0000000000005351

AUTHOR

M. Reponen

Measurement of the $2^+\rightarrow 0^+$ ground-state transition in the $\beta$ decay of $^{20}$F

We report the first detection of the second-forbidden, non-unique, $2^+\rightarrow 0^+$, ground-state transition in the $\beta$ decay of $^{20}$F. A low-energy, mass-separated $^{20}\rm{F}^+$ beam produced at the IGISOL facility in Jyv\"askyl\"a, Finland, was implanted in a thin carbon foil and the $\beta$ spectrum measured using a magnetic transporter and a plastic-scintillator detector. The $\beta$-decay branching ratio inferred from the measurement is $b_{\beta} = [ 0.41\pm 0.08\textrm{(stat)}\pm 0.07\textrm{(sys)}] \times 10^{-5}$ corresponding to $\log ft = 10.89(11)$, making this one of the strongest second-forbidden, non-unique $\beta$ transitions ever measured. The experimental resu…

research product

Precision measurement of the magnetic octupole moment in 45Sc as a test for state-of-the-art atomic- and nuclear-structure theory

We report on measurements of the hyperfine $A, B$ and $C$-constants of the $3d4s^2 ~^2D_{5/2}$ and $3d4s^2 ~^2D_{3/2}$ atomic states in $^{45}$Sc. High-precision atomic calculations of the hyperfine fields of these states and second-order corrections are performed, and are used to extract $C_{5/2}=-0.06(6)$ kHz and $C_{3/2}=+0.04(3)$ kHz from the data. These results are one order of magnitude more precise than the available literature. From the combined analysis of both atomic states, we infer the nuclear magnetic octupole moment $\Omega = -0.07(53) \mu_N b$, including experimental and atomic structure-related uncertainties. With a single valence proton outside of a magic calcium core, scan…

research product

β decay of Cd127 and excited states in In127

A dedicated spectroscopic study of the β decay of 127Cd was conducted at the IGISOL facility at the University of Jyvaskyla. Following high-resolution mass separation in a Penning trap, β-γ-γ coincidences were used to considerably extend the decay scheme of 127In. The β-decaying 3/2+ and 11/2- states in 127Cd have been identified with the 127Cd ground state and the 283-keV isomer. Their respective half-lives have been measured to 0.45(+12-8)s and 0.36(4) s. The experimentally observed β feeding to excited states of 127In and the decay scheme of 127In are discussed in conjunction with large-scale shell-model calculations.

research product

High-precision mass measurement ofS31with the double Penning trap JYFLTRAP improves the mass value forCl32

research product

Experimental evidence on photo-assisted O$^-$ ion production from Al$_2$O$_3$ cathode in cesium sputter negative ion source

The production of negative ions in cesium sputter ion sources is generally considered to be a pure surface process. It has been recently proposed that ion pair production could explain the higher-than-expected beam currents extracted from these ion sources, therefore opening the door for laser-assisted enhancement of the negative ion yield. We have tested this hypothesis by measuring the effect of various pulsed diode lasers on the O$^-$ beam current produced from Al$_2$O$_3$ cathode of a cesium sputter ion source. It is expected that the ion pair production of O$^-$ requires populating the 5d electronic states of neutral cesium, thus implying that the process should be provoked only with s…

research product

Towards commissioning the new IGISOL-4 facility

Abstract The Ion Guide Isotope Separator On-Line facility at the Accelerator Laboratory of the University of Jyvaskyla is currently being re-commissioned as IGISOL-4 in a new experimental hall. Access to intense beams of protons and deuterons from a new MCC30/15 cyclotron, with continued possibility to deliver heavy-ion beams from the K = 130 MeV cyclotron, offers extensive opportunities for long periods of fundamental experimental research, developments and applications. A new layout of beam lines with a considerable increase in floor space offers new modes of operation at the facility, as well as a possibility to incorporate more complex detector setups. We present a general overview of I…

research product

Experimental study of $^{100}$Tc $\beta$ decay with total absorption $\gamma$-ray spectroscopy

