Search results for "Sensitivity test"
showing 10 items of 355 documents
A Novel Series of Acylhydrazones as Potential Anti-Candida Agents: Design, Synthesis, Biological Evaluation and In Silico Studies
2019
In the context of an increased incidence of invasive fungal diseases, there is an imperative need of new antifungal drugs with improved activity and safety profiles. A novel series of acylhydrazones bearing a 1,4-phenylene-bisthiazole scaffold was designed based on an analysis of structures known to possess anti-Candida activity obtained from a literature review. Nine final compounds were synthesized and evaluated in vitro for their inhibitory activity against various strains of Candida spp. The anti-Candida activity assay revealed that some of the new compounds are as active as fluconazole against most of the tested strains. A molecular docking study was conducted in order to evaluate the …
New antifungals selected by molecular topology.
1999
Abstract Molecular topology has been applied to find the new lead antimycotic compounds. Among the selected compounds stands out 3,3′-(4,4′ - Biphenylene)bis(2,5-diphenyl-2H-tetrazolium chloride), Benztropine mesylate and Dicyclopentamethylenethiuram disulphide, with minimum inhibitory concentrations between 1.6 and 2 μg / mL.
Synthesis and antimicrobial activity of new 3-(1-R-3(5)-methyl-4-nitroso-1H-5(3)-pyrazolyl)-5-methylisoxazoles.
2000
A number of new 3-(1-R-3(5)-methyl-4-nitroso-1H-5(3)-pyrazolyl)-5-methylisoxazoles 6a-g (7b-f) were synthesized and tested for antibacterial and antifungal activity. Some of these compounds displayed antifungal activity at non-cytotoxic concentrations. Derivative 6c was 9 times more potent in vitro than miconazole and 20 times more selective against C. neoformans. 6c was also 8- and 125-fold more potent than amphotericin B and fluconazole, respectively. None of the compounds was active against bacteria. Preliminary structure-activity relationship (SAR) studies showed that the NO group at position 4 of the pyrazole ring is essential for the activity. Lipophilicity of the pyrazole moiety, N-a…
Steroidal saponins from Smilax medica and their antifungal activity.
2005
Three new steroidal saponins (1-3) were isolated from the roots of Smilax medica, together with the known disporoside A (4). The structures of the new compounds were elucidated mainly by extensive spectroscopic analysis (1D and 2D NMR, FABMS, and HRESIMS). Compounds 1, 2, and 4 demonstrated weak antifungal activity against the human pathogenic yeasts Candida albicans, C. glabrata, and C.tropicalis, with MIC values between 12.5 and 50 microg/mL.
Synthesis and Influence of 3-Amino Benzoxaboroles Structure on Their Activity against Candida albicans
2020
Benzoxaboroles emerged recently as molecules of high medicinal potential with Kerydin®
Antifungal activity and tautomeric cyclization equilibria of formylphenylboronic acids
2019
2-Formylphenylboronic acid and four isomeric fluoro-2-formylphenylboronic acids have been found active against a series of fungal strains: Aspergillus, Fusarium, Penicillium and Candida. The level of antifungal activity was evaluated by agar diffusion tests as well as the determination of minimum inhibitory concentrations (MICs) by serial dilution method. Among the tested compounds, 4-fluoro-2-formylphenylboronic acid - an analogue of the known antifungal drug Tavaborole (AN2690) - proved to be the most potent antifungal agent. The tautomeric equilibrium leading to the formation of 3-hydroxybenzoxaboroles as well as the position of the fluorine substituent were revealed to play a crucial ro…
Synthesis, Properties and Antimicrobial Activity of 5-Trifluoromethyl-2-formylphenylboronic Acid
2020
2-Formylphenylboronic acids display many interesting features, not only from synthetic but also from an application as well as structural points of view. 5-Trifluoromethyl-2-formyl phenylboronic acid has been synthesized and characterized in terms of its structure and properties. The presence of an electron-withdrawing substituent results in a considerable rise in the acidity in comparison with its analogues. In some solutions, the title compound isomerizes with formation of the corresponding 3-hydroxybenzoxaborole. Taking into account the probable mechanism of antifungal action of benzoxaboroles, which blocks the cytoplasmic leucyl-tRNA synthetase (LeuRS) of the microorganism, docking stud…
Synthesis and antifungal activity of new N-(1-phenyl-4-carbetoxypyrazol-5-yl)-, N-(indazol-3-yl)- and N-(indazol-5-yl)-2-iodobenzamides
2002
N-(1-Phenyl-4-carbetoxypyrazol-5-yl)-, N-(indazol-3-yl)- and N-(indazol-5-yl)-2-iodobenzamides 6, with a Benodanil-like structure, were synthesized by refluxing in acetic acid the corresponding benzotriazinones 5 with potassium iodide for 1 h in order to study the role on the antifungal activity of the N-substitution with an aromatic heterocyclic system on benzamide moiety. Among the tested iododerivatives, compounds 6d,f,g,h possess interesting activities toward some phytopathogenic fungal strains.
Chemical and antifungal investigations of six Lippia species (Verbenaceae) from Brazil
2012
Made available in DSpace on 2013-09-27T14:52:47Z (GMT). No. of bitstreams: 1 WOS000310396700165.pdf: 536437 bytes, checksum: d267984ddfcb57d1406b069856adcc25 (MD5) Previous issue date: 2012-12-01 Made available in DSpace on 2013-09-30T19:10:31Z (GMT). No. of bitstreams: 1 WOS000310396700165.pdf: 536437 bytes, checksum: d267984ddfcb57d1406b069856adcc25 (MD5) Previous issue date: 2012-12-01 Submitted by Vitor Silverio Rodrigues (vitorsrodrigues@reitoria.unesp.br) on 2014-05-20T14:20:39Z No. of bitstreams: 1 WOS000310396700165.pdf: 536437 bytes, checksum: d267984ddfcb57d1406b069856adcc25 (MD5) Made available in DSpace on 2014-05-20T14:20:39Z (GMT). No. of bitstreams: 1 WOS000310396700165.pdf: …
Bioactive Steroidal Saponins from Smilax medica
2006
Two new spirostanol saponins ( 1 and 2) were isolated from the roots of Smilax medica, together with the known smilagenin 3-O-beta-D-glucopyranoside (3). Their structures were determined by spectroscopic methods including 1D- and 2D-NMR experiments. Compounds 1 and 2 exhibited antifungal activity against the human pathogenic yeasts Candida albicans, C. glabrata and C. tropicalis (MICs between 6.25 and 50 microg/mL) whereas 3 was inactive.