Search results for "EPITAXY"
showing 10 items of 287 documents
In Situ Heating TEM Study of Onion-like WS2 and MoS2 Nanostructures Obtained via MOCVD
2007
We report on the in situ heating transmission electron microscopy (TEM) study of WS2 and MoS2 nanoparticles obtained from metal–organic chemical vapor deposition (MOCVD). The general behavior of MoS2 and WS2 is similar: Round, amorphous particles in the pristine sample transform to hollow, onion-like particles upon annealing. A second type of particle with straight layers exhibits only minor changes. A significant difference between both compounds could be demonstrated in their crystallization behavior. The results of the in situ heating experiments are compared to those obtained from an ex situ annealing process under Ar.
Characterization of Crystalline Structure and Morphology of Ga<sub>2</sub>O<sub>3</sub> Thin Film Grown by MOCVD Technique
2016
Growth of gallium oxide thin film was realized with MOCVD on (0001) sapphire substrate. Structural and compositional properties of thin film were studied employing trimethylgallium and water as precursors, carrier gases were H2 and N2. Obtained film is polycrystalline and predominantly consisted of (201) oriented β-Ga2O3. Sample exhibited blue luminescence which is attributed to oxygen vacancies. H2 gas proved to have beneficial effect on film quality and overall growth process.
Excitonic Transitions in Homoepitaxial GaN
2001
The photoluminescence spectrum of a high quality homoepitaxial GaN film has been measured as a function of temperature. As temperature increases the recombination of free excitons dominates the spectra. Their energy shift has successfully fitted in that temperature range by means of the Bose-Einstein expression instead of Varshni's relationship. Values for the parameters of both semi-empirical relations describing the energy shift are reported and compared with the literature.
MOCVD growth of CdO very thin films: Problems and ways of solution
2016
Abstract In this paper the growth of CdO by the MOCVD technique at atmospheric pressure has been studied in order to achieve very thin films of this material on r-sapphire substrates. The growth evolution of these films was discussed and the existence of a threshold thickness, below which island-shaped structures appear, was demonstrated. Some alternatives to reduce this threshold thickness have been proposed in the frame of the analysis of the crystal growth process. The morphology and structural properties of the films were analyzed by means of SEM and HRXRD. High-quality flat CdO samples were achieved with thicknesses up to 20 nm, which is five times thinner than the values previously re…
Si Donor Incorporation in GaN Nanowires
2015
With increasing interest in GaN based devices, the control and evaluation of doping are becoming more and more important. We have studied the structural and electrical properties of a series of Si-doped GaN nanowires (NWs) grown by molecular beam epitaxy (MBE) with a typical dimension of 2-3 μm in length and 20-200 nm in radius. In particular, high resolution energy dispersive X-ray spectroscopy (EDX) has illustrated a higher Si incorporation in NWs than that in two-dimensional (2D) layers and Si segregation at the edge of the NW with the highest doping. Moreover, direct transport measurements on single NWs have shown a controlled doping with resistivity from 10(2) to 10(-3) Ω·cm, and a car…
Domain structure of epitaxial SrRuO3 thin films
2005
Growth of multidomains in epitaxial thin-film oxides is known to have a detrimental effect on some functional properties, and, thus, efforts are done to suppress them. It is commonly accepted that optimal properties of the metallic and ferromagnetic $\mathrm{SrRu}{\mathrm{O}}_{3}$ (SRO) epitaxies can only be obtained if vicinal $\mathrm{SrTi}{\mathrm{O}}_{3}$ (001) (STO) substrates are used. It is believed that this results from the suppression of multidomain structure in the SRO film. Here we revise this important issue. Nanometric films of SRO have been grown on STO(001) vicinal substrates with miscut $({\ensuremath{\theta}}_{V})$ angles in the $\ensuremath{\sim}0.04\ifmmode^\circ\else\te…
Size dependent carrier thermal escape and transfer in bimodally distributed self assembled InAs/GaAs quantum dots
2012
We have investigated the temperature dependent recombination dynamics in two bimodally distributed InAs self assembled quantum dots samples. A rate equations model has been implemented to investigate the thermally activated carrier escape mechanism which changes from exciton-like to uncorrelated electron and hole pairs as the quantum dot size varies. For the smaller dots, we find a hot exciton thermal escape process. We evaluated the thermal transfer process between quantum dots by the quantum dot density and carrier escape properties of both samples. © 2012 American Institute of Physics.
Growth of low-density vertical quantum dot molecules with control in energy emission
2010
This article is distributed under the terms of the Creative Commons Attribution Noncommercial License.-- This article is part of the series 8th International Workshop on Epitaxial Semiconductors on Patterned Substrates and Novel Index Surfaces.
Raman measurements on GaN thin films for PV - purposes
2012
Raman scattering (RS) is a very important experimental tool to characterize the optical modes and another elementary excitations of materials. Among other issues it can determine for example the degree of crystalline quality and point defects like local modes. Therefore GaN - thin films and related compounds for photovoltaic purposes and as processed by several systems have been measured by this technique. The films were grown by Molecular Beam Epitaxy (MBE), Close Spaced Vapor Transport (CSVT) and Laser Ablation (LA) with the use of optimal growth parameters and substrates. Gallium nitride crystallizes in the wurtzite structure with 4 atoms in the unit cell and presents 7 allowed Raman mod…
Consequences of the spatial localization on the exciton recombination dynamics in InGaP/GaAs heterostructures
2002
5 páginas, 4 figuras.