Search results for "SAPPHIRE"

showing 10 items of 114 documents

Study of the bandgap renormalization in Ga-doped ZnO films by means of optical absorption under high pressure and photoelectron spectroscopy

2008

Abstract In this paper we investigate the band gap renormalization in heavily Ga-doped ZnO thin films deposited by pulsed laser deposition on C -plane sapphire and mica substrates. Thin films were studied by ultraviolet photoelectron spectroscopy and also by optical measurements under high pressure. The Fermi-level shift, as obtained from ultraviolet photoelectron experiments, exhibits a relatively small and positive shift (about 0.3 eV) with respect to the valence band for increasing electron concentrations up to 1021 cm−3. The optical gap exhibits a much larger increase (0.6 eV) for the same concentration range. Absorption measurements under pressure show that the pressure coefficient of …

Materials scienceBand gapbusiness.industryDopingCondensed Matter PhysicsMolecular physicsPulsed laser depositionOpticsX-ray photoelectron spectroscopySapphireGeneral Materials ScienceElectrical and Electronic EngineeringThin filmbusinessAbsorption (electromagnetic radiation)Ultraviolet photoelectron spectroscopySuperlattices and Microstructures
researchProduct

Continuously tunable diamond Raman laser for resonance ionization experiments at CERN

2019

We demonstrate a highly efficient, continuously tunable, diamond Raman laser operating in the blue region of the spectrum. The linewidth and tunability characteristics of a frequency-doubled Ti:Sapphire laser were transferred directly to the Stokes output, offering great potential for spectroscopic applications using an all-solid-state platform.

Materials scienceLarge Hadron Colliderbusiness.industryPhysics::OpticsDiamondengineering.materialLaserlaw.inventionLaser linewidthRaman laserlawResonance ionizationengineeringSapphireOptoelectronicsPhysics::Atomic PhysicsbusinessLaser Congress 2019 (ASSL, LAC, LS&C)
researchProduct

Terbium Medical Radioisotope Production: Laser Resonance Ionization Scheme Development

2021

Terbium (Tb) is a promising element for the theranostic approach in nuclear medicine. The new CERN-MEDICIS facility aims for production of its medical radioisotopes to support related R&D projects in biomedicine. The use of laser resonance ionization is essential to provide radioisotopic yields of highest quantity and quality, specifically regarding purity. This paper presents the results of preparation and characterization of a suitable two-step laser resonance ionization process for Tb. By resonance excitation via an auto-ionizing level, the high ionization efficiency of 53% was achieved. To simulate realistic production conditions for Tb radioisotopes, the influence of a surplus of Gd at…

Medicine (General)theranosticsMaterials scienceCERN-MEDICISIon beam530 PhysicsGadolinium610 Medizinchemistry.chemical_elementTerbiumTERBIUMSURFACE PROPERTYIsotope separationlaw.inventionGADOLINIUMR5-920COMPARATIVE STUDYlawIonization610 Medical sciencesLASER RESONANCE IONIZATIONSAPPHIRE LASER [TI]ARTICLERADIOCHEMISTRYisotope separationTANTALUMOriginal ResearchTHERANOSTICSTi:Sapphire laserRISIKO MASS SEPARATORterbiumATOMIC SPECTROMETRYRadiochemistryTi:sapphire laserGeneral Medicine530 PhysikCharacterization (materials science)CONTROLLED STUDYchemistryRISIKO mass separatorION CURRENTMedicineISOTOPE SEPARATIONIONIZATIONAtomic ratiolaser resonance ionizationgadolinium
researchProduct

X‐ray characterization of CdO thin films grown on a ‐, c ‐, r ‐ and m ‐plane sapphire by metalorganic vapour phase‐epitaxy

2005

CdO thin films have been grown on a-plane (110), c-plane (0001), r-plane (012) and m-plane (100) sapphire substrates by metalorganic vapour-phase epitaxy (MOVPE). The effects of different substrate orientations on the structural properties of the films have been analyzed by means of X-ray diffraction, including θ-2θ scans, pole figures and rocking curves. (111), (001) and (110) orientations are found on a-, r-, and m-sapphire respectively, while films deposited on c-plane exhibit an orientation in which no low-index crystal plane is parallel to the sample surface. The recorded pole figures have allowed determining the epitaxial relationships between films and substrates, as well as the pres…

DiffractionCrystallographyTilt (optics)Materials scienceX-raySapphireMetalorganic vapour phase epitaxySubstrate (electronics)Thin filmEpitaxyphysica status solidi (c)
researchProduct

Layout influence on microwave performance of graphene field effect transistors

2018

The authors report on an in-depth statistical and parametrical investigation on the microwave performance of graphene FETs on sapphire substrate. The devices differ for the gate-drain/source distance and for the gate length, having kept instead the gate width constant. Microwave S -parameters have been measured for the different devices. Their results demonstrate that the cut-off frequency does not monotonically increase with the scaling of the device geometry and that it exists an optimal region in the gate-drain/source and gate-length space which maximises the microwave performance.

TechnologyMaterials science02 engineering and technologyHardware_PERFORMANCEANDRELIABILITYSettore ING-INF/01 - Elettronica01 natural scienceslaw.inventionComputer Science::Hardware ArchitectureComputer Science::Emerging Technologieslaw0103 physical sciencesHardware_INTEGRATEDCIRCUITSElectrical and Electronic EngineeringScaling010302 applied physicsbusiness.industryGrapheneComputerSystemsOrganization_COMPUTER-COMMUNICATIONNETWORKSWide-bandgap semiconductorSettore ING-INF/02 - Campi Elettromagnetici021001 nanoscience & nanotechnologyGraphene field effect transistorsSapphire substrateOptoelectronicsField-effect transistorGraphene0210 nano-technologyConstant (mathematics)businessMicrowaveddc:600MicrowaveHardware_LOGICDESIGN
researchProduct

Structural characterization of CdTe layers grown on (0001) sapphire by MOCVD

2004

Abstract We report on the growth of CdTe layers directly onto (0 0 0 1) sapphire substrates by MOCVD. The structure and morphology of the layers have been investigated as a function of growth temperature and II/VI precursor molar ratio by X-ray diffraction and scanning electron microscopy. The texture of the samples has revealed the existence of a temperature threshold, with higher growth temperatures resulting on completely (1 1 1) oriented layers. Some of these layers contained microtwins, as indicated by the extra peaks in the {4 2 2} Φ scans, leading to the existence of two different domains. The structural quality of each domain, as well as of the sample as a whole, has been determined…

Inorganic ChemistryFacetingDiffractionCrystallographyChemistryScanning electron microscopeMaterials ChemistrySapphireTexture (crystalline)Metalorganic vapour phase epitaxyCondensed Matter PhysicsCrystal twinningCadmium telluride photovoltaicsJournal of Crystal Growth
researchProduct

Ultrafast laser-induced micro-explosion: material modification tool

2016

Femtosecond Bessel pulses with a needle-like intensity distribution were focused inside sapphire crystal to create voids and the shock-wave affected volume which is by more than two orders of magnitude larger as compared with that made by the Gaussian pulse.

Materials sciencebusiness.industryScanning electron microscopePhysics::OpticsLaserlaw.inventionCrystalsymbols.namesakeOpticslawFemtosecondsymbolsSapphirebusinessUltrashort pulseOrder of magnitudeBessel functionPhotonics and Fiber Technology 2016 (ACOFT, BGPP, NP)
researchProduct

Crystal growth of ZnO micro and nanostructures by PVT on c-sapphire and amorphous quartz substrates

2010

Abstract ZnO micro and nanostructures in the form of tripods, grains, arrows and wires have been grown at temperatures as low as 500–300  ∘ C by a vapour transport method without catalysis and using a well selected value of the carrier gas flow. A transition state between grains and nanowires is reported being characterized by arrow-like structures which are constituted by a pyramidal head and a tail that is growing from the basal plane of the head. In order to understand the effect of growth conditions on the morphology of micro and nanostructures, an analysis of temperature and species concentration conditions has been carried out. In addition two different kinds of substrates have been u…

Materials scienceNanostructureMorphology (linguistics)NanowireZnO nanostructuresNanotechnologyCrystal growthPhysics and Astronomy(all)ZnO microstructuresCatalysisAmorphous solidChemical engineeringSEMVapor phaseSapphireQuartzPhysics Procedia
researchProduct

Microcavity Light Emitting Diodes Based on GaN membranes Grown by Molecular Beam Epitaxy on Silicon

2003

Resonant-cavity InGaN/GaN quantum well light emitting diodes have been fabricated. Nitride layers were grown by molecular beam epitaxy on Si (111). We fabricated the structures using a combination of Si substrate etching, GaN etching and dielectric (Ta2O5/SiO2) mirror deposition. The electroluminescence spectra show that the emission within the distributed Bragg reflector stop band is enhanced in the membrane microcavity. The cavity modes are broadened by some cavity length non-uniformity that is introduced when the GaN is back etched to adjust the cavity length. This process does not need any transfer on an intermediate host substrate and is fully compatible with large area semiconductor p…

Materials sciencePhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsGeneral Physics and AstronomyPhysics::OpticsGallium nitrideSubstrate (electronics)Light emitting diodeFILMSSettore ING-INF/01 - Elettronicalaw.inventionchemistry.chemical_compoundCondensed Matter::Materials ScienceOpticsEtching (microfabrication)lawDielectric mirrorDielectric mirrorQuantum wellbusiness.industryGeneral EngineeringMembraneGallium nitrideDistributed Bragg reflectorlight emitting diodesComputer Science::OtherchemistryOptoelectronicsWAVELASERbusinessMicrocavityMolecular beam epitaxyLight-emitting diodeMolecular beam epitaxySAPPHIRE
researchProduct

High‐Quality Si‐Doped β‐Ga 2 O 3 Films on Sapphire Fabricated by Pulsed Laser Deposition

2020

The EU Horizon 2020 project CAMART2 is acknowledged for partly supporting the project, and the Ion Technology Centre, ITC, in Sweden is acknowledged for ion beam analysis (ERDA).

010302 applied physicsFabricationMaterials sciencebusiness.industrydiodesSi doped02 engineering and technologyfabrication021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsPulsed laser depositiongallium oxideGallium oxideQuality (physics)wide bandgap0103 physical sciencesSapphire:NATURAL SCIENCES:Physics [Research Subject Categories]Optoelectronics0210 nano-technologybusinesspulsed laser depositionDiodephysica status solidi (b)
researchProduct