Search results for " and Astronomy"

showing 10 items of 8111 documents

Large Zero-Field Cooled Exchange-Bias in BulkMn2PtGa

2013

We report a large exchange-bias (EB) effect after zero-field cooling the new tetragonal Heusler compound Mn2PtGa from the paramagnetic state. The first-principle calculation and the magnetic measurements reveal that Mn2PtGa orders ferrimagnetically with some ferromagnetic (FM) inclusions. We show that ferrimagnetic (FI) ordering is essential to isothermally induce the exchange anisotropy needed for the zero-field cooled (ZFC) EB during the virgin magnetization process. The complex magnetic behavior at low temperatures is characterized by the coexistence of a field induced irreversible magnetic behavior and a spin-glass-like phase. The field induced irreversibility originates from an unusual…

010302 applied physicsCondensed Matter - Materials ScienceMaterials scienceMagnetic domainCondensed matter physicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technologyengineering.material021001 nanoscience & nanotechnologyHeusler compound01 natural sciencesCondensed Matter::Materials ScienceParamagnetismMagnetic anisotropyMagnetizationExchange biasFerrimagnetism0103 physical sciencesengineeringAntiferromagnetismCondensed Matter::Strongly Correlated Electrons0210 nano-technologyPhysical Review Letters
researchProduct

Phase segregation in Mg$_{x}$Zn$_{1-x}$O probed by optical absorption and photoluminescence at high pressure

2017

The appearance of segregated wurtzite Mg$_x$Zn$_{1-x}$O with low Mg content in thin films with $x>0.3$ affected by phase separation, cannot be reliably probed with crystallographic techniques owing to its embedded nanocrystalline configuration. Here we show a high-pressure approach which exploits the distinctive behaviors under pressure of wurtzite Mg$_x$Zn$_{1-x}$O thin films with different Mg contents to unveil phase segregation for $x>0.3$. By using ambient conditions photoluminescence (PL), and with optical absorption and PL under high pressure for $x=0.3$ we show that the appearance of a segregated wurtzite phase with a magnesium content of x $\sim$ 0.1 is inherent to the wurtzit…

010302 applied physicsCondensed Matter - Materials ScienceMaterials sciencePhotoluminescenceBand gapAnalytical chemistryWide-bandgap semiconductorGeneral Physics and AstronomyMineralogyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesNanocrystalline materialPhase (matter)0103 physical sciencesAbsorption (chemistry)Thin film0210 nano-technologyWurtzite crystal structure
researchProduct

Effective strain manipulation of the antiferromagnetic state of polycrystalline NiO

2021

As a candidate material for applications such as magnetic memory, polycrystalline antiferromagnets offer the same robustness to external magnetic fields, THz spin dynamics, and lack of stray field as their single crystalline counterparts, but without the limitation of epitaxial growth and lattice matched substrates. Here, we first report the detection of the average Neel vector orientiation in polycrystalline NiO via spin Hall magnetoresistance (SMR). Secondly, by applying strain through a piezo-electric substrate, we reduce the critical magnetic field required to reach a saturation of the SMR signal, indicating a change of the anisotropy. Our results are consistent with polycrystalline NiO…

010302 applied physicsCondensed Matter - Materials ScienceMaterials sciencePhysics and Astronomy (miscellaneous)Condensed matter physicsMagnetoresistanceMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesMagnetostriction02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMagnetic fieldCondensed Matter::Materials Science0103 physical sciencesAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsCrystallite0210 nano-technologyAnisotropySaturation (magnetic)Spin-½Applied Physics Letters
researchProduct

