Search results for "D2"

showing 10 items of 2418 documents

Non-cognate bystander cytolysis by clonal epitope-specific CTL lines through CD28-CD80 interaction inhibits antibody production: A potential caveat t…

2015

Abstract Adoptive transfer of virus epitope-specific CD8 T cells is an immunotherapy option to control cytomegalovirus (CMV) infection and prevent CMV organ disease in immunocompromised solid organ transplantation (SOT) and hematopoietic cell transplantation (HCT) recipients. The therapy aims at an early, selective recognition and cytolysis of infected cells for preventing viral spread in tissues with no adverse immunopathogenic side-effects by attack of uninfected bystander cells. Here we describe that virus epitope-specific, cloned T-cell lines lyse target cells that present the cognate antigenic peptide to the TCR, but simultaneously have the potential to lyse uninfected cells expressing…

0301 basic medicineCytotoxicity ImmunologicAdoptive cell transfermedicine.medical_treatmentImmunologyCytomegalovirusEpitopes T-Lymphocytechemical and pharmacologic phenomenaBiologyImmunotherapy AdoptiveEpitope03 medical and health sciencesMiceCD28 AntigensmedicineCytotoxic T cellAnimalsB-LymphocytesHematopoietic Stem Cell TransplantationCD28hemic and immune systemsImmunotherapyBystander EffectOrgan TransplantationVirologyClone CellsTransplantationCytolysis030104 developmental biologyAntibody FormationCytomegalovirus InfectionsB7-1 AntigenCD80T-Lymphocytes CytotoxicCellular immunology
researchProduct

Transcutaneous immunization with CD40 ligation boosts cytotoxic T lymphocyte mediated antitumor immunity independent of CD4 helper cells in mice.

2018

Transcutaneous immunization (TCI) is a novel vaccination strategy that utilizes skin-associated lymphatic tissue to induce immune responses. Employing T-cell epitopes and the TLR7 agonist imiquimod onto intact skin mounts strong primary, but limited memory CTL responses. To overcome this limitation, we developed a novel imiquimod-containing vaccination platform (IMI-Sol) rendering superior primary CD8+ and CD4+ T-cell responses. However, it has been unclear whether IMI-Sol per se is restricted in terms of memory formation and tumor protection. In our present work, we demonstrate that the combined administration of IMI-Sol and CD40 ligation unleashes fullblown specific T-cell responses in th…

0301 basic medicineCytotoxicity ImmunologicGraft RejectionSkin NeoplasmsOvalbuminmedicine.medical_treatmentT cellImmunologyCD40 Ligand610 MedizinMelanoma ExperimentalPriming (immunology)Gene ExpressionAdministration Cutaneous03 medical and health sciencesMice0302 clinical medicineImmune system610 Medical sciencesmedicineImmunology and AllergyCytotoxic T cellAnimalsSkinCD40ImiquimodMembrane GlycoproteinsbiologyT-Lymphocytes Helper-InducerAllograftsMice Inbred C57BLCTL*030104 developmental biologymedicine.anatomical_structureToll-Like Receptor 7biology.proteinCancer researchImmunizationImmunotherapyAdjuvantImmunologic MemoryCD8030215 immunologyCD27 LigandT-Lymphocytes CytotoxicEuropean journal of immunologyReferences
researchProduct

Transient Multivalent Nanobody Targeting to CD206-Expressing Cells via PH-Degradable Nanogels

2020

To target nanomedicines to specific cells, especially of the immune system, nanobodies can be considered as an attractive tool, as they lack the Fc part as compared to traditional antibodies and, thus, prevent unfavorable Fc-receptor mediated mistargeting. For that purpose, we have site-specifically conjugated CD206/MMR-targeting nanobodies to three types of dye-labeled nanogel derivatives: non-degradable nanogels, acid-degradable nanogels (with ketal crosslinks), and single polymer chains (also obtained after nanogel degradation). All of them can be obtained from the same reactive ester precursor block copolymer. After incubation with na&iuml

0301 basic medicineEndosomeNanogels02 engineering and technologyConjugated systemArticleM2 macrophage03 medical and health sciencesHumansReversible addition−fragmentation chain-transfer polymerizationlcsh:QH301-705.5targetingchemistry.chemical_classificationRAFT polymerizationChinese hamster ovary cellGeneral MedicinePolymerHydrogen-Ion Concentrationmultivalency021001 nanoscience & nanotechnologynanobody030104 developmental biologyTAMchemistryCD206lcsh:Biology (General)nanogelclick chemistryClick chemistryBiophysicsNanocarriers0210 nano-technologyNanogelCells
researchProduct