International audience; The β decay of Tc100 has been studied by using the total absorption γ-ray spectroscopy technique at the Ion Guide Isotope Separator On-Line facility in Jyväskylä. In this work the new Decay Total Absorption γ-ray Spectrometer in coincidence with a cylindrical plastic β detector has been employed. The β intensity to the ground state obtained from the analysis is in good agreement with previous high-resolution measurements. However, differences in the feeding to the first-excited state as well as weak feeding to a new level at high excitation energy have been deduced from this experiment. Theoretical calculations performed in the quasiparticle random-phase approximatio…

research product

Measurement of the 2+--0+ ground-state transition in the ß decay of 20F

12 pags., 16 figs., 4 tabs.

research product

Total Absorption Spectroscopy Study of $^{92}$Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. $^{92}$Rb makes the dominant contribution to the reactor spectrum in the 5-8 MeV range but its decay properties are in question. We have studied $^{92}$Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed.

research product

Measurement of the 2+→0+ ground-state transition in the β decay of 20F

We report the first detection of the second-forbidden, nonunique, 2+→0+, ground-state transition in the β decay of 20F. A low-energy, mass-separated 20F+ beam produced at the IGISOL facility in Jyväskylä, Finland, was implanted in a thin carbon foil and the β spectrum measured using a magnetic transporter and a plastic-scintillator detector. The β-decay branching ratio inferred from the measurement is bβ=[0.41±0.08(stat)±0.07(sys)]×10−5 corresponding to logft=10.89(11), making this one of the strongest second-forbidden, nonunique β transitions ever measured. The experimental result is supported by shell-model calculations and has significant implications for the final evolution of stars tha…

research product

Super-Allowed β Decay of23Mg Studied with a High-Precision Germanium Detector

research product

Total absorption γ -ray spectroscopy of the β -delayed neutron emitters I137 and Rb95

The decays of the β-delayed neutron emitters I137 and Rb95 have been studied with the total absorption γ-ray spectroscopy technique. The purity of the beams provided by the JYFLTRAP Penning trap at the ion guide isotope separator on-line facility in Jyvaskyla allowed us to carry out a campaign of isotopically pure measurements with the decay total absorption γ-ray spectrometer, a segmented detector composed of 18 NaI(Tl) modules. The contamination coming from the interaction of neutrons with the spectrometer has been carefully studied, and we have tested the use of time differences between prompt γ rays and delayed neutron interactions to eliminate this source of contamination. Due to the s…

research product

Determination of β -decay ground state feeding of nuclei of importance for reactor applications

12 pags., 6 figs., 3 tabs.

research product

β - and γ -spectroscopy study of Pd119 and Ag119

research product

Mass measurements in the vicinity of the doubly magic waiting pointNi56

Masses of $^{56,57}\mathrm{Fe}$, $^{53}\mathrm{Co}$${}^{m}$, $^{53,56}\mathrm{Co}$, $^{55,56,57}\mathrm{Ni}$, $^{57,58}\mathrm{Cu}$, and $^{59,60}\mathrm{Zn}$ have been determined with the JYFLTRAP Penning trap mass spectrometer at the Ion-Guide Isotope Separator On-Line facility with a precision of $\ensuremath{\delta}m/m\ensuremath{\leqslant}3\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}8}$. The ${Q}_{\mathrm{EC}}$ values for $^{53}\mathrm{Co}$, $^{55}\mathrm{Ni}$, $^{56}\mathrm{Ni}$, $^{57}\mathrm{Cu}$, $^{58}\mathrm{Cu}$, and $^{59}\mathrm{Zn}$ have been measured directly with a typical precision of better than $0.7 \mathrm{keV}$ and Coulomb displacement energies have been dete…

