Search results for "Sensitivity test"

showing 10 items of 355 documents

A Novel Series of Acylhydrazones as Potential Anti-Candida Agents: Design, Synthesis, Biological Evaluation and In Silico Studies

2019

In the context of an increased incidence of invasive fungal diseases, there is an imperative need of new antifungal drugs with improved activity and safety profiles. A novel series of acylhydrazones bearing a 1,4-phenylene-bisthiazole scaffold was designed based on an analysis of structures known to possess anti-Candida activity obtained from a literature review. Nine final compounds were synthesized and evaluated in vitro for their inhibitory activity against various strains of Candida spp. The anti-Candida activity assay revealed that some of the new compounds are as active as fluconazole against most of the tested strains. A molecular docking study was conducted in order to evaluate the …

Antifungal AgentsMolecular modelIn silicoPharmaceutical ScienceContext (language use)anti-CandidaMicrobial Sensitivity Tests01 natural sciencesArticleAnalytical Chemistrylcsh:QD241-44103 medical and health scienceschemistry.chemical_compoundStructure-Activity Relationshiplcsh:Organic chemistryDrug DiscoverymedicinePhysical and Theoretical ChemistryFluconazole030304 developmental biologyCandida0303 health sciencesMolecular Structure010405 organic chemistrymolecular modelingLanosterolOrganic Chemistryanti-<i>Candida</i>HydrazonesBiological activityIn vitro0104 chemical sciencesMolecular Docking Simulationlanosterol 14α-demethylaseADMETchemistryBiochemistryDesign synthesisChemistry (miscellaneous)Drug DesignMolecular MedicinethiazoleFluconazoleacylhydrazonemedicine.drugProtein BindingMolecules
researchProduct

New antifungals selected by molecular topology.

1999

Abstract Molecular topology has been applied to find the new lead antimycotic compounds. Among the selected compounds stands out 3,3′-(4,4′ - Biphenylene)bis(2,5-diphenyl-2H-tetrazolium chloride), Benztropine mesylate and Dicyclopentamethylenethiuram disulphide, with minimum inhibitory concentrations between 1.6 and 2 μg / mL.

Antifungal AgentsMolecular modelStereochemistryClinical BiochemistryBiphenyl derivativesPharmaceutical ScienceMicrobial Sensitivity TestsSaccharomyces cerevisiaeBiochemistryChloridechemistry.chemical_compoundStructure-Activity RelationshipDrug DiscoveryCandida albicansmedicineMolecular BiologyTopology (chemistry)Organic ChemistryDiscriminant AnalysisBiphenylenechemistryDrug DesignMolecular MedicineBenztropine MesylateMolecular topologymedicine.drugBioorganicmedicinal chemistry letters
researchProduct

Synthesis and antimicrobial activity of new 3-(1-R-3(5)-methyl-4-nitroso-1H-5(3)-pyrazolyl)-5-methylisoxazoles.

2000

A number of new 3-(1-R-3(5)-methyl-4-nitroso-1H-5(3)-pyrazolyl)-5-methylisoxazoles 6a-g (7b-f) were synthesized and tested for antibacterial and antifungal activity. Some of these compounds displayed antifungal activity at non-cytotoxic concentrations. Derivative 6c was 9 times more potent in vitro than miconazole and 20 times more selective against C. neoformans. 6c was also 8- and 125-fold more potent than amphotericin B and fluconazole, respectively. None of the compounds was active against bacteria. Preliminary structure-activity relationship (SAR) studies showed that the NO group at position 4 of the pyrazole ring is essential for the activity. Lipophilicity of the pyrazole moiety, N-a…

Antifungal AgentsStereochemistryClinical BiochemistryPharmaceutical ScienceMicrobial Sensitivity TestsPyrazoleGram-Positive BacteriaBiochemistryChemical synthesischemistry.chemical_compoundStructure-Activity RelationshipAnti-Infective AgentsDrug DiscoveryGram-Negative BacteriamedicineMoietyHumansCytotoxicityMolecular BiologyChemistryOrganic ChemistryFungiNitrosoIsoxazolesAntimicrobialAnti-Bacterial AgentsLipophilicityCryptococcus neoformansHIV-1Molecular MedicineMiconazolemedicine.drugBioorganicmedicinal chemistry
researchProduct

Steroidal saponins from Smilax medica and their antifungal activity.

2005

Three new steroidal saponins (1-3) were isolated from the roots of Smilax medica, together with the known disporoside A (4). The structures of the new compounds were elucidated mainly by extensive spectroscopic analysis (1D and 2D NMR, FABMS, and HRESIMS). Compounds 1, 2, and 4 demonstrated weak antifungal activity against the human pathogenic yeasts Candida albicans, C. glabrata, and C.tropicalis, with MIC values between 12.5 and 50 microg/mL.

