Search results for " Machine Learning"

showing 10 items of 300 documents

Disentangling the Link Between Image Statistics and Human Perception

2023

In the 1950s Horace Barlow and Fred Attneave suggested a connection between sensory systems and how they are adapted to the environment: early vision evolved to maximise the information it conveys about incoming signals. Following Shannon's definition, this information was described using the probability of the images taken from natural scenes. Previously, direct accurate predictions of image probabilities were not possible due to computational limitations. Despite the exploration of this idea being indirect, mainly based on oversimplified models of the image density or on system design methods, these methods had success in reproducing a wide range of physiological and psychophysical phenom…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer Vision and Pattern Recognition (cs.CV)FOS: Biological sciencesQuantitative Biology - Neurons and CognitionComputer Science - Computer Vision and Pattern RecognitionNeurons and Cognition (q-bio.NC)ArticleMachine Learning (cs.LG)
researchProduct

Local-Area-Learning Network: Meaningful Local Areas for Efficient Point Cloud Analysis

2020

Research in point cloud analysis with deep neural networks has made rapid progress in recent years. The pioneering work PointNet offered a direct analysis of point clouds. However, due to its architecture PointNet is not able to capture local structures. To overcome this drawback, the same authors have developed PointNet++ by applying PointNet to local areas. The local areas are defined by center points and their neighbors. In PointNet++ and its further developments the center points are determined with a Farthest Point Sampling (FPS) algorithm. This has the disadvantage that the center points in general do not have meaningful local areas. In this paper, we introduce the neural Local-Area-L…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer Vision and Pattern Recognition (cs.CV)Image and Video Processing (eess.IV)Computer Science - Computer Vision and Pattern RecognitionFOS: Electrical engineering electronic engineering information engineeringElectrical Engineering and Systems Science - Image and Video ProcessingMachine Learning (cs.LG)
researchProduct

Requirement analysis for an artificial intelligence model for the diagnosis of the COVID-19 from chest X-ray data

2021

There are multiple papers published about different AI models for the COVID-19 diagnosis with promising results. Unfortunately according to the reviews many of the papers do not reach the level of sophistication needed for a clinically usable model. In this paper I go through multiple review papers, guidelines, and other relevant material in order to generate more comprehensive requirements for the future papers proposing a AI based diagnosis of the COVID-19 from chest X-ray data (CXR). Main findings are that a clinically usable AI needs to have an extremely good documentation, comprehensive statistical analysis of the possible biases and performance, and an explainability module.

FOS: Computer and information sciencesComputer Science - Machine LearningComputer Vision and Pattern Recognition (cs.CV)tilastomenetelmätImage and Video Processing (eess.IV)Computer Science - Computer Vision and Pattern RecognitionCOVID-19ennusteetlääketiedetekoälydiagnostiikkaElectrical Engineering and Systems Science - Image and Video Processingartificial intelligenceMachine Learning (cs.LG)data modelsclinical diagnosisstatistical analysisFOS: Electrical engineering electronic engineering information engineeringtilastolliset mallittietomallittietojärjestelmät2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
researchProduct

Towards Responsible AI for Financial Transactions

2020

Author's accepted manuscript. © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The application of AI in finance is increasingly dependent on the principles of responsible AI. These principles-explainability, fairness, privacy, accountability, transparency and soundness form the basis for trust in future AI systems. In this empirical study, we address the first p…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer scienceComputer Science - Artificial IntelligenceDecision tree02 engineering and technologyMachine learningcomputer.software_genreMachine Learning (cs.LG)Empirical research020204 information systems0202 electrical engineering electronic engineering information engineeringRobustness (economics)Categorical variableVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550Soundnessbusiness.industryDocument clusteringTransparency (behavior)ComputingMethodologies_PATTERNRECOGNITIONArtificial Intelligence (cs.AI)Financial transaction020201 artificial intelligence & image processingArtificial intelligencebusinesscomputer
researchProduct

Road scenes analysis in adverse weather conditions by polarization-encoded images and adapted deep learning

2019

International audience; Object detection in road scenes is necessary to develop both autonomous vehicles and driving assistance systems. Even if deep neural networks for recognition task have shown great performances using conventional images, they fail to detect objects in road scenes in complex acquisition situations. In contrast, polarization images, characterizing the light wave, can robustly describe important physical properties of the object even under poor illumination or strong reflections. This paper shows how non-conventional polarimetric imaging modality overcomes the classical methods for object detection especially in adverse weather conditions. The efficiency of the proposed …

FOS: Computer and information sciencesComputer Science - Machine LearningComputer scienceComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern RecognitionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONMachine Learning (stat.ML)02 engineering and technology010501 environmental sciences01 natural sciencesMachine Learning (cs.LG)[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI][SPI.GCIV.IT]Engineering Sciences [physics]/Civil Engineering/Infrastructures de transportStatistics - Machine Learning0202 electrical engineering electronic engineering information engineeringComputer vision0105 earth and related environmental sciencesAdverse weatherbusiness.industryDeep learningPolarization (waves)Object detectionRGB color model020201 artificial intelligence & image processingArtificial intelligencebusiness
researchProduct

Learning With Context Feedback Loop for Robust Medical Image Segmentation

2021

Deep learning has successfully been leveraged for medical image segmentation. It employs convolutional neural networks (CNN) to learn distinctive image features from a defined pixel-wise objective function. However, this approach can lead to less output pixel interdependence producing incomplete and unrealistic segmentation results. In this paper, we present a fully automatic deep learning method for robust medical image segmentation by formulating the segmentation problem as a recurrent framework using two systems. The first one is a forward system of an encoder-decoder CNN that predicts the segmentation result from the input image. The predicted probabilistic output of the forward system …

FOS: Computer and information sciencesComputer Science - Machine LearningComputer scienceComputer Vision and Pattern Recognition (cs.CV)Feature vectorComputer Science - Computer Vision and Pattern RecognitionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONContext (language use)Convolutional neural networkMachine Learning (cs.LG)Feedback030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineFOS: Electrical engineering electronic engineering information engineeringImage Processing Computer-Assisted[INFO.INFO-IM]Computer Science [cs]/Medical ImagingSegmentationElectrical and Electronic EngineeringComputingMilieux_MISCELLANEOUSRadiological and Ultrasound TechnologyPixelbusiness.industryDeep learningImage and Video Processing (eess.IV)Pattern recognitionImage segmentationElectrical Engineering and Systems Science - Image and Video ProcessingFeedback loopComputer Science ApplicationsFeature (computer vision)Neural Networks ComputerArtificial intelligencebusinessSoftware
researchProduct

Nonlinear Cook distance for Anomalous Change Detection

2020

In this work we propose a method to find anomalous changes in remote sensing images based on the chronochrome approach. A regressor between images is used to discover the most {\em influential points} in the observed data. Typically, the pixels with largest residuals are decided to be anomalous changes. In order to find the anomalous pixels we consider the Cook distance and propose its nonlinear extension using random Fourier features as an efficient nonlinear measure of impact. Good empirical performance is shown over different multispectral images both visually and quantitatively evaluated with ROC curves.

FOS: Computer and information sciencesComputer Science - Machine LearningComputer scienceComputer Vision and Pattern Recognition (cs.CV)Multispectral imageComputer Science - Computer Vision and Pattern Recognition0211 other engineering and technologies02 engineering and technologyMeasure (mathematics)Machine Learning (cs.LG)Kernel (linear algebra)symbols.namesake0502 economics and businessCook's distance021101 geological & geomatics engineering050208 financePixelbusiness.industry05 social sciencesPattern recognitionNonlinear systemFourier transformKernel (image processing)Computer Science::Computer Vision and Pattern RecognitionsymbolsArtificial intelligencebusinessChange detection
researchProduct

Transfer Learning with Convolutional Networks for Atmospheric Parameter Retrieval

2018

The Infrared Atmospheric Sounding Interferometer (IASI) on board the MetOp satellite series provides important measurements for Numerical Weather Prediction (NWP). Retrieving accurate atmospheric parameters from the raw data provided by IASI is a large challenge, but necessary in order to use the data in NWP models. Statistical models performance is compromised because of the extremely high spectral dimensionality and the high number of variables to be predicted simultaneously across the atmospheric column. All this poses a challenge for selecting and studying optimal models and processing schemes. Earlier work has shown non-linear models such as kernel methods and neural networks perform w…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer scienceFeature extraction0211 other engineering and technologiesTranfer learningFOS: Physical sciences02 engineering and technologyAtmospheric modelInfrared atmospheric sounding interferometercomputer.software_genreConvolutional neural networkMachine Learning (cs.LG)0202 electrical engineering electronic engineering information engineeringInfrared measurements021101 geological & geomatics engineeringArtificial neural networkStatistical modelNumerical weather predictionParameter retrievalPhysics - Atmospheric and Oceanic PhysicsKernel method13. Climate actionAtmospheric and Oceanic Physics (physics.ao-ph)Convolutional neural networks020201 artificial intelligence & image processingData miningcomputerCurse of dimensionalityIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Enforcing Perceptual Consistency on Generative Adversarial Networks by Using the Normalised Laplacian Pyramid Distance

2019

In recent years there has been a growing interest in image generation through deep learning. While an important part of the evaluation of the generated images usually involves visual inspection, the inclusion of human perception as a factor in the training process is often overlooked. In this paper we propose an alternative perceptual regulariser for image-to-image translation using conditional generative adversarial networks (cGANs). To do so automatically (avoiding visual inspection), we use the Normalised Laplacian Pyramid Distance (NLPD) to measure the perceptual similarity between the generated image and the original image. The NLPD is based on the principle of normalising the value of…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer scienceImage qualitymedia_common.quotation_subjectComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern RecognitionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONMachine Learning (stat.ML)Translation (geometry)Image (mathematics)Machine Learning (cs.LG)Consistency (database systems)Statistics - Machine LearningPerceptionFOS: Electrical engineering electronic engineering information engineeringmedia_commonbusiness.industryDeep learningImage and Video Processing (eess.IV)Contrast (statistics)Pattern recognitionGeneral MedicineImage segmentationElectrical Engineering and Systems Science - Image and Video ProcessingGenerative Adversarial NetworkPerceptionArtificial intelligencebusiness
researchProduct

Multi-label Methods for Prediction with Sequential Data

2017

The number of methods available for classification of multi-label data has increased rapidly over recent years, yet relatively few links have been made with the related task of classification of sequential data. If labels indices are considered as time indices, the problems can often be seen as equivalent. In this paper we detect and elaborate on connections between multi-label methods and Markovian models, and study the suitability of multi-label methods for prediction in sequential data. From this study we draw upon the most suitable techniques from the area and develop two novel competitive approaches which can be applied to either kind of data. We carry out an empirical evaluation inves…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer scienceMarkov modelsMulti-label classificationMachine Learning (stat.ML)02 engineering and technologycomputer.software_genreMarkov modelMachine learningTask (project management)Machine Learning (cs.LG)Statistics - Machine LearningArtificial Intelligence020204 information systemsComputer Science - Data Structures and Algorithms0202 electrical engineering electronic engineering information engineeringSequential dataData Structures and Algorithms (cs.DS)Multi-label classificationta113business.industryProblem transformationSignal ProcessingSequence prediction020201 artificial intelligence & image processingSequential dataComputer Vision and Pattern RecognitionData miningArtificial intelligencebusinesscomputerSoftware
researchProduct