A specific prelimbic-nucleus accumbens pathway controls resilience versus vulnerability to food addiction

2019

Food addiction is linked to obesity and eating disorders and is characterized by a loss of behavioral control and compulsive food intake. Here, using a food addiction mouse model, we report that the lack of cannabinoid type-1 receptor in dorsal telencephalic glutamatergic neurons prevents the development of food addiction-like behavior, which is associated with enhanced synaptic excitatory transmission in the medial prefrontal cortex (mPFC) and in the nucleus accumbens (NAc). In contrast, chemogenetic inhibition of neuronal activity in the mPFC-NAc pathway induces compulsive food seeking. Transcriptomic analysis and genetic manipulation identified that increased dopamine D2 receptor express…

0301 basic medicineFood addictionSciencemedicine.medical_treatmentPrefrontal CortexAddictionGeneral Physics and AstronomyNucleus accumbensNeurotransmissionBiologySynaptic TransmissionNucleus AccumbensArticleGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesGlutamatergic0302 clinical medicineReceptor Cannabinoid CB1Dopamine receptor D2Behavioural genetics ; AddictionNeural Pathwaysmental disordersmedicineAnimalsPremovement neuronal activitylcsh:SciencePrefrontal cortexMice KnockoutMultidisciplinaryReceptors Dopamine D2Gene Expression ProfilingQdigestive oral and skin physiologyFeeding BehaviorGeneral ChemistryUp-RegulationDisease Models Animal030104 developmental biologyGene Expression RegulationBehavioural geneticslcsh:QFood AddictionCannabinoidNeuroscience030217 neurology & neurosurgery
researchProduct

Zymography Methods to Simultaneously Analyze Superoxide Dismutase and Catalase Activities: Novel Application for Yeast Species Identification

2017

We provide an optimized protocol for a double staining technique to analyze superoxide dismutase enzymatic isoforms Cu-Zn SOD (Sod1) and Mn-SOD (Sod2) and catalase in the same polyacrylamide gel. The use of NaCN, which specifically inhibits yeast Sod1 isoform, allows the analysis of Sod2 isoform while the use of H2O2 allows the analysis of catalase. The identification of a different zymography profiling of SOD and catalase isoforms in different yeast species allowed us to propose this technique as a novel yeast identification and classification strategy.

0301 basic medicineGene isoformchemistry.chemical_classificationbiologySOD2Molecular biologyYeastSuperoxide dismutase03 medical and health sciences030104 developmental biology0302 clinical medicineEnzymechemistryCatalasebiology.proteinZymographyPolyacrylamide gel electrophoresis030217 neurology & neurosurgery
researchProduct

FANCD2 modulates the mitochondrial stress response to prevent common fragile site instability

2021

Common fragile sites (CFSs) are genomic regions frequently involved in cancer-associated rearrangements. Most CFSs lie within large genes, and their instability involves transcription- and replication-dependent mechanisms. Here, we uncover a role for the mitochondrial stress response pathway in the regulation of CFS stability in human cells. We show that FANCD2, a master regulator of CFS stability, dampens the activation of the mitochondrial stress response and prevents mitochondrial dysfunction. Genetic or pharmacological activation of mitochondrial stress signaling induces CFS gene expression and concomitant relocalization to CFSs of FANCD2. FANCD2 attenuates CFS gene transcription and pr…

0301 basic medicineGenome instabilitymusculoskeletal diseasesTranscription GeneticQH301-705.5RegulatorMedicine (miscellaneous)MitochondrionBiology[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyGeneral Biochemistry Genetics and Molecular BiologyOxidative PhosphorylationArticle03 medical and health sciences0302 clinical medicineTranscription (biology)Stress Physiologicalhemic and lymphatic diseasesGene expressionFANCD2HumansBiology (General)GeneUbiquitinsChromosomal fragile siteChromosome Fragile SitesChromosome FragilityFanconi Anemia Complementation Group D2 ProteinDNA damage and repair[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyHCT116 CellsCell biologyMitochondriaSettore BIO/18 - Genetica030104 developmental biologyGene Expression Regulation030220 oncology & carcinogenesisUnfolded Protein ResponseGeneral Agricultural and Biological SciencesDNA Damage
researchProduct

