Search results for "Magneto"
showing 10 items of 919 documents
Entanglement-Based dc magnetometry with separated ions
2017
We demonstrate sensing of inhomogeneous dc magnetic fields by employing entangled trapped ions, which are shuttled in a segmented Paul trap. As sensor states, we use Bell states of the type j↑↓i þ eiφj↓↑i encoded in two 40Caþ ions stored at different locations. The linear Zeeman effect leads to the accumulation of a relative phase φ, which serves for measuring the magnetic-field difference between the constituent locations. Common-mode magnetic-field fluctuations are rejected by the entangled sensor state, which gives rise to excellent sensitivity without employing dynamical decoupling and therefore enables accurate dc sensing. Consecutive measurements on sensor states encoded in the S1=2 g…
Metal-Controlled Magnetoresistance at Room Temperature in Single-Molecule Devices
2017
The appropriate choice of the transition metal complex and metal surface electronic structure opens the possibility to control the spin of the charge carriers through the resulting hybrid molecule/metal spinterface in a single-molecule electrical contact at room temperature. The single-molecule conductance of a Au/molecule/Ni junction can be switched by flipping the magnetization direction of the ferromagnetic electrode. The requirements of the molecule include not just the presence of unpaired electrons: the electronic configuration of the metal center has to provide occupied or empty orbitals that strongly interact with the junction metal electrodes and that are close in energy to their F…
Theory of domain-wall magnetoresistance in metallic antiferromagnets
2020
We develop a theory to compute the domain-wall magnetoresistance (DWMR) in antiferromagnetic (AFM) metals with different spin structures. In the diffusive transport regime, the DWMR can be either {\it negative} or positive depending on the domain-wall orientation and spin structure. In contrast, when the transport is in the ballistic regime, the DWMR is always positive, and the magnitude depends on the width and orientation of the domain wall. Our results pave the way of using electrical measurements for probing the internal spin structure in antiferromagnetic metals.
Magnetoresistance effects in the metallic antiferromagnet Mn$_2$Au
2019
In antiferromagnetic spintronics, it is essential to separate the resistance modifications of purely magnetic origin from other effects generated by current pulses intended to switch the N\'eel vector. We investigate the magnetoresistance effects resulting from magnetic field induced reorientations of the staggered magnetization of epitaxial antiferromagnetic Mn2Au(001) thin films. The samples were exposed to 60 T magnetic field pulses along different crystallographic in-plane directions of Mn2Au(001), while their resistance was measured. For the staggered magnetization aligned via a spin-flop transition parallel to the easy [110]-direction, an ansiotropic magnetoresistance of -0.15 % was m…
Calculation of surface quantum levels in tellurium inversion layers
1978
Magnetoresistance studies of the ferromagnetic molecular metal (BEDT-TTF)3[MnCr(C2O4)3] under pressure
2003
(BEDT-TTF)3[MnCr(C2O4)3] is the first ferromagnetic molecular metal, in which organic layers of BEDT-TTF alternate with infinite layers of the bimetallic oxalate complex [MnCr(C2O4)3]-. While the bimetallic layer undergoes a magnetic phase transition into a canted ferromagnetic state at 5.5 K, the metallic character of the conductivity is not affected by the magnetic transition [Nature 408 (2000) 447]. We performed magnetoresistance measurements (B≤17 T) at low temperatures (T≥900 mK) and under hydrostatic pressures of up to 2.0 GPa. Oscillations in the magnetoresistance develop under pressure that can be interpreted as Shubnikov-de Haas oscillations, if an internal magnetic field is taken …
Large negative magnetoresistance effects in Co2Cr0.6Fe0.4Al
2003
Abstract Materials, which display large changes in resistivity in response to an applied magnetic field (magnetoresistance) are currently of great interest due to their potential for applications in magnetic sensors, magnetic random access memories, and spintronics. Guided by striking features in the electronic structure of several magnetic compounds, we prepared the Heusler compound Co2Cr0.6Fe0.4Al. Based on our band structure calculations, we have chosen this composition in order to obtain a half-metallic ferromagnet with a van Hove singularity in the vicinity of the Fermi energy in the majority spin channel and a gap in the minority spin channel. We find a magnetoresistive effect of 30% …
A magnetic skyrmion as a non-linear resistive element - a potential building block for reservoir computing
2017
Inspired by the human brain, there is a strong effort to find alternative models of information processing capable of imitating the high energy efficiency of neuromorphic information processing. One possible realization of cognitive computing are reservoir computing networks. These networks are built out of non-linear resistive elements which are recursively connected. We propose that a skyrmion network embedded in frustrated magnetic films may provide a suitable physical implementation for reservoir computing applications. The significant key ingredient of such a network is a two-terminal device with non-linear voltage characteristics originating from single-layer magnetoresistive effects,…
Preliminary design of a magnetorheological brake for automotive use
2011
After an initial study of the characteristics of magnetorheological fluids based on a thorough search in literature, a preliminary configuration of MR brake is proposed. It comes from the evaluation of the main factors influencing the design of an appropriate magnetic circuit, and then the performance obtained in terms of brake torque. The analytical study of the brake has allowed a first preliminary sizing. Through the subsequent execution of an electromagnetic finite element model, created in ANSYS, it was possible to assess more accurately the distribution of the magnetic field inside the MR fluid and hence the resistance to relative motion between rotor and stator. The work needs an acc…
Ten-year resistance training background modulates somatosensory P3 cognitive brain resonse in older men : a magnetoencephalograpy study
2020
The brain electrophysiological component P3, associated with good cognitive abilities, deteriorates during healthy aging. Both cognitive functions and P3 component amplitude respond positively to exercise, but the effects of resistance training on P3 are much less studied. Short-term resistance training interventions in older adults indicate modulation towards larger P3 amplitude, but this association has not been studied with a longitudinal study design. We investigated magnetoencephalographically recorded P3 (P3m) in a unique study design of nine aged men (mean age 77.7 y) with quasi-supervised resistance training background over a 10-year period and eight controls of similar age (mean ag…