Antifungal AgentsStereochemistrySaponinPharmaceutical ScienceMicrobial Sensitivity TestsPharmacognosyAnalytical ChemistryDrug DiscoveryHumansCandida albicansMexicoNuclear Magnetic Resonance BiomolecularCandidaPharmacologychemistry.chemical_classificationPlants MedicinalbiologyTraditional medicineCandida glabrataMolecular StructureLiliaceaeOrganic ChemistrySmilaxGlycosideBiological activitySaponinsbiology.organism_classificationComplementary and alternative medicinechemistrySmilaxMolecular MedicineSteroidsJournal of natural products
researchProduct

Synthesis and Influence of 3-Amino Benzoxaboroles Structure on Their Activity against Candida albicans

2020

Benzoxaboroles emerged recently as molecules of high medicinal potential with Kerydin&reg

Antifungal AgentsStereochemistrySubstituentPharmaceutical Sciencechemistry.chemical_elementMicrobial Sensitivity Tests01 natural sciencesArticleAnalytical Chemistrylcsh:QD241-441030207 dermatology & venereal diseases03 medical and health sciencesMinimum inhibitory concentrationchemistry.chemical_compound0302 clinical medicinebenzoxaboroleslcsh:Organic chemistryDrug DiscoveryCandida albicansformylPhysical and Theoretical ChemistryCandida albicanschemistry.chemical_classificationTavaboroleKerydinMolecular Structurebiology010405 organic chemistryChemistryOrganic Chemistrybiology.organism_classificationpiperazine0104 chemical sciences<i>Candida albicans</i>PiperazineChemistry (miscellaneous)Heterocyclic amineFluorineMolecular MedicineAmine gas treatingantifungalMolecules
researchProduct

Antifungal activity and tautomeric cyclization equilibria of formylphenylboronic acids

2019

2-Formylphenylboronic acid and four isomeric fluoro-2-formylphenylboronic acids have been found active against a series of fungal strains: Aspergillus, Fusarium, Penicillium and Candida. The level of antifungal activity was evaluated by agar diffusion tests as well as the determination of minimum inhibitory concentrations (MICs) by serial dilution method. Among the tested compounds, 4-fluoro-2-formylphenylboronic acid - an analogue of the known antifungal drug Tavaborole (AN2690) - proved to be the most potent antifungal agent. The tautomeric equilibrium leading to the formation of 3-hydroxybenzoxaboroles as well as the position of the fluorine substituent were revealed to play a crucial ro…

Antifungal Agentsfood.ingredientSerial dilutionStereochemistryAntifungal drugSubstituentMicrobial Sensitivity TestsFormylphenylboronic acid01 natural sciencesBiochemistryStructure-Activity Relationshipchemistry.chemical_compoundfoodFusariumDrug DiscoveryAgarAntifungal activityTautomerizationMolecular BiologyCandidaAspergillusTavaboroleDose-Response Relationship DrugMolecular Structurebiology010405 organic chemistryChemistryOrganic ChemistryPenicilliumCyclization equilibriaOrganoboron compoundsbiology.organism_classificationBoronic AcidsTautomer0104 chemical sciences010404 medicinal & biomolecular chemistryAspergillusCyclizationPenicilliumBioorganic Chemistry
researchProduct

Synthesis, Properties and Antimicrobial Activity of 5-Trifluoromethyl-2-formylphenylboronic Acid

2020

2-Formylphenylboronic acids display many interesting features, not only from synthetic but also from an application as well as structural points of view. 5-Trifluoromethyl-2-formyl phenylboronic acid has been synthesized and characterized in terms of its structure and properties. The presence of an electron-withdrawing substituent results in a considerable rise in the acidity in comparison with its analogues. In some solutions, the title compound isomerizes with formation of the corresponding 3-hydroxybenzoxaborole. Taking into account the probable mechanism of antifungal action of benzoxaboroles, which blocks the cytoplasmic leucyl-tRNA synthetase (LeuRS) of the microorganism, docking stud…

Antifungal AgentstrifluoromethylStereochemistryphenylboronicBacillus cereusAntifungal drugbenzoxaborolePharmaceutical ScienceMicrobial Sensitivity Tests010402 general chemistry01 natural sciencesequilibriumArticleAnalytical Chemistrycrystallcsh:QD241-441chemistry.chemical_compoundTavaborolelcsh:Organic chemistryCandida albicansDrug DiscoveryEscherichia colimedicineformylPhysical and Theoretical ChemistryPhenylboronic acidCandida albicansacidityTrifluoromethylKerydinbiology010405 organic chemistryChemistryOrganic ChemistryActive sitebiology.organism_classificationBoronic AcidsAnti-Bacterial Agents0104 chemical sciencesMechanism of actionChemistry (miscellaneous)Docking (molecular)Benzaldehydesdockingbiology.proteinMolecular MedicineantimicrobialLeucine-tRNA Ligasemedicine.symptomMolecules
researchProduct