research product

VADER: A novel decay station for actinide spectroscopy

Nuclear instruments & methods in physics research / B 540, 148 - 150 (2023). doi:10.1016/j.nimb.2023.04.021

research product

Total absorption γ-ray spectroscopy of the β decays of 96gs,mY

The β decays of the ground state (gs) and isomeric state (m) of 96Y have been studied with the total absorption γ-ray spectroscopy technique at the Ion Guide Isotope Separator On-Line facility. The separation of the 8+ isomeric state from the 0− ground state was achieved thanks to the purification capabilities of the JYFLTRAP double Penning trap system. The β-intensity distributions of both decays have been independently determined. In the analyses the deexcitation of the 1581.6 keV level in 96Zr, in which conversion electron emission competes with pair production, has been carefully considered and found to have significant impact on the β-detector efficiency, influencing the β-intensity di…

research product

New lifetime measurements inPd109and the onset of deformation atN=60

Several new subnanosecond lifetimes were measured in Pd-109 using the fast-timing beta gamma gamma (t) method. Fission fragments of the A = 109 mass chain were produced by bombarding natural uranium with 30 MeV protons at the Jyvaskyla Ion Guide Isotope Separator On-Line (IGISOL) facility. Lifetimes were obtained for excited states in Pd-109 populated following beta decay of Rh-109. The new lifetimes provide some insight into the evolution of nuclear structure in this mass region. In particular, the distinct structure of the two low-lying 7/2(+) states occurring systematically across the Pd isotopic chain is supported by the new lifetime measurements. The available nuclear data indicate a s…

research product

Determination of β-decay ground state feeding of nuclei of importance for reactor applications

In β-decay studies the determination of the decay probability to the ground state (g.s.) of the daughter nucleus often suffers from large systematic errors. The difficulty of the measurement is related to the absence of associated delayed γ-ray emission. In this work we revisit the 4πγ−β method proposed by Greenwood and collaborators in the 1990s, which has the potential to overcome some of the experimental difficulties. Our interest is driven by the need to determine accurately the β-intensity distributions of fission products that contribute significantly to the reactor decay heat and to the antineutrinos emitted by reactors. A number of such decays have large g.s. branches. The method is…

research product

New insights into triaxiality and shape coexistence from odd-mass $^{109}$Rh

International audience; Rapid shape evolutions near A=100 are now the focus of much attention in nuclear science. Much of the recent work has been centered on isotopes with Z≤40, where the shapes are observed to transition between near-spherical to highly deformed with only a single pair of neutrons added. At higher Z, the shape transitions become more gradual as triaxiality sets in, yet the coexistence of varying shapes continues to play an important role in the low-energy nuclear structure, particularly in the odd-Z isotopes. This work aims to characterize competing shapes in the triaxial region between Zr and Sn isotopes using ultrafast timing techniques to measure lifetimes of excited s…

research product

Half-life, branching-ratio, andQ-value measurement for the superallowed0+→0+β+emitterTi42

The half-life, the branching ratio, and the decay $Q$ value of the superallowed $\ensuremath{\beta}$ emitter $^{42}\mathrm{Ti}$ were measured in an experiment performed at the JYFLTRAP facility of the Accelerator Laboratory of the University of Jyv\"askyl\"a. $^{42}\mathrm{Ti}$ is the heaviest ${T}_{z}=\ensuremath{-}1$ nucleus for which high-precision measurements of these quantities have been tried. The half-life (${T}_{1/2}=208.14\ifmmode\pm\else\textpm\fi{}0.45$ ms) and the $Q$ value [${Q}_{\mathrm{EC}}=7016.83(25)$ keV] are close to or reach the required precision of about 0.1%. The branching ratio for the superallowed decay branch [$\mathrm{BR}=47.7(12)%$], a by-product of the half-lif…

research product

Study of the $��$-decay of $^{100}$Tc with Total Absorption $��$-Ray Spectroscopy