Amorphous ultra-wide bandgap ZnOx thin films deposited at cryogenic temperatures

2020

Crystalline wurtzite zinc oxide (w-ZnO) can be used as a wide band gap semiconductor for light emitting devices and for transparent or high temperature electronics. The use of amorphous zinc oxide (a-ZnO) can be an advantage in these applications. In this paper we report on X-ray amorphous a-ZnOx thin films (~500 nm) deposited at cryogenic temperatures by reactive magnetron sputtering. The substrates were cooled by a nitrogen flow through the copper substrate holder during the deposition. The films were characterized by X-ray diffraction (XRD), Raman, infrared, UV-Vis-NIR spectroscopies, and ellipsometry. The a-ZnOx films on glass and Ti substrates were obtained at the substrate holder temp…

010302 applied physicsCondensed Matter - Materials ScienceMaterials sciencebusiness.industryBand gapGeneral Physics and AstronomyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologySubstrate (electronics)021001 nanoscience & nanotechnology01 natural sciencesAmorphous solidsymbols.namesakeSputteringEllipsometry0103 physical sciencessymbolsOptoelectronicsFourier transform infrared spectroscopyThin film0210 nano-technologybusinessRaman spectroscopy
researchProduct

A half-metallic half-Heusler alloy having the largest atomic-like magnetic moment at optimized lattice constant

2016

For half-Heusler alloys, the general formula is XYZ, where X can be a transition or alkali metal element, Y is another transition metal element, typically Mn or Cr, and Z is a group IV element or a pnicitide. The atomic arrangements within a unit-cell show three configurations. Before this study, most of the predictions of half-metallic properties of half-Heusler alloys at the lattice constants differing from their optimized lattice constant. Based on the electropositivity of X and electronegativity of Z for half-Heusler alloys, we found that one of the configurations of LiCrS exhibits half-metallic properties at its optimized lattice constant of 5.803Å, and has the maximum atomic-like magn…

010302 applied physicsCondensed matter physicsMagnetic momentChemistryAlloyGeneral Physics and Astronomy02 engineering and technologyengineering.material021001 nanoscience & nanotechnologyAlkali metal01 natural scienceslcsh:QC1-999ElectronegativityMetalCondensed Matter::Materials ScienceLattice constantTransition metalGroup (periodic table)visual_art0103 physical sciencesengineeringvisual_art.visual_art_medium0210 nano-technologylcsh:PhysicsAIP Advances
researchProduct

Determination of fine magnetic structure of magnetic multilayer with quasi antiferromagnetic layer by using polarized neutron reflectivity analysis

2020

We carried out polarized neutron reflectivity (PNR) analysis to determine the fine magnetic structure of magnetic multilayers with quasi-antiferromagnetic (quasi-AFM) layers realized by 90-deg coupling using two Co90Fe10 layers, and quantitatively evaluated the magnetization of quasi-AFM layers. Two types of samples with different buffer layers, Ru buffer and a NiFeCr buffer, were investigated and the average angles between the respective magnetization of the two Co90Fe10 layers were estimated to be +/− 39 degrees and +/− 53 degrees. In addition, less roughness was found in the NiFeCr buffer sample resulting stronger 90-deg coupling. A perfect quasi-AFM is expected to be realized by a flat …

010302 applied physicsCouplingMaterials scienceCondensed matter physicsMagnetic structure530 PhysicsGeneral Physics and Astronomy02 engineering and technologySurface finish021001 nanoscience & nanotechnology530 Physik01 natural scienceslcsh:QC1-999Buffer (optical fiber)Magnetization0103 physical sciencesAntiferromagnetismNeutron0210 nano-technologyLayer (electronics)lcsh:Physics
researchProduct

Thermal- and photo-induced spin crossover in the 1D coordination polymer [Fe(4-tBupy)3][Au(CN)2]2 (4-tBupy = 4-tert-butylpyridine)

2021

Reaction of the unidentate pyridine ligand containing a bulky t-butyl substituent with Fe2+ and [Au(CN)2]− affords a new type of spin crossover (SCO) coordination polymer in the 1D compound [Fe(4-tBupy)3][Au(CN)2]2⋅0.5H2O (1), which is formed by chains of Fe(II) complexes linked through bridging [Au(CN)2]− with three terminal 4-tBupy and one monodentate [Au(CN)2]− ligands completing the octahedral coordination around Fe(II). Longer reaction times led to the minor products [Fe(4-tBupy)2][Au(CN)2]2 (2), which presents a 2D structure more similar to that found in the other SCO compounds based on [Au(CN)2]−, and the 1D compound [Fe(4-tBupy)2(MeOH)][Au(CN)2]2 (3), in which one of the three termi…

010302 applied physicsDenticityCoordination polymerSpin transitionSubstituentGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciences3. Good healthchemistry.chemical_compoundCrystallographyOctahedronchemistrySpin crossoverExcited state0103 physical sciencesMoleculeFísica de l'estat sòlidCompostos de coordinació0210 nano-technologyMaterials
researchProduct

Experimental Equipment for Studying the Residual Stresses Developed During High Temperature Reactions by X-Ray Diffraction

1996

This paper describes a device dedicated to studyng, by X-ray diffraction the residual stresses developed on surface samples as a function of temperature and atmosphere conditions. The setup consists of : a.) an horizontal axis goniometer which allows the programmed positionning of the sealed X-ray source and of the linear detector. b.) a high temperature controlled atmosphere chamber Particular attention has been paid to the thermal stability up to 1200°C and the accurate position on the sample.

010302 applied physicsDiffractionControlled atmosphereChemistrybusiness.industryDetectorGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesAtmosphereOpticsResidual stressGoniometer[PHYS.HIST]Physics [physics]/Physics archives0103 physical sciencesX-ray crystallographyThermal stability0210 nano-technologybusiness
researchProduct

High quality epitaxial Mn 2 Au (001) thin films grown by molecular beam epitaxy

2020

The recently discovered phenomenon of Neel spin–orbit torque in antiferromagnetic Mn2Au [Bodnar et al., Nat. Commun. 9, 348 (2018); Meinert et al., Phys. Rev. Appl. 9, 064040 (2018); Bodnar et al., Phys. Rev. B 99, 140409(R) (2019)] has generated huge interest in this material for spintronics applications. In this paper, we report the preparation and characterization of high quality Mn2Au thin films by molecular beam epitaxy and compare them with magnetron sputtered samples. The films were characterized for their structural and morphological properties using reflective high-energy electron diffraction, x-ray diffraction, x-ray reflectometry, atomic force microscopy, and temperature dependen…

010302 applied physicsDiffractionMaterials scienceCondensed matter physicsSpintronicsScatteringGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnologyEpitaxyRutherford backscattering spectrometry01 natural sciencesCondensed Matter::Materials ScienceElectron diffraction0103 physical sciencesThin film0210 nano-technologyMolecular beam epitaxyJournal of Applied Physics
researchProduct

Structure and dielectric properties of Na0.5Bi0.5TiO3-CaTiO3 solid solutions

2016

Despite wide studies of Na0.5Bi0.5TiO3, structure of this material and its connection with the observed physical properties still raise numerous questions due to mutually contradicting results obtained. Here, structure and dielectric properties of poled and unpoled Na0.5Bi0.5TiO3-CaTiO3 solid solutions are studied, projecting the obtained concentration dependence of structure and dielectric properties on pure Na0.5Bi0.5TiO3 as the end member of this material group. X-ray diffraction patterns for Na0.5Bi0.5TiO3-CaTiO3 solid solutions reveal dominating of an orthorhombic Pnma phase, even for the compositions approaching the end composition (Na0.5Bi0.5TiO3), whereas structure of pure Na0.5Bi0.…

010302 applied physicsDiffractionMaterials scienceCondensed matter physicsStructure (category theory)General Physics and Astronomy02 engineering and technologyDielectric021001 nanoscience & nanotechnology01 natural sciencesCrystallographyGroup (periodic table)Phase (matter)Distortion0103 physical sciencesOrthorhombic crystal system0210 nano-technologySolid solutionJournal of Applied Physics
researchProduct