Search results for "Tunnelling"

showing 10 items of 218 documents

Temperature and bias-voltage dependence of atomic-layer-deposited HfO2-based magnetic tunnel junctions

2014

Magnetic tunnel junctions with HfO2 tunnel barriers were prepared through a combination of magnetron sputtering and atomic layer deposition. We investigated the tunneling transport behavior, including the tunnel magnetoresistance ratio and the current-voltage characteristics between room temperature and 2 K. Here, we achieved a tunneling magneto resistance ratio of 10.3% at room temperature and 19.3% at 2 K. Furthermore, we studied the bias-voltage and temperature dependencies and compared the results with those of commonly used alumina- and magnesia-based magnetic tunnel junctions. We observed a polycrystalline/amorphous electrode-barrier system via high-resolution transmission electron mi…

Materials sciencePhysics and Astronomy (miscellaneous)Condensed matter physicsMagnetoresistanceBiasing02 engineering and technologySputter deposition021001 nanoscience & nanotechnology01 natural sciencesAmorphous solidTunnel magnetoresistanceAtomic layer depositionTunnel effect0103 physical sciences010306 general physics0210 nano-technologyQuantum tunnelling
researchProduct

Superconducting tantalum nitride-based normal metal-insulator-superconductor tunnel junctions

2014

We report the development of superconducting tantalum nitride (TaN$_{x} $) normal metal-insulator-superconductor (NIS) tunnel junctions. For the insulating barrier, we used both AlO$_{x}$ and TaO$_{x}$ (Cu-AlO$_{x}$-Al-TaN$_{x} $ and Cu-TaO$_{x}$-TaN$_{x} $), with both devices exhibiting temperature dependent current-voltage characteristics which follow the simple one-particle tunneling model. The superconducting gap follows a BCS type temperature dependence, rendering these devices suitable for sensitive thermometry and bolometry from the superconducting transition temperature $T_{\text{C}}$ of the TaN$_{x} $ film at $\sim 5$ K down to $\sim$ 0.5 K. Numerical simulations were also performe…

Materials sciencePhysics and Astronomy (miscellaneous)FOS: Physical sciences02 engineering and technologyType (model theory)01 natural sciencesSuperconductivity (cond-mat.supr-con)chemistry.chemical_compoundTantalum nitrideCondensed Matter::Superconductivity0103 physical sciencestan filmsMetal insulator010306 general physicsQuantum tunnellingSuperconductivityCondensed Matter::Quantum Gasesta114Condensed matter physicsCondensed Matter - Superconductivityjäähdytystransition021001 nanoscience & nanotechnologyjosephson-junctionslogic applicationschemistrytemperaturesSuperconducting transition temperature0210 nano-technology
researchProduct

Dopant-controlled single-electron pumping through a metallic island

2016

We investigate a hybrid metallic island/single dopant electron pump based on fully depleted silicon-on-insulator technology. Electron transfer between the central metallic island and the leads is controlled by resonant tunneling through single phosphorus dopants in the barriers. Top gates above the barriers are used to control the resonance conditions. Applying radio frequency signals to the gates, non-adiabatic quantized electron pumping is achieved. A simple deterministic model is presented and confirmed by comparing measurements with simulations.

Materials sciencePhysics and Astronomy (miscellaneous)FOS: Physical sciencesSilicon on insulator02 engineering and technologyElectron01 natural sciences[PHYS] Physics [physics]MetalElectron transferMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]010306 general physicsComputingMilieux_MISCELLANEOUS[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]Quantum tunnelling[PHYS]Physics [physics]Condensed Matter - Mesoscale and Nanoscale PhysicsDopantbusiness.industryResonance021001 nanoscience & nanotechnology[PHYS.COND.CM-MSQHE] Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]visual_artvisual_art.visual_art_mediumOptoelectronicsRadio frequency0210 nano-technologybusiness[PHYS.COND] Physics [physics]/Condensed Matter [cond-mat]Applied Physics Letters
researchProduct

Characterization of soft breakdown in thin oxide NMOSFETs based on the analysis of the substrate current

2001

We have investigated the properties of soft breakdown (SBO) in thin oxide (4.5 nm) nMOSFETs with measurements of the gate and substrate leakage currents using the carrier separation technique. We have observed that, at lower gate voltages, the level of the substrate current exhibits a plateau. We propose that the observed plateau is due to the Shockley-Hall-Read (SHR) generation of hole-electron pairs in the space charge region and at the Si-SiO/sub 2/ interface. At higher voltages, the substrate current steeply increases with voltage, due to a tunneling mechanism, trap-assisted or due to a localized effective thinning of the oxide, from the substrate valence band to the gate conduction ban…

Materials sciencePhysics and Astronomy (miscellaneous)business.industryElectrical engineeringOxideTime-dependent gate oxide breakdownReliabilitySettore ING-INF/01 - ElettronicaElectronic Optical and Magnetic MaterialsThreshold voltagechemistry.chemical_compoundMOSFETDepletion regionchemistryLeakage currentMOSFETOptoelectronicsDielectric breakdownElectrical and Electronic EngineeringbusinessQuantum tunnellingLeakage (electronics)Voltage
researchProduct

Energy scales and dynamics of electronic excitations in functionalized gold nanoparticles measured at the single particle level.