The \b{eta}-decay of 100 Tc has been studied using the Total Absorption ��-Ray Spectroscopy technique at IGISOL. In this work the new DTAS spectrometer in coincidence with a cylindrical plastic \b{eta} detector has been employed. The \b{eta}-intensity to the ground state obtained from the analysis is in good agreement with previous high-resolution measurements. However, differences in the feeding to the first excited state as well as weak feeding to a new level at high excitation energy have been deduced from this experiment. Theoretical calculations performed in the quasiparticle random- phase approximation (QRPA) framework are also reported. Comparison of these calculations with our measu…

research product

EMMA - A New Underground Cosmic-Ray Experiment

A new type of cosmic-ray experiment is under construction in the Pyh\"asalmi mine in the underground laboratory of the University of Oulu, Finland. It aims to study the composition of cosmic rays at and above the knee region. The experiment, called EMMA, will cover approximately 150 square-metres of detector area. The array is capable of measuring the multiplicity and the lateral distribution of underground muons, and the arrival direction of the air shower. The full-size detector is expected to run by the end of 2007.

research product

Characterization of a pulsed injection-locked Ti:sapphire laser and its application to high resolution resonance ionization spectroscopy of copper

A high repetition rate pulsed Ti:sapphire laser injection-locked to a continuous wave seed source is presented. A spectral linewidth of 20 MHz at an average output power of 4W is demonstrated. An enhanced tuning range from 710-920 nm with a single broadband mirror set is realized by the inclusion of a single thin birefringent quartz plate for suppression of unseeded emission. The spectral properties have been analyzed using both a scanning Fabry-P´erot interferometer as well as crossed beam resonance ionization spectroscopy of the hyperfine levels of natural copper. Delayed ionization of the long-lived excited state is demonstrated for increased resolution. For the excited state hyperfine c…

research product

Results of DTAS Campaign at IGISOL : Overview

The β decays of more than twenty fission fragments were measured in the first experiments with radioactive-ion beams employing the Decay Total Absorption γ-ray Spectrometer. In this work, we summarize the main results obtained so far from this experimental campaign carried out at the Ion Guide Isotope Separator On-Line facility. The advances introduced for these studies represent the state-of-the-art of our analysis methodology for segmented spectrometers. peerReviewed

research product

Laser spectroscopy of niobium fission fragments: first use of optical pumping in an ion beam cooler buncher.

A new method of optical pumping in an ion beam cooler buncher has been developed to selectively enhance ionic metastable state populations. The technique permits the study of elements previously inaccessible to laser spectroscopy and has been applied here to the study of Nb. Model independent mean-square charge radii and nuclear moments have been studied for $^{90,90\text{ }\mathrm{m},91,91\text{ }\mathrm{m},92,93,99,101,103}\mathrm{Nb}$ to cover the region of the $N=50$ shell closure and $N\ensuremath{\approx}60$ sudden onset of deformation. The increase in mean-square charge radius is observed to be less than that for Y, with a substantial degree of $\ensuremath{\beta}$ softness observed …

research product

Study of the $\beta$-decay of $^{100}$Tc with Total Absorption $\gamma$-Ray Spectroscopy

The \b{eta}-decay of 100 Tc has been studied using the Total Absorption {\gamma}-Ray Spectroscopy technique at IGISOL. In this work the new DTAS spectrometer in coincidence with a cylindrical plastic \b{eta} detector has been employed. The \b{eta}-intensity to the ground state obtained from the analysis is in good agreement with previous high-resolution measurements. However, differences in the feeding to the first excited state as well as weak feeding to a new level at high excitation energy have been deduced from this experiment. Theoretical calculations performed in the quasiparticle random- phase approximation (QRPA) framework are also reported. Comparison of these calculations with our…

