Search results for "photodetector"

showing 10 items of 85 documents

Color Sensitive Response of Graphene/Graphene Quantum Dot Phototransistors

2019

We present the fabrication and characterization of all-carbon phototransistors made of graphene three terminal devices, coated with atomically precise graphene quantum dots (GQD). Chemically synthesized GQDs are the light absorbing materials, while the underlying chemical vapor deposition (CVD)-grown graphene layer acts as the charge transporting channel. We investigated three types of GQDs with different sizes and edge structures, having distinct and characteristic optical absorption in the UV–vis range. The photoresponsivity exceeds 106 A/W for vanishingly small incident power (<10–12 W), comparing well with state of the art sensitized graphene photodetectors. More importantly, the photor…

---Materials scienceAbsorption spectroscopybusiness.industryGraphenePhotodetector02 engineering and technologyChemical vapor deposition010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesGraphene quantum dot0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionResponsivityGeneral EnergyQuantum dotlawOptoelectronicsPhysical and Theoretical Chemistry0210 nano-technologybusinessAbsorption (electromagnetic radiation)
researchProduct

ABALONETM Photosensors for the IceCube experiment

2020

Abstract The ABALONE TM Photosensor Technology (U.S. Pat. 9,064,678) is a modern technology specifically invented for cost-effective mass production, robustness, and high performance. We present the performance of advanced fused-silica ABALONE Photosensors, developed specifically for the potential extension of the IceCube neutrino experiment, and stress-tested for 120 days. The resulting performance makes a significant difference: intrinsic gain of ≈ 6 × 108, total afterpulsing rate of only 5 × 10−3 ions per photoelectron , sub-nanosecond timing resolution, single-photon sensitivity, and unique radio-purity and UV sensitivity, thanks to the fused silica components—at no additional cost to t…

010302 applied physicsPhysicsNuclear and High Energy PhysicsPhotonbusiness.industryDetectorSignificant differencePhotodetector02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesUv sensitivityIntrinsic gainOptics0103 physical sciencesNeutrino0210 nano-technologybusinessInstrumentationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

ZnMgO-based UV photodiodes: a comparison of films grown by spray pyrolysis and MBE

2016

Detecting the UV part of the spectrum is fundamental for a wide range of applications where ZnMgO has the potential to play a central role. The shortest achievable wavelength is a function of the Mg content in the films, which in turn is dependent on the growth technique. Moreover, increasing Mg contents lead to an electrical compensation of the films, which directly affects the responsivity of the photodetectors. In addition, the metal-semiconductor interface and the presence of grain boundaries have a direct impact on the responsivity through different gain mechanisms. In this work, we review the development of ZnMgO UV Schottky photodiodes using molecular beam epitaxy and spray pyrolysis…

010302 applied physicsTelecomunicacionesMaterials sciencebusiness.industrySchottky diodePhotodetector02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesPhotodiodelaw.inventionResponsivityWavelengthSemiconductorlaw0103 physical sciencesOptoelectronicsGrain boundary0210 nano-technologybusinessMolecular beam epitaxy
researchProduct

High-efficiency silicon-compatible photodetectors based on Ge quantum dots

2011

We report on high responsivity, broadband metal/insulator/semiconductor photodetectors with amorphous Ge quantum dots (a-Ge QDs) as the active absorbers embedded in a silicon dioxide matrix. Spectral responsivities between 1-4 A/W are achieved in the 500-900 nm wavelength range with internal quantum efficiencies (IQEs) as high as ∼700%. We investigate the role of a-Ge QDs in the photocurrent generation and explain the high IQE as a result of transport mechanisms via photoexcited QDs. These results suggest that a-Ge QDs are promising for high-performance integrated optoelectronic devices that are fully compatible with silicon technology in terms of fabrication and thermal budget. © 2011 Amer…

Amorphous siliconMaterials scienceThermal budgetPhysics and Astronomy (miscellaneous)SiliconSilicon TechnologieResponsivitychemistry.chemical_elementSettore ING-INF/01 - Elettronicachemistry.chemical_compoundResponsivityMetal/insulator/semiconductorGe quantum dotWavelength ranges Amorphous siliconPhotocurrent generationPhotodetectorOptoelectronic devicePhotocurrentGermaniumbusiness.industrySemiconductor quantum dotInternal quantum efficiencymatrixTRANSPORTSemiconductorNANOCRYSTALSSilica Quantum efficiencychemistryQuantum dot laserQuantum dotOptoelectronicsQuantum efficiencyTransport mechanismGAINbusinessNANOCRYSTALS TRANSPORT GAINFully compatibleHigh efficiency
researchProduct

Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors.

2015

Rayleigh scattering poses an intrinsic limit for the transparency of organic liquid scintillators. This work focuses on the Rayleigh scattering length of linear alkylbenzene (LAB), which will be used as the solvent of the liquid scintillator in the central detector of the Jiangmen Underground Neutrino Observatory. We investigate the anisotropy of the Rayleigh scattering in LAB, showing that the resulting Rayleigh scattering length will be significantly shorter than reported before. Given the same overall light attenuation, this will result in a more efficient transmission of photons through the scintillator, increasing the amount of light collected by the photosensors and thereby the energy…

Chemical Physics (physics.chem-ph)PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsbusiness.industryAttenuationDetectorFOS: Physical sciencesPhotodetectorScattering lengthInstrumentation and Detectors (physics.ins-det)ScintillatorHigh Energy Physics - ExperimentPhysics::Fluid DynamicsHigh Energy Physics - Experiment (hep-ex)symbols.namesakeOpticsPhysics - Chemical PhysicsScintillation countersymbolsRayleigh scatteringbusinessInstrumentationJiangmen Underground Neutrino ObservatoryThe Review of scientific instruments
researchProduct

SiPM as miniaturised optical biosensor for DNA-microarray applications

2015

A miniaturized optical biosensor for low-level fluorescence emitted by DNA strands labelled with CY5 is showed. Aim of this work is to demonstrate that a Si-based photodetector, having a low noise and a high sensitivity, can replace traditional detection systems in DNA-microarray applications. The photodetector used is a photomultiplier (SiPM), with 25 pixels. It exhibits a higher sensitivity than commercial optical readers and we experimentally found a detection limit for spotted dried samples of ∼1 nM. We measured the fluorescence signal in different operating conditions (angle of analysis, fluorophores concentrations, solution volumes and support). Once fixed the angle of analysis, for s…

Detection limitAnalytePhotomultiplierMaterials scienceoptical biosensorbusiness.industrySiPMDNA microarrayPhotodetectorLinearityDNA-microarraySignalSettore ING-INF/01 - ElettronicaElectronic Optical and Magnetic MaterialsSilicon photomultiplierOpticslcsh:TA1-2040DNA microarray; Fluorophore detection; Optical Biosensor; SiPMSignal ProcessingElectrical and Electronic Engineeringbusinesslcsh:Engineering (General). Civil engineering (General)Sensitivity (electronics)Fluorophore detectionBiotechnologySensing and Bio-Sensing Research
researchProduct

Towards metal chalcogenide nanowire-based colour-sensitive photodetectors

2018

Financial support provided by Scientific Research Project for Students and Young Researchers Nr. SJZ/2016/6 realized at the Institute of Solid State Physics, University of Latvia is greatly acknowledged. Authors are grateful to Reinis Ignatans for XRD measurements.

DiffractionIn2S3PhotoluminescenceMaterials scienceChalcogenideNanowirePhotodetector02 engineering and technology010402 general chemistry01 natural sciencesFocused ion beamlaw.inventionInorganic Chemistrychemistry.chemical_compoundlaw:NATURAL SCIENCES:Physics [Research Subject Categories]Electrical and Electronic EngineeringPhysical and Theoretical ChemistryPhotodetectorSpectroscopybusiness.industryPhotoresistorOrganic Chemistry021001 nanoscience & nanotechnologyCdSAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic MaterialsNanowireZnSechemistryTransmission electron microscopyOptoelectronicsPbS0210 nano-technologybusinessOptical Materials
researchProduct

Internal photoemission in solar blind AlGaN Schottky barrier photodiodes

2005

We have analyzed the photoresponse of solar blind AlGaN Schottky barrier photodiodes below the alloy band gap energy, in the 3.5-4.5 eV range, and we show that it is dominated by internal photoemission. The n-type Schottky barrier height is shown to increase linearly with the band gap energy of the AlGaN alloy. The amplitude of the internal photoemission signal is about 20 times smaller than the value given by the Fowler theory based on a free electron model. We explain this result by taking into account the interband transitions and the ballistic transport of photoexcited electrons in the metal. This low value of internal photoemission allows us to achieve a spectral rejection ratio betwee…

Free electron modelMaterials scienceFLAME DETECTIONPhysics and Astronomy (miscellaneous)business.industryBand gapSchottky barrierInverse photoemission spectroscopyPhotodetectorsWide-bandgap semiconductorSchottky diodeultraviolet photodetectorsGallium nitridePERFORMANCEFILMSPhotodiodelaw.inventionHEIGHTlawBallistic conductionOptoelectronicsHOT-ELECTRONSbusinessApplied Physics Letters
researchProduct

Determining the efficiency of optical sources using a smartphone's ambient light sensor

2017

This work reports the use of a smartphone’s ambient light sensor as a valuable tool to study and characterize the efficiency of an optical source. Here, we have measured both luminous efficacy and efficiency of several optical sources (incandescent bulb and halogen lamp) as a function of the electric power consumed and the distance to the optical detector. The illuminance of LEDs as a function of the distance to the optical detector is characterized for different wavelength emissions. Analysis of the results confirms an inverse-square law of the illuminance with the detector–source distance and shows good agreement with values obtained by classical experiments. This experience will trigger …

General Physics and AstronomyPhotodetectorPhysics::Optics01 natural scienceslaw.inventionOpticslawAmbient light sensor0103 physical sciences010306 general physicsPhysicsIncandescent light bulbbusiness.industry05 social sciences050301 educationIlluminanceFísicaCiència EnsenyamentWavelengthHalogen lampFISICA APLICADALuminous efficiencyElectric powerSmartphoneLuminous efficacybusiness0503 educationLight-emitting diode
researchProduct

Infrared detection in multifunctional graphene-based transistors

2016

In the last years great attention has been paid to graphene-based devices for optoelectronic applications such as photodetection. In this work, we report on Graphene Field Effect Transistors (GFETs) photoelectrical response due to the photo-transistor effect. Photoelectrical measurements were performed using a 1.55 μm erbium fiber laser. Optical measurements as a function of both the incident laser power and the DC bias of the fabricated devices have been carried out and show that photocurrent increases with the power of the IR beam illuminating the sample.

Graphene Graphene Field Effect Transistors Graphene infrared photodetectors
researchProduct