2019

The knowledge of the electronic structure and dynamics of nanoparticles is a prerequisite to develop miniaturized single-electron devices based on nanoparticles. Low-temperature transport measurements of individual stable metallic nanoparticles enable unravelling the system specific electronic structure while ultrafast optical spectroscopy gives access to the electron dynamics. In this work, we investigate bare and thiol-functionalized gold nanoparticles. For the latter, we employ a fast and low-cost fabrication technique which yields nanoparticles with narrow size distribution. Using relatively long thiol-ended alkane chains for the functionalization modifies the electronic density of stat…

Materials scienceRelaxation (NMR)Physics::OpticsGeneral Physics and AstronomyNanoparticle02 engineering and technologyElectronic structureSubstrate (electronics)010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesChemical physicsColloidal goldParticlePhysical and Theoretical Chemistry0210 nano-technologySpectroscopyQuantum tunnellingPhysical chemistry chemical physics : PCCP
researchProduct

Preparation and Investigation of Interfaces of Co2Cr1−x Fe x Al Thin Films

2013

In the framework of spin polarization investigations of Heusler compounds by the measurement of the magnetoresistance (TMR) of tunneling junctions with AlO x barrier special emphasis is put on the role of the interfaces.

Materials scienceSpin polarizationCondensed matter physicsMagnetoresistanceThin filmQuantum tunnelling
researchProduct

Carrier transport mechanism in the SnO(2):F/p-type a-Si:H heterojunction

2011

We characterize SnO(2):F/p-type a-Si:H/Mo structures by current-voltage (I-V) and capacitance-voltage (C-V) measurements at different temperatures to determine the transport mechanism in the SnO2:F/p-type a-Si:H heterojunction. The experimental I-V curves of these structures, almost symmetric around the origin, are ohmic for vertical bar V vertical bar< 0:1 V and have a super-linear behavior (power law) for vertical bar V vertical bar < 0:1 V. The structure can be modeled as two diodes back to back connected so that the main current transport mechanisms are due to the reverse current of the diodes. To explain the measured C-V curves, the capacitance of the heterostructure is modeled as the …

Materials scienceTunnel junctionAnalytical chemistryGeneral Physics and AstronomyHeterojunctionSeries and parallel circuitsOhmic contactMolecular physicsPower lawCapacitancefluorinated tin oxide amorphous silicon tunnel-junction C-V profiling modeling.Quantum tunnellingDiode
researchProduct

(Ga,In)P nanowires grown without intentional catalyst

2015

Abstract We have grown (Ga,In)P nanowires through the MOCVD method without a intentional catalyst. The organometallic precursor triethylgallium ( ( C 2 H 5 ) 3 Ga ) , used as Ga source, is transported by the N 2 gas carrier to the reactor chamber where reacts with the InP vapor pressure producing the nanowires. Two different reactor pressures (70 and 740 Torr) were used leading to nanowires with different In contents. The nanowires are straight or wool-like and exhibit a twinned structure. They emit an intense orange to red color visible even to the naked eyes. Interface tunneling process at Ga 1 − x In x P / Ga 1 − y In y P interfaces ( x ≠ y ) is proposed to explain this efficient light e…

Materials scienceVapor pressureNanowireAnalytical chemistryNanotechnologyCondensed Matter PhysicsCatalysisInorganic Chemistrychemistry.chemical_compoundchemistryMaterials ChemistryLight emissionMetalorganic vapour phase epitaxyVapor–liquid–solid methodTriethylgalliumQuantum tunnellingJournal of Crystal Growth
researchProduct

Deformation-Free Topography from Combined Scanning Force and Tunnelling Experiments

1993

We show that by measuring force and stiffness on a constant-current scanning tunnelling microscopy (STM) contour a deformation-free topography can be extracted. With reference to mono- and bicomponent self-assembled monolayers, we find that the characteristic depression pattern and the protrusions on a multicomponent film found in STM are to a great extent due to electronic effects.

Materials sciencebusiness.industryELECTRON MICROSCOPY DETERMINATIONS (INC SCANNING TUNNELING MICROSCOPYMECHANICAL ANDGeneral Physics and AstronomyStiffnessSOLID-SOLID INTERFACES (INC BICRYSTALS)Deformation (meteorology)METHODS)law.inventionOpticslawMicroscopyMonolayermedicineACOUSTICAL PROPERTIES OF SOLID SURFACES AND INTERFACESThin filmComposite materialScanning tunneling microscopemedicine.symptombusinessQuantum tunnellingEurophysics Letters (EPL)
researchProduct

Noise and Microwave Properties of Set-Transistors

2002

Electron tunneling through a small tunnel junction with capacitance C 0 is suppressed by the so-called Coulomb blockade if the charging energy E c = e 2/2C∑ is larger than the thermal energy k B T 1. This effect is observed in a single electron tunneling transistor (SETT), which is a nano-meter size three-terminal device in which two leads connect to a small metallic island through two tunnel junctions. The excess charge on the island is regulated by the potential of the capacitively coupled gate electrode. The SETT is a very sensitive electrometer, noise levels of 10−5e/√Hz have been reached.2,3 A similar device, the electron pump, is made by connecting two or more islands in series throug…

Materials sciencebusiness.industryTransistorCoulomb blockadeElectronElectrometerCapacitancelaw.inventionlawTunnel junctionOptoelectronicsbusinessNoise (radio)Quantum tunnelling
researchProduct