Search results for "Heterojunction"
showing 10 items of 227 documents
Acoustic properties of nanoscale oxide heterostructures probed by UV Raman spectroscopy
2007
We study high quality molecular-beam epitaxy grown BaTiO3/SrTiO3 superlat-tices using ultraviolet Raman spectroscopy. In the low energy spectral region, acoustic phonon doublets are observed. These are due to the artificial superlattice periodicity and consequent folding of the acoustic phonon dispersion. From the study of samples with different BaTiO3/SrTiO3 layer thicknesses the effective sound velocities within each of the layers are obtained.
Water splitting through model surfaces of metal oxides : ferroelectric polarization towards water adsorption processes
2019
The properties of out-of-plane polarized BaTiO3(001) thin films were investigated from first-principles calculations and photoemission spectroscopy. Firstly, density functional theory calculations (DFT) were used to unravel the nature of the Pt(001)/BaTiO3(001) interface. In particular, the influence of the substrate on the ferroelectric properties of the BaTiO3 overlayer has been studied. Among the results, it can be pointed that platinum tends to increase the ferroelectric domain size of BaTiO3.Then, the adsorption of water on BaTiO3 was described by means of DFT calculations. The impact of the polarization as well as the influence of the nature of the surface termination on water adsorpt…
Development of Kesterite (Cu2ZnSnS4) absorber material for solar cell application.
2021
Kesterite-based solar cells still suffer from limited efficiency due to various problems related to the absorber and device interfaces. Absorber defects and non-ideal band alignment at the absorber/buffer hetero-interface, resulting in a cliff-like conduction band offset (CBO), and non-ideal absorber/back contact interfaces are the main factors limiting efficiency.This thesis focuses mainly on the absorber-related problems such as the secondary phases and the band alignment at the absorber-buffer heterojunction as well as the back interface.In the first part, the properties of the absorber layer were studied. Thin layers of Cu2ZnSnS4 (CZTS) were obtained by chemical route. This study reveal…
Temperature dependence of the E2h phonon mode of wurtzite GaN/AlN quantum dots
2008
Raman scattering has been used to study the temperature dependence of the frequency and linewidth of the E2h phonon mode of GaN/AlN quantum dot stacks grown on 6H-SiC. The evolution of the nonpolar phonon mode was analyzed in the temperature range from 80 to 655 K for both quantum dots and barrier materials. The experimental results are interpreted by comparison with a model that takes into account symmetric phonon decay and the different thermal expansions of the constituents of the heterostructure. We find a small increase in the anharmonic parameters of the phonon modes in the heterostructure with respect to bulk. jorbumar@alumni.uv.es Alberto.Garcia@uv.es Ana.Cros@uv.es
Correlation between optical properties and barrier composition in InxGa1−xP/GaAs quantum wells
1998
9 páginas, 11 figuras.
Influence of twinned structure on the morphology of CdTe(111) layers grown by MOCVD on GaAs(100) substrates
2003
Abstract The morphology and structure of CdTe(1 1 1) layers grown on GaAs(1 0 0) by MOCVD have been studied by atomic force microscopy (AFM) and X-ray texture analysis. Growth conditions have been chosen so that mirror-like CdTe layers are obtained. Layers whose growth times vary between 10 s and 2 h have been investigated. The X-ray texture analysis shows that the CdTe layers grown on GaAs substrates that were thermally treated at 580°C for 30 min in a H 2 atmosphere exhibit a (1 1 1) preferential orientation and are twinned. This twinned structure of the (1 1 1)CdTe layer which is observed as 60° rotated triangular crystallites in the AFM images strongly influences the surface morphology.…
On the interest of ambipolar materials for gas sensing
2017
International audience; Based on the electrochemical properties of a series of metallophthalocyanines this article shows that the phthalocyanine bearing four alkoxy groups and twelve fluorine atoms behaves approximately as those with eight fluorine atoms. This indicates that the electron-donating effect of one alkoxy group balances the electro-withdrawing effect of one fluorine atom. We engaged three metallophthalocyanines, namely the octafluoro copper phthalocyanine, Cu(F8Pc), an octaester metallophthalocyanine and a phthalocyanine bearing four alkoxy groups and twelve fluorine atoms, Zn(T4F12Pc), in building original conductometric transducers that are Molecular Semiconductor – Doped Insu…
Solar blind AlGaN photodetectors with a very high spectral selectivity
2006
Solar blind detectors based on AlGaN heterostructures grown on sapphire by Molecular Beam Epitaxy and with a dielectric interference filter deposited on the back side are demonstrated to provide record spectral selectivity. Rejection ratios of 2 x 10(4), and better than 5 x 10(4), measured between 280 and 320 nm, are achieved in Metal Semiconductor Metal detectors and Schottky diodes respectively. The whole detector process is fully compatible with low cost array fabrication.
Bias and humidity effects on the ammonia sensing of perylene derivative/lutetium bisphthalocyanine MSDI heterojunctions
2016
International audience; In this paper, we prepared and studied sensors based on Molecular Semiconductor-Doped Insulator (MSDI) heterojunctions. These original devices are built with two stacked layers of molecular materials and exhibit very specific electrical and sensing properties. We studied the properties of a MSDI composed of the perylenetetracarboxylic dianhydride, PTCDA, or the fluorinated perylenebisimine derivative, C4F7-PTCDI, as n-type molecular material sublayers, and LuPc2 as a p-type semiconductor top layer. Their response to ammonia was compared to that of a resistor formed of only the top layer of the MSDI (LuPc2). Ammonia increases the current in the MSDIs whereas it causes…