Search results for "GaAs"
showing 10 items of 20 documents
Nanoscale etching of III-V semiconductors in acidic hydrogen peroxide solution: GaAs and InP, a striking contrast in surface chemistry
2019
In this study of nanoscale etching for state-of-the-art device technology, the importance of surface chemistry, in particular the nature of the surface oxide, is demonstrated for two III-V materials. Striking differences in etching kinetics were found for GaAs and InP in sulphuric and hydrochloric acidic solutions containing hydrogen peroxide. Under similar conditions, etching of GaAs was much faster, while the dependence of the etch rate on pH, and on H2O2 and acid concentrations also differed markedly for the two semiconductors. Surface analysis techniques provided information on the product layer present after etching: strongly non-stoichiometric porous (hydr)oxides on GaAs and a thin st…
Natural optical anisotropy of h-BN: Highest giant birefringence in a bulk crystal through the mid-infrared to ultraviolet range
2018
The giant birefringence of layered h-BN was demonstrated by analyzing the interference patterns in reflectance and transmittance measurements in the mid-infrared to the deep ultraviolet energy range. The refractive index for polarization perpendicular to the c axis is much higher than the refractive index for polarization parallel to the c axis, and it displays a strong increase in the ultraviolet range that is attributed to the huge excitonic effects arising from the unique electronic structure of h-BN. Thus, h-BN is shown to exhibit a giant negative birefringence that ranges from -0.7 in the visible to -2 in the deep ultraviolet close to the band gap. The electronic dielectric constants f…
Monte Carlo simulation of high‐order harmonics generation in bulk semiconductors and submicron structures
2004
To qualify the feasibility of standard semiconductor materials and Schottky‐barrier diodes (SBDs) for THz high‐order harmonic generation and extraction, the harmonic intensity, intrinsic noise and signal‐to‐noise ratio are calculated by the Monte Carlo method when a periodic high‐frequency large‐amplitude external signal is applied to a semiconductor device. Due to very high signal‐to‐noise ratio heavily doped GaAs SBDs are found to exhibit conditions for frequency mixing and harmonic extraction that are definitively superior to those of bulk materials. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Mapping an electron wave function by a local electron scattering probe
2015
A technique is developed which allows for the detailed mapping of the electronic wave function in two-dimensional electron gases with low-temperature mobilities up to $15\times {10}^{6}\;{\mathrm{cm}}^{2}\;{{\rm{V}}}^{-1}\;{{\rm{s}}}^{-1}$. Thin ('delta') layers of aluminium are placed into the regions where the electrons reside. This causes electron scattering which depends very locally on the amplitude of the electron wave function at the position of the Al δ-layer. By changing the distance of this layer from the interface we map the shape of the wave function perpendicular to the interface. Despite having a profound effect on the electron mobiliy, the δ-layers do not cause a widening of …
Microreflectivity studies of wavelength control in oxidised AlGaAs microcavity
2002
Blue lasing at room temperature in high quality factor GaN/AlInN microdisks with InGaN quantum wells
2007
The authors report on the achievement of optically pumped III-V nitride blue microdisk lasers operating at room temperature. Controlled wet chemical etching of an AlInN interlayer lattice matched to GaN allows forming inverted cone pedestals. Whispering gallery modes are observed in the photoluminescence spectra of InGaN/GaN quantum wells embedded in the GaN microdisks. Typical quality factors of several thousands are found (Q>4000). Laser action at similar to 420 nm is achieved under pulsed excitation at room temperature for a peak power density of 400 kW/cm(2). The lasing emission linewidth is down to 0.033 nm.
Polarized recombination of acoustically transported carriers in GaAs nanowires
2012
: The oscillating piezoelectric field of a surface acoustic wave (SAW) is employed to transport photoexcited electrons and holes in GaAs nanowires deposited on a SAW delay line on a LiNbO3 crystal. The carriers generated in the nanowire by a focused light spot are acoustically transferred to a second location where they recombine. We show that the recombination of the transported carriers occurs in a zinc blende section on top of the predominant wurtzite nanowire. This allows contactless control of the linear polarized emission by SAWs which is governed by the crystal structure. Additional polarization-resolved photoluminescence measurements were performed to investigate spin conservation d…
Electrical-optical characterization of multijunction solar cells under 2000X concentration
2014
In the framework of the FAE "Fotovoltaico ad Alta Efficienza" ("High Efficiency Photovoltaic") Research Project (PO FESR Sicilia 2007/2013 4.1.1.1), we have performed electrical and optical characterizations of commercial InGaP/InGaAs/Ge triple-junction solar cells (1 cm2) mounted on a prototype HCPV module, installed in Palermo (Italy). This system uses a reflective optics based on rectangular off-axis parabolic mirror with aperture 45×45 cm2 leading to a geometrical concentration ratio of 2025. In this study, we report the I-V curve measured under incident power of about 700 W/m2 resulting in an electrical power at maximum point (PMP) of 41.4 W. We also investigated the optical properties…
Single quantum dot emission at telecom wavelengths from metamorphic InAs/InGaAs nanostructures grown on GaAs substrates
2011
3 figuras, 3 páginas.
Influence of a Thiolate Chemical Layer on GaAs (100) Biofunctionalization: An Original Approach Coupling Atomic Force Microscopy and Mass Spectrometr…
2013
International audience; Widely used in microelectronics and optoelectronics; Gallium Arsenide (GaAs) is a III-V crystal with several interesting properties for microsystem and biosensor applications. Among these; its piezoelectric properties and the ability to directly biofunctionalize the bare surface, offer an opportunity to combine a highly sensitive transducer with a specific bio-interface; which are the two essential parts of a biosensor. To optimize the biorecognition part; it is necessary to control protein coverage and the binding affinity of the protein layer on the GaAs surface. In this paper; we investigate the potential of a specific chemical interface composed of thiolate molec…