Search results for "FLUORESCENCE MICROSCOPY"

showing 10 items of 61 documents

Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes.

2014

Several approaches have been described to fluorescently label and image DNA and chromatin in situ on the single-molecule level. These superresolution microscopy techniques are based on detecting optically isolated, fluorescently tagged anti-histone antibodies, fluorescently labeled DNA precursor analogs, or fluorescent dyes bound to DNA. Presently they suffer from various drawbacks such as low labeling efficiency or interference with DNA structure. In this report, we demonstrate that DNA minor groove binding dyes, such as Hoechst 33258, Hoechst 33342, and DAPI, can be effectively employed in single molecule localization microscopy (SMLM) with high optical and structural resolution. Upon ill…

DNA ReplicationHoechstDNA RepairDNA repairBiologyfluorescence microscopyDAPIchemistry.chemical_compoundphotoconversionsuper-resolution microscopylocalization microscopyFluorescence microscopeSPDMAnimalsHumansDAPIdSTORMSMLMFluorescent DyesMicroscopySuper-resolution microscopynucleusDNA replicationdSTORCell BiologyDNADNA Minor Groove BindingChromatinChromatinCell biologychemistryMicroscopy FluorescencechromatinblinkingDNAResearch PaperNucleus (Austin, Tex.)
researchProduct

Fast and robust phase-shift estimation in two-dimensional structured illumination microscopy.

2019

A method of determining unknown phase-shifts between elementary images in two-dimensional Structured Illumination Microscopy (2D-SIM) is presented. The proposed method is based on the comparison of the peak intensity of spectral components. These components correspond to the inherent structured illumination spectral content and the residual compo- nent that appears from wrongly estimated phase-shifts. The estimation of the phase-shifts is carried out by finding the absolute maximum of a function defined as the normalized peak intensity difference in the Fourier domain. This task is performed by an optimization method providing a fast estimation of the phase-shift. The algorithm stability an…

DiffractionStatistical NoisePhotonStructured illumination microscopy02 engineering and technologySignal-To-Noise RatioResidual01 natural sciencesPhase DeterminationMathematical and Statistical TechniquesFluorescence MicroscopyImage Processing Computer-AssistedFourier Anàlisi deMathematicsMicroscopyMultidisciplinaryFourier AnalysisPhysicsApplied MathematicsSimulation and ModelingStatisticsQRLight Microscopy021001 nanoscience & nanotechnologyGaussian NoiseMicroscòpiaFourier analysisPhysical SciencessymbolsCrystallographic TechniquesMedicine0210 nano-technologyAlgorithmDiffractionElementary ParticlesAlgorithmsResearch ArticleImaging TechniquesComputationScienceResearch and Analysis Methods010309 opticssymbols.namesakeRobustness (computer science)0103 physical sciencesParticle PhysicsPhotonsMicroscopy FluorescenceGaussian noiseWavesMathematicsImatges Processament Tècniques digitalsPLoS ONE
researchProduct

Advanced fluorescence microscopy for in vivo imaging of neuronal activity

2019

Brain function emerges from the coordinated activity, over time, of large neuronal populations placed in different brain regions. Understanding the relationships of these specific areas and disentangling the contributions of individual neurons to overall function remain central goals for neuroscience. In this scenario, fluorescence microscopy has been proved as the tool of choice for in vivo recording of brain activity. Optical advances combined with genetically encoded indicators allow a large flexibility in terms of spatiotemporal resolution and field of view while keeping invasiveness in living animals to a minimum. Here we describe the latest advancements in the field of linear and nonl…

Flexibility (engineering)0303 health sciencesBrain activity and meditationComputer science01 natural sciencesAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materials010309 optics03 medical and health scienceslight-sheet microscopy; field-of-view; cellular-resolution; adaptive optics; multiphoton microscopy; GRID CELLS; HIGH-SPEED; LONG-TERM; 2-PHOTON; DEEPLight sheet fluorescence microscopy0103 physical sciencesFluorescence microscopePremovement neuronal activityIn vivo microscopyOptics In vivo imaging MicroscopyNeurosciencePreclinical imagingBrain function030304 developmental biologyOptica
researchProduct

Optical sectioning by two-pinhole confocal fluorescence microscopy.

2003

A two-pinhole axially superresolving confocal fluorescence imaging system is presented. Based on the concept of subtractive incoherent imaging, the system described here is equipped with a zero-focus complex-transmittance pupil filter in one of the collector paths. The optical sectioning capacity of the system is 25% superior to that of a free-pupil one-pinhole instrument.