Synthesis and antifungal activity of new N-(1-phenyl-4-carbetoxypyrazol-5-yl)-, N-(indazol-3-yl)- and N-(indazol-5-yl)-2-iodobenzamides

2002

N-(1-Phenyl-4-carbetoxypyrazol-5-yl)-, N-(indazol-3-yl)- and N-(indazol-5-yl)-2-iodobenzamides 6, with a Benodanil-like structure, were synthesized by refluxing in acetic acid the corresponding benzotriazinones 5 with potassium iodide for 1 h in order to study the role on the antifungal activity of the N-substitution with an aromatic heterocyclic system on benzamide moiety. Among the tested iododerivatives, compounds 6d,f,g,h possess interesting activities toward some phytopathogenic fungal strains.

AntifungalAntifungal AgentsIndazolesMagnetic Resonance SpectroscopySpectrophotometry Infraredmedicine.drug_classStereochemistryColony Count MicrobialPharmaceutical Sciencechemistry.chemical_elementCarboxamideMicrobial Sensitivity TestsIodineChemical synthesisAcetic acidchemistry.chemical_compoundN-(1-phenyl-4-carbetoxypyrazol-5-yl)-2-iodobenzamides N-(indazol-3-yl)-2-iodobenzamides N-(indazol-3-yl)-2-iodobenzamides antifungal activityDrug DiscoverymedicineMoietyBenzamideChemistryFungiSettore CHIM/08 - Chimica FarmaceuticaBenzamidesPyrazolesIl Farmaco
researchProduct

Chemical and antifungal investigations of six Lippia species (Verbenaceae) from Brazil

2012

Made available in DSpace on 2013-09-27T14:52:47Z (GMT). No. of bitstreams: 1 WOS000310396700165.pdf: 536437 bytes, checksum: d267984ddfcb57d1406b069856adcc25 (MD5) Previous issue date: 2012-12-01 Made available in DSpace on 2013-09-30T19:10:31Z (GMT). No. of bitstreams: 1 WOS000310396700165.pdf: 536437 bytes, checksum: d267984ddfcb57d1406b069856adcc25 (MD5) Previous issue date: 2012-12-01 Submitted by Vitor Silverio Rodrigues (vitorsrodrigues@reitoria.unesp.br) on 2014-05-20T14:20:39Z No. of bitstreams: 1 WOS000310396700165.pdf: 536437 bytes, checksum: d267984ddfcb57d1406b069856adcc25 (MD5) Made available in DSpace on 2014-05-20T14:20:39Z (GMT). No. of bitstreams: 1 WOS000310396700165.pdf: …

AntifungalAntifungal AgentsIridoidStereochemistrymedicine.drug_classPharmaceutical ScienceMicrobial Sensitivity TestsCandida parapsilosisAntifungalAnalytical Chemistrychemistry.chemical_compoundVerbascosideCandida kruseiBotanyVerbenaceaeDrug DiscoverymedicineCandida albicansCandida spp.Cryptococcus neoformansPharmacologyLippiaTraditional medicinebiologyPlant ExtractsChemistryVerbenaceaeOrganic ChemistryFungiGeneral MedicineDereplicationbiology.organism_classificationComplementary and alternative medicineCryptococcus neoformansMolecular MedicineLippiaLippia sppBrazilFood SciencePlanta Medica
researchProduct

Bioactive Steroidal Saponins from Smilax medica

2006

Two new spirostanol saponins ( 1 and 2) were isolated from the roots of Smilax medica, together with the known smilagenin 3-O-beta-D-glucopyranoside (3). Their structures were determined by spectroscopic methods including 1D- and 2D-NMR experiments. Compounds 1 and 2 exhibited antifungal activity against the human pathogenic yeasts Candida albicans, C. glabrata and C. tropicalis (MICs between 6.25 and 50 microg/mL) whereas 3 was inactive.

AntifungalAntifungal AgentsMagnetic Resonance Spectroscopymedicine.drug_classSmilageninSaponinPharmaceutical ScienceMicrobial Sensitivity TestsPharmacognosyAnalytical ChemistryDrug DiscoverymedicineCandida albicansCandidaPharmacologychemistry.chemical_classificationbiologyTraditional medicineLiliaceaeOrganic ChemistrySmilaxSaponinsbiology.organism_classificationComplementary and alternative medicinechemistrySmilaxMolecular MedicinePlanta Medica
researchProduct