Dicer prevents genome instability in response to replication stress

2019

Dicer, an endoribonuclease best-known for its role in microRNA biogenesis and RNA interference pathway, has been shown to play a role in the DNA damage response and repair of double-stranded DNA breaks (DSBs) in mammalian cells. However, it remains unknown whether Dicer is also important to preserve genome integrity upon replication stress. To address this question, we focused our study on common fragile sites (CFSs), which are susceptible to breakage after replication stress. We show that inhibition of the Dicer pathway leads to an increase in CFS expression upon induction of replication stress and to an accumulation of 53BP1 nuclear bodies, indicating transmission of replication-associate…

0301 basic medicineGenome instabilityreplication stressDNA damageChromosomal fragile siteBiologygenomic instabilitycommon fragile siteCell biologySettore BIO/18 - Genetica03 medical and health sciences030104 developmental biology0302 clinical medicineOncology030220 oncology & carcinogenesisFANCD2biology.proteinDicer PathwayMitosiscommon fragile sitesDroshaResearch PaperDicerDicerOncotarget
researchProduct

Molecular Biology of Atherosclerotic Ischemic Strokes

2020

Among the causes of global death and disability, ischemic stroke (also known as cerebral ischemia) plays a pivotal role, by determining the highest number of worldwide mortality, behind cardiomyopathies, affecting 30 million people. The etiopathogenetic burden of a cerebrovascular accident could be brain ischemia (~80%) or intracranial hemorrhage (~20%). The most common site when ischemia occurs is the one is perfused by middle cerebral arteries. Worse prognosis and disablement consequent to brain damage occur in elderly patients or affected by neurological impairment, hypertension, dyslipidemia, and diabetes. Since, in the coming years, estimates predict an exponential increase of people w…

0301 basic medicineInflammasomesCerebral arteriesmicrogliaDiseaseReviewneuroinflammationBrain ischemialcsh:Chemistry0302 clinical medicineatherosclerosiStrokelcsh:QH301-705.5SpectroscopymicroRNAGeneral MedicineMKEYDKK-3Computer Science ApplicationsmicroRNAsBlood-Brain BarrierCardiologymedicine.symptomDectin-1medicine.medical_specialtyIschemiaBrain damageCatalysisInorganic Chemistry03 medical and health sciencesInternal medicineDiabetes mellitusmedicineischemic strokeAnimalsHumansPhysical and Theoretical ChemistryMolecular Biologybusiness.industryOrganic ChemistryAFmedicine.diseaseImmunity InnateNLRP3 inflammasome030104 developmental biologylcsh:Biology (General)lcsh:QD1-999atherosclerosisbusinessBBB030217 neurology & neurosurgeryDyslipidemiaCD200-CD200R
researchProduct

Editorial: The Molecular Mechanisms of Cyclic AMP in Regulation of Immunity and Tolerance

2017

0301 basic medicineInterleukin 2conventional CD4+ T cellsImmunologyBiologymedicine.diseaseinducible cAMP early repressornaturally occurring regulatory CD4+CD25+ T cells03 medical and health sciencesEditorial030104 developmental biology0302 clinical medicineGraft-versus-host diseaseImmunityINDUCIBLE cAMP EARLY REPRESSORImmunologymedicinegraft-versus-host diseaseImmunology and Allergycyclic AMPinterleukin-2CD28-responsive element030215 immunologymedicine.drugFrontiers in Immunology
researchProduct

p14ARFPrevents Proliferation of Aneuploid Cells by Inducing p53-Dependent Apoptosis

2015

Weakening the Spindle Assembly Checkpoint by reduced expression of its components induces chromosome instability and aneuploidy that are hallmarks of cancer cells. The tumor suppressor p14ARF is overexpressed in response to oncogenic stimuli to stabilize p53 halting cell progression. Previously, we found that lack or reduced expression of p14ARF is involved in the maintenance of aneuploid cells in primary human cells, suggesting that it could be part of a pathway controlling their proliferation. To investigate this aspect further, p14ARF was ectopically expressed in HCT116 cells after depletion of the Spindle Assembly Checkpoint MAD2 protein that was used as a trigger for aneuploidy. p14ARF…

0301 basic medicineMad2PhysiologyClinical BiochemistryCell BiologyBiologyCell biology03 medical and health sciencesSpindle checkpoint030104 developmental biologyp14arfApoptosisChromosome instabilityCancer cellCancer researchEctopic expressionMitosisJournal of Cellular Physiology
researchProduct