Fluorescence-lifetime imaging microscopyMaterials scienceMicroscopy ConfocalOptical sectioningbusiness.industryConfocalScanning confocal electron microscopyGeneral Physics and AstronomyCell BiologyModels TheoreticalImage Enhancementlaw.inventionOpticsMicroscopy FluorescenceStructural BiologyConfocal microscopylawLight sheet fluorescence microscopySubtraction TechniqueMicroscopyGeneral Materials SciencePinhole (optics)businessMicron (Oxford, England : 1993)
researchProduct

Fluorescence and spin properties of defects in single digit nanodiamonds

2009

International audience; This article reports stable photoluminescence and high-contrast optically detected electron spin resonance (ODESR) from single nitrogen-vacancy (NV) defect centers created within ultrasmall, disperse nanodiamonds of radius less than 4 nm. Unexpectedly, the efficiency for the production of NV fluorescent defects by electron irradiation is found to be independent of the size of the nanocrystals. Fluorescence lifetime imaging shows lifetimes with a mean value of around 17 ns, only slightly longer than the bulk value of the defects. After proper surface cleaning, the dephasing times of the electron spin resonance in the nanocrystals approach values of some microseconds, …

Fluorescent nanoparticleMaterials sciencePhotoluminescenceDephasingGeneral Physics and AstronomyNanoparticleNanotechnology02 engineering and technologyengineering.material010402 general chemistry01 natural scienceslaw.invention[SPI.MAT]Engineering Sciences [physics]/MaterialslawElectron beam processingGeneral Materials Scienceconfocal fluorescence microscopyElectron paramagnetic resonancebusiness.industrydefects in diamondelectron spin resonanceGeneral EngineeringDiamond021001 nanoscience & nanotechnologyFluorescencefluorescence lifetime imaging0104 chemical sciencesNanocrystalengineeringOptoelectronicssingle molecule spectroscopysingle spin manipulation0210 nano-technologybusiness
researchProduct

Optical-sectioning improvement in two-color excitation scanning microscopy

2004

We present a new beam-shaping technique for two-color excitation fluorescence microscopy. We show that by simply inserting a properly designed shaded-ring filter in the illumination beam of smaller wavelength, it is possible to improve the effective optical sectioning capacity of such microscopes by 23%. Such an improvement is obtained at the expense of only a very small increasing of the overall energy in the point-spread-function sidelobes. The performance of this technique is illustrated by a numerical imaging simulation.

HistologyMaterials scienceMicroscopeOptical sectioningbusiness.industrylaw.inventionMedical Laboratory TechnologyWavelengthOpticsTwo-photon excitation microscopylawLight sheet fluorescence microscopyMicroscopyFluorescence microscopeAnatomybusinessInstrumentationExcitationMicroscopy Research and Technique
researchProduct

Dual-beam confocal light-sheet microscopy via flexible acousto-optic deflector

2019

Confocal detection in digital scanned laser light-sheet fluorescence microscopy (DSLM) has been established as a gold standard method to improve image quality. The selective line detection of a complementary metal-oxide-semiconductor camera (CMOS) working in rolling shutter mode allows the rejection of out-of-focus and scattered light, thus reducing background signal during image formation. Most modern CMOS have two rolling shutters, but usually only a single illuminating beam is used, halving the maximum obtainable frame rate. We report on the capability to recover the full image acquisition rate via dual confocal DSLM by using an acoustooptic deflector. Such a simple solution enables us t…

Image formationPaperMaterials scienceImage qualityConfocalBiomedical Engineeringacousto-optic deflector; confocal detection; digital scanned laser light-sheet fluorescence microscopy; high contrast; high-throughput microscopy; light-sheet microscopy; mouse brain; zebrafish brainconfocal detection01 natural scienceslaw.invention010309 opticsBiomaterialsMiceacousto-optic deflectorOpticslaw0103 physical sciencesMicroscopyImage Processing Computer-AssistedAnimalsZebrafishhigh-throughput microscopyconfocal light-sheet microscopyMicroscopyMicroscopy Confocalbusiness.industryhigh contrastRolling shutterBrainEquipment DesignLaserFrame ratezebrafish brainAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsHigh-Throughput Screening AssaysMice Inbred C57BLdigital scanned laser light-sheet fluorescence microscopyMicroscopy FluorescenceLight sheet fluorescence microscopyLarvamouse brainbusinesslight-sheet microscopyJournal of Biomedical Optics
researchProduct

Ultrastructure of the Interlamellar Membranes of the Nacre of the Bivalve Pteria hirundo, Determined by Immunolabelling.

2015

The current model for the ultrastructure of the interlamellar membranes of molluscan nacre imply that they consist of a core of aligned chitin fibers surrounded on both sides by acidic proteins. This model was based on observations taken on previously demineralized shells, where the original structure had disappeared. Despite other earlier claims, no direct observations exist in which the different components can be unequivocally discriminated. We have applied different labeling protocols on non-demineralized nacreous shells of the bivalve Pteria. With this method, we have revealed the disposition and nature of the different fibers of the interlamellar membranes that can be observed on the …

In situPlateletsBivalvesScanning electron microscopeShell (structure)Mineralogylcsh:MedicineChitinMatrix (biology)chemistry.chemical_compoundChitinAnimal ShellsMembrane proteinsAnimalsFiberlcsh:ScienceNacreFluorescence microscopyMultidisciplinaryMicroscopy Confocallcsh:RfungiProteasesMolluscs[ SDV.IB.BIO ] Life Sciences [q-bio]/Bioengineering/BiomaterialsBivalviaMembraneAragonitechemistryBiophysicsUltrastructureMicroscopy Electron Scanninglcsh:QResearch ArticlePloS one
researchProduct

Amyloid P component--a special type of collagen?

1978

The localization of amyloid P-components is demonstrated by immunofluorescence microscopy in normal human tissue (kidney, spleen, liver). The relation to collagen and to amyloidosis is discussed.

KidneyPathologymedicine.medical_specialtyAmyloidAmyloidChemistryAmyloidosisGoatsImmune SeraFluorescent Antibody TechniqueSpleenImmunofluorescence MicroscopyMiddle Agedmedicine.diseaseKidneyPathology and Forensic MedicineAmyloid P ComponentCollagen type I alpha 1medicine.anatomical_structureLivermedicineAnimalsHumansCollagenSpleenVirchows Archiv. B, Cell pathology
researchProduct

eNOS S-nitrosylates β-actin on Cys374 and regulates PKC-θ at the immune synapse by impairing actin binding to profilin-1.

2017

The actin cytoskeleton coordinates the organization of signaling microclusters at the immune synapse (IS); however, the mechanisms involved remain poorly understood. We show here that nitric oxide (NO) generated by endothelial nitric oxide synthase (eNOS) controls the coalescence of protein kinase C-¿ (PKC-¿) at the central supramolecular activation cluster (c-SMAC) of the IS. eNOS translocated with the Golgi to the IS and partially colocalized with F-actin around the c-SMAC. This resulted in reduced actin polymerization and centripetal retrograde flow of ß-actin and PKC-¿ from the lamellipodium-like distal (d)-SMAC, promoting PKC-¿ activation. Furthermore, eNOS-derived NO S-nitrosylated ß-…

Life Sciences & Biomedicine - Other Topics0301 basic medicinePOLARIZATIONIMMUNOLOGICAL SYNAPSEImmunological SynapsesT-LymphocytesPROTEINGolgi ApparatusCYTOSKELETONRetrograde FlowBiochemistryARP2/3 COMPLEXT-CELL-ACTIVATIONProfilinsWhite Blood CellsContractile ProteinsFluorescence MicroscopyAnimal CellsMedicine and Health SciencesPseudopodiaBiology (General)Post-Translational ModificationCells CulturedProtein Kinase CMicroscopyT CellsGeneral NeuroscienceLight MicroscopyNeurochemistryRecombinant Proteins3. Good healthIsoenzymesPOLYMERIZATIONProtein TransportCell ProcessesRNA InterferenceCellular TypesNeurochemicalsGeneral Agricultural and Biological SciencesLife Sciences & BiomedicineResearch ArticleBiochemistry & Molecular BiologyNitric Oxide Synthase Type IIIQH301-705.5Imaging TechniquesRecombinant Fusion ProteinsImmune CellsImmunologyLibrary scienceAntigen-Presenting Cellsmacromolecular substancesBiologyNitric OxideResearch and Analysis MethodsGeneral Biochemistry Genetics and Molecular BiologyCell Line03 medical and health sciencesFluorescence ImagingHumansCysteineNITRIC-OXIDE SYNTHASEBiologyScience & TechnologyBlood CellsRECEPTORGeneral Immunology and MicrobiologyBiology and Life SciencesProteinsCell BiologyActinsS-NitrosylationEnzyme ActivationLuminescent ProteinsCytoskeletal Proteins030104 developmental biologyAmino Acid SubstitutionRETROGRADE FLOWProtein Kinase C-thetaMutationProtein Processing Post-TranslationalNeuroscienceActin PolymerizationPLoS biology
researchProduct