k , called anti-period). Anti-powers are a natural converse to powers, and are objects of combinatorial interest in their own right. In this paper we initiate the algorithmic study of anti-powers. Given a string S, we describe an op…

FOS: Computer and information sciencesDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)ComputationComputer Science - Formal Languages and Automata Theory0102 computer and information sciencesString processingInformation System01 natural sciencesUpper and lower boundsAnti-powersTheoretical Computer ScienceLemma (logic)ConverseComputer Science - Data Structures and AlgorithmsData Structures and Algorithms (cs.DS)0101 mathematicsMathematicsCombinatorics on wordSignal processingCombinatorics on wordsComputer Science Applications1707 Computer Vision and Pattern RecognitionAnti-power16. Peace & justice113 Computer and information sciencesSubstringComputer Science Applications010101 applied mathematicsAlgorithmCombinatorics on words010201 computation theory & mathematicsSignal ProcessingAlgorithmAlgorithmsInformation SystemsComputer Science - Discrete Mathematics
researchProduct

Normal, Abby Normal, Prefix Normal

2014

A prefix normal word is a binary word with the property that no substring has more 1s than the prefix of the same length. This class of words is important in the context of binary jumbled pattern matching. In this paper we present results about the number $pnw(n)$ of prefix normal words of length $n$, showing that $pnw(n) =\Omega\left(2^{n - c\sqrt{n\ln n}}\right)$ for some $c$ and $pnw(n) = O \left(\frac{2^n (\ln n)^2}{n}\right)$. We introduce efficient algorithms for testing the prefix normal property and a "mechanical algorithm" for computing prefix normal forms. We also include games which can be played with prefix normal words. In these games Alice wishes to stay normal but Bob wants t…

FOS: Computer and information sciencesDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)Computer Science - Data Structures and AlgorithmsFOS: MathematicsMathematics - CombinatoricsData Structures and Algorithms (cs.DS)Computer Science - Formal Languages and Automata TheoryCombinatorics (math.CO)Data_CODINGANDINFORMATIONTHEORYComputer Science - Discrete Mathematics
researchProduct

Cyclic Complexity of Words

2014

We introduce and study a complexity function on words $c_x(n),$ called \emph{cyclic complexity}, which counts the number of conjugacy classes of factors of length $n$ of an infinite word $x.$ We extend the well-known Morse-Hedlund theorem to the setting of cyclic complexity by showing that a word is ultimately periodic if and only if it has bounded cyclic complexity. Unlike most complexity functions, cyclic complexity distinguishes between Sturmian words of different slopes. We prove that if $x$ is a Sturmian word and $y$ is a word having the same cyclic complexity of $x,$ then up to renaming letters, $x$ and $y$ have the same set of factors. In particular, $y$ is also Sturmian of slope equ…

FOS: Computer and information sciencesDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)Computer Science - Formal Languages and Automata Theory0102 computer and information sciences68R15Characterization (mathematics)[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]01 natural sciencesTheoretical Computer ScienceCombinatoricsConjugacy class[INFO.INFO-FL]Computer Science [cs]/Formal Languages and Automata Theory [cs.FL][MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]FOS: MathematicsDiscrete Mathematics and CombinatoricsMathematics - Combinatorics0101 mathematics[MATH]Mathematics [math]Discrete Mathematics and CombinatoricMathematicsDiscrete mathematicsFactor complexity010102 general mathematicsSturmian wordSturmian wordComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Sturmian wordsCyclic complexity factor complexity Sturmian words minimal forbidden factorInfimum and supremumToeplitz matrixComputational Theory and Mathematics010201 computation theory & mathematicsCyclic complexityBounded functionComplexity functionCombinatorics (math.CO)Word (group theory)Computer Science::Formal Languages and Automata TheoryComputer Science - Discrete Mathematics
researchProduct

Anti-powers in infinite words

2018

In combinatorics of words, a concatenation of $k$ consecutive equal blocks is called a power of order $k$. In this paper we take a different point of view and define an anti-power of order $k$ as a concatenation of $k$ consecutive pairwise distinct blocks of the same length. As a main result, we show that every infinite word contains powers of any order or anti-powers of any order. That is, the existence of powers or anti-powers is an unavoidable regularity. Indeed, we prove a stronger result, which relates the density of anti-powers to the existence of a factor that occurs with arbitrary exponent. As a consequence, we show that in every aperiodic uniformly recurrent word, anti-powers of ev…

FOS: Computer and information sciencesDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)ConcatenationComputer Science - Formal Languages and Automata Theory68R150102 computer and information sciences01 natural sciencesTheoretical Computer ScienceCombinatoricsUnavoidable regularityPosition (vector)Infinite wordAvoidability[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]FOS: MathematicsMathematics - CombinatoricsDiscrete Mathematics and CombinatoricsOrder (group theory)Point (geometry)0101 mathematicsDiscrete Mathematics and CombinatoricMathematicsDiscrete mathematics000 Computer science knowledge general worksAnti-power010101 applied mathematicsComputational Theory and Mathematics010201 computation theory & mathematicsAperiodic graphComputer ScienceExponentPairwise comparisonCombinatorics (math.CO)SoftwareWord (group theory)Computer Science - Discrete Mathematics
researchProduct

Factorizations of the Fibonacci Infinite Word

2015

The aim of this note is to survey the factorizations of the Fibonacci infinite word that make use of the Fibonacci words and other related words, and to show that all these factorizations can be easily derived in sequence starting from elementary properties of the Fibonacci numbers.

FOS: Computer and information sciencesDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)Crochemore factorizationComputer Science - Formal Languages and Automata Theory68R15Fibonacci wordLempel-Ziv factorizationLyndon factorizationFOS: MathematicsDiscrete Mathematics and CombinatoricsMathematics - CombinatoricsZeckendorf representationCrochemore factorization; Fibonacci word; Lempel-Ziv factorization; Lyndon factorization; Zeckendorf representation; Discrete Mathematics and CombinatoricsCombinatorics (math.CO)Computer Science - Discrete Mathematics
researchProduct

The sequence of open and closed prefixes of a Sturmian word

2017

A finite word is closed if it contains a factor that occurs both as a prefix and as a suffix but does not have internal occurrences, otherwise it is open. We are interested in the {\it oc-sequence} of a word, which is the binary sequence whose $n$-th element is $0$ if the prefix of length $n$ of the word is open, or $1$ if it is closed. We exhibit results showing that this sequence is deeply related to the combinatorial and periodic structure of a word. In the case of Sturmian words, we show that these are uniquely determined (up to renaming letters) by their oc-sequence. Moreover, we prove that the class of finite Sturmian words is a maximal element with this property in the class of binar…

FOS: Computer and information sciencesDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)Sturmian word closed wordComputer Science - Formal Languages and Automata Theory0102 computer and information sciences68R1501 natural sciencesPseudorandom binary sequenceCombinatorics[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]FOS: MathematicsMathematics - Combinatorics0101 mathematicsMathematicsSequenceClosed wordSettore INF/01 - InformaticaApplied Mathematics010102 general mathematicsSturmian wordSturmian wordPrefix010201 computation theory & mathematicsCombinatorics (math.CO)SuffixElement (category theory)Word (computer architecture)Maximal elementComputer Science - Discrete Mathematics
researchProduct