research product

β- and γ-spectroscopy study of 119Pd and 119Ag

Neutron-rich 119Pd nuclei were produced in fission of natural uranium, induced by 25-MeV protons. Fission fragments swiftly extracted with the Ion Guide Isotope Separation On-Line method were mass separated using a dipole magnet and a Penning trap, providing mono-isotopic samples of 119Pd. Their β− decay was measured with γγ- and βγ-spectroscopy methods using low-energy germanium detectors and a thin plastic scintillator. Two distinct nuclear-level structures were observed in 119Ag, based on the 1/2− and 7/2+ isomers reported previously. The β−-decay work was complemented by a prompt-γ study of levels in 119Ag populated in spontaneous fission of 252Cf, performed using the Gammasphere array …

research product

Total Absorption Study of Beta Decays Relevant for Nuclear Applications and Nuclear Structure

Abstract An overview is given of our activities related to the study of the beta decay of neutron rich nuclei relevant for nuclear applications. Recent results of the study of the beta decay of 87,88 Br using a new segmented total absorption spectrometer are presented. The measurements were performed at the IGISOL facility using trap-assisted total absorption spectroscopy.

research product

Total absorption γ-ray spectroscopy of the β-delayed neutron emitters 137I and 95Rb

The decays of the β-delayed neutron emitters 137I and 95Rb have been studied with the total absorption γ-ray spectroscopy technique. The purity of the beams provided by the JYFLTRAP Penning trap at the ion guide isotope separator on-line facility in Jyväskylä allowed us to carry out a campaign of isotopically pure measurements with the decay total absorption γ-ray spectrometer, a segmented detector composed of 18 NaI(Tl) modules. The contamination coming from the interaction of neutrons with the spectrometer has been carefully studied, and we have tested the use of time differences between prompt γ rays and delayed neutron interactions to eliminate this source of contamination. Due to the s…

research product

New Beta-delayed Neutron Measurements in the Light-mass Fission Group

A new accurate determination of beta-delayed neutron emission probabilities from nuclei in the low mass region of the light fission group has been performed. The measurements were carried out using the BELEN 4π neutron counter at the IGISOL-JYFL mass separator in combination with a Penning trap. The new results significantly improve the uncertainties of neutron emission probabilities for {sup 91}Br, {sup 86}As, {sup 85}As, and {sup 85}Ge nuclei.

research product

Decay study ofTc114with a Penning trap

The level structure of $^{114}\mathrm{Ru}$ has been investigated via the $\ensuremath{\beta}$ decay of very neutron-rich $^{114}\mathrm{Tc}$ by means of Penning-trap-assisted $\ensuremath{\gamma}$ spectroscopy. The deduced $\ensuremath{\beta}$-decay scheme suggests the existence of two $\ensuremath{\beta}$-decaying states in $^{114}\mathrm{Tc}$ with ${I}^{\ensuremath{\pi}}={1}^{+}$ and $I\ensuremath{\geqslant}$ 4, with half-lives of ${t}_{1/2}({1}^{+})=90(20)$ ms and ${t}_{1/2}(I\ensuremath{\geqslant}4)=100(20)$ ms, respectively. The ${Q}_{\ensuremath{\beta}}$ value, which covers a possible mixture of two states, has been determined to be ${Q}_{\ensuremath{\beta}}=11 785(12)$ keV. The level…

research product

First β -decay scheme of Nb107 : New insight into the low-energy levels of Mo107

Monoisotopic samples of $^{107}\mathrm{Nb}$ nuclei, produced in the proton-induced fission of $^{238}\mathrm{U}$ and separated using the IGISOL mass separator coupled to a Penning trap, were used to perform $\ensuremath{\beta}$- and $\ensuremath{\gamma}$-coincidence spectroscopy of $^{107}\mathrm{Mo}$. Gamma transitions and excited levels in $^{107}\mathrm{Mo}$ were observed in $\ensuremath{\beta}$ decay for the first time. Spin and parity $1/{2}^{+}$ for the ground state of $^{107}\mathrm{Mo}$ is proposed, to replace the previous $5/{2}^{+}$ assignment. The experimental $\ensuremath{\beta}$-decay half-life of $^{107}\mathrm{Nb}$ was estimated to be $0.27\ifmmode\pm\else\textpm\fi{}0.02$ s.

research product

Performance of a high repetition pulse rate laser system for in-gas-jet laser ionization studies with the Leuven laser ion source @ LISOL

The Leuven Isotope Separator On-Line (LISOL) facility at the Cyclotron Research Center (CRC) Louvain-la-Neuve; The laser ionization efficiency of the Leuven gas cell-based laser ion source was investigated under on- and off-line conditions using two distinctly different laser setups: a low-repetition rate dye laser system and a high-repetition rate Ti:sapphire laser system. A systematic study of the ion signal dependence on repetition rate and laser pulse energy was performed in off-line tests using stable cobalt and copper isotopes. These studies also included in-gas-jet laser spectroscopy measurements on the hyperfine structure of 63Cu. A final run under on-line conditions in which the ra…

research product

Impact of Nuclear Deformation and Pairing on the Charge Radii of Palladium Isotopes.

International audience; The impact of nuclear deformation can been seen in the systematics of nuclear charge radii, with radii generally expanding with increasing deformation. In this Letter, we present a detailed analysis of the precise relationship between nuclear quadrupole deformation and the nuclear size. Our approach combines the first measurements of the changes in the mean-square charge radii of well-deformed palladium isotopes between A=98 and A=118 with nuclear density functional calculations using Fayans functionals, specifically Fy(std) and Fy(Δr,HFB), and the UNEDF2 functional. The changes in mean-square charge radii are extracted from collinear laser spectroscopy measurements …

research product

Enhanced Gamma-Ray Emission from Neutron Unbound States Populated in Beta Decay

International audience; Total absorption spectroscopy was used to investigate the beta-decay intensity to states above the neutron separation energy followed by gamma-ray emission in 87,88Br and 94Rb. Accurate results were obtained thanks to a careful control of systematic errors. An unexpectedly large gamma intensity was observed in all three cases extending well beyond the excitation energy region where neutron penetration is hindered by low neutron energy. The gamma branching as a function of excitation energy was compared to Hauser-Feshbach model calculations. For 87Br and 88Br the gamma branching reaches 57% and 20% respectively, and could be explained as a nuclear structure effect. So…

research product

A hot cavity laser ion source at IGISOL

A development program is underway at the IGISOL (Ion Guide Isotope Separator On-Line) facility, University of Jyvaskyla, to efficiently and selectively produce low-energy radioactive ion beams of silver isotopes and isomers, with a particular interest in N=Z 94Ag. A hot cavity ion source has been installed, based on the FEBIAD (Forced Electron Beam Induced Arc Discharge) technique, combined with a titanium:sapphire laser system for selective laser ionization. The silver recoils produced via the heavy-ion fusion-evaporation reaction, 40Ca(58Ni, p3n)94Ag, are stopped in a graphite catcher, diffused, extracted and subsequently ionized using a three-step laser ionization scheme. The performance…

research product

Offline commissioning of a new gas cell for the MARA Low-Energy Branch

Results of offline commissioning tests for a new dedicated gas cell for the Mass Analysing Recoil Apparatus (MARA) Low-Energy Branch are reported. Evacuation time, ion survival and transport efficiency in helium buffer gas were characterized with a radioactive 223Ra 𝛼-recoil source. Suppression of the ion signal, originating from non-neutralized species in the gas cell, was explored with 219Rn ions, the daughter recoil of 223Ra, as a function of voltage applied to one of the ion-collector electrodes. Two-step laser resonance ionization of stable tin isotopes produced inside the gas cell from a heated bronze filament was demonstrated, and broadening of the atomic resonances in argon buffer …

research product

Odd-odd neutron-rich rhodium isotopes studied with the double Penning trap JYFLTRAP

Precision mass measurements of neutron-rich rhodium isotopes have been performed at the JYFLTRAP Penning trap mass spectrometer at the Ion Guide Isotope Separator On-Line (IGISOL) facility. We report results on ground- and isomeric-state masses in $^{110,112,114,116,118}$Rh and the very first mass measurement of $^{120}$Rh. The isomeric states were separated and measured for the first time using the phase-imaging ion-cyclotron-resonance (PI-ICR) technique. For $^{112}$Rh, we also report new half-lives for both the ground state and the isomer. The results are compared to theoretical predictions using the BSkG1 mass model and discussed in terms of triaxial deformation.

research product

Total Absorption Spectroscopy Study ofRb92Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. (92)Rb makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied (92)Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed.

research product

Measurement of the 2+→0+ ground-state transition in the β decay of F 20

| openaire: EC/H2020/654002/EU//ENSAR2 We report the first detection of the second-forbidden, nonunique, 2(+) -> 0(+), ground-state transition in the beta decay of F-20. A low-energy, mass-separated F-20(+) beam produced at the IGISOL facility in Jyvaskyla, Finland, was implanted in a thin carbon foil and the beta spectrum measured using a magnetic transporter and a plastic-scintillator detector. The beta-decay branching ratio inferred from the measurement is b(beta) = [0.41 +/- 0.08(stat) +/- 0.07(sys)] x 10(-5) corresponding to log ft = 10.89(11), making this one of the strongest second-forbidden, nonunique beta transitions ever measured. The experimental result is supported by shell-mode…

research product

Measurement of the 2 + → 0 + ground-state transition in the β decay of F 20

research product

Summation Calculations for Reactor Antineutrino Spectra, Decay Heat and Delayed Neutron Fractions Involving New TAGS Data and Evaluated Databases

9 pags., 3 figs. -- Open Access funded by Creative Commons Atribution Licence 4.0

research product

Coulomb displacement energies as a probe for nucleon pairing in the $f_{7/2}$ shell

Coulomb displacement energies of $T=1/2$ mirror nuclei have been studied via a series of high-precision $Q_\mathrm{EC}$-value measurements with the double Penning trap mass spectrometer JYFLTRAP. Most recently, the $Q_\mathrm{EC}$ values of the $f_{7/2}$-shell mirror nuclei $^{45}$V ($Q_\mathrm{EC}=7123.82(22)$ keV) and $^{49}$Mn ($Q_\mathrm{EC}=7712.42(24)$ keV) have been measured with an unprecedented precision. The data reveal a 16-keV ($1.6\sigma$) offset in the adopted Atomic Mass Evaluation 2012 value of $^{49}$Mn suggesting the need for further measurements to verify the breakdown of the quadratic form of the isobaric multiplet mass equation. Precisely measured $Q_\mathrm{EC}$ values…

research product

Evidence of a sudden increase in the nuclear size of proton-rich silver-96

Understanding the evolution of the nuclear charge radius is one of the long-standing challenges for nuclear theory. Recently, density functional theory calculations utilizing Fayans functionals have successfully reproduced the charge radii of a variety of exotic isotopes. However, difficulties in the isotope production have hindered testing these models in the immediate region of the nuclear chart below the heaviest self-conjugate doubly-magic nucleus 100Sn, where the near-equal number of protons (Z) and neutrons (N) lead to enhanced neutron-proton pairing. Here, we present an optical excursion into this region by crossing the N = 50 magic neutron number in the silver isotopic chain with th…

research product

The FURIOS laser ion source at IGISOL-4

Abstract The FURIOS laser ion source at the Accelerator Laboratory of the University of Jyvaskyla has been moved to a new location as a part of the IGISOL-4 facility. The laser ion source project had a high priority which allowed the transport of laser light to be optimized during the design phase. The laser resonators have been upgraded with a dual etalon configuration leading to greatly reduced laser linewidth. The transport efficiency of the dual-chamber gas cell has been determined using an alpha recoil source, with efficiencies ranging from a few percent in the beam interaction chamber to nearly 20% in the ionization chamber. In addition, we present recent results from the re-commissio…

research product

First β-decay scheme of 107Nb : New insight into the low-energy levels of 107Mo

Monoisotopic samples of 107Nb nuclei, produced in the proton-induced fission of 238U and separated using the IGISOL mass separator coupled to a Penning trap, were used to perform β- and γ-coincidence spectroscopy of 107Mo. Gamma transitions and excited levels in 107Mo were observed in β decay for the first time. Spin and parity 1/2+ for the ground state of 107Mo is proposed, to replace the previous 5/2+ assignment. The experimental β-decay half-life of 107Nb was estimated to be 0.27±0.02 s. peerReviewed

research product

QECvalues of the superallowedβemittersC10,Ar34,Ca38, andV46

The ${Q}_{\mathrm{EC}}$ values of the superallowed ${\ensuremath{\beta}}^{+}$ emitters $^{10}\mathrm{C}$, $^{34}\mathrm{Ar}$, $^{38}\mathrm{Ca}$, and $^{46}\mathrm{V}$ have been measured with the JYFLTRAP Penning-trap mass spectrometer to be 3648.12(8), 6061.83(8), 6612.12(7), and 7052.44(10) keV, respectively. All four values are substantially improved in precision over previous results. Of the well-known superallowed emitters, only $^{14}\mathrm{O}$ has yet to have had its ${Q}_{\mathrm{EC}}$ value measured with a Penning trap.

research product

Gas jet studies towards an optimization of the IGISOL LIST method

Abstract Gas jets emitted from an ion guide have been studied as a function of nozzle type and gas cell-to-background pressure ratio in order to obtain a low divergent, uniform jet over a distance of several cm. The jet has been probed by imaging the light emitted from excited argon or helium gas atoms. For a simple exit hole or converging-diverging nozzle, the jet diameter was found to be insensitive to the nozzle shape and inlet pressure. Sonic jets with a FWHM below 6 mm were achieved with a background pressure larger than 1 mbar in the expansion chamber. The measurements are supported by the detection of radioactive 219 Rn recoils from an alpha recoil source mounted within the gas cell.…

research product

β - and γ -spectroscopy study of Pd 119 and Ag 119

research product

Trap-assisted separation of nuclear states for gamma-ray spectroscopy: the example of100Nb

Low-lying levels in 100Mo are known to be populated by beta decay from both the ground and isomeric states in 100Nb. The small energy difference (~3 ppm) between the two parent states and the similarity of their half-lives make it difficult to distinguish experimentally between the two decay paths. A new technique for separating different states of nuclei has recently been developed in a series of experiments at the IGISOL facility, using the JYFLTRAP installation, at the University of Jyvaskyla where mass resolution ~2 ppm was achieved in mass measurements and in the production of 133mXe. This paper reports on the extension of this technique to allow the separate study of the gamma-ray dec…

research product

An inductively heated hot cavity catcher laser ion source.

An inductively heated hot cavity catcher has been constructed for the production of low-energy ion beams of exotic, neutron-deficient Ag isotopes. A proof-of-principle experiment has been realized by implanting primary (107)Ag(21+) ions from a heavy-ion cyclotron into a graphite catcher. A variable-thickness nickel foil was used to degrade the energy of the primary beam in order to mimic the implantation depth expected from the heavy-ion fusion-evaporation recoils of N = Z (94)Ag. Following implantation, the silver atoms diffused out of the graphite and effused into the catcher cavity and transfer tube, where they were resonantly laser ionized using a three-step excitation and ionization sc…

research product

Measurement of the 2+→0+ ground-state transition in the β decay of F20

We report the first detection of the second-forbidden, nonunique, 2+→0+, ground-state transition in the β decay of F20. A low-energy, mass-separated F+20 beam produced at the IGISOL facility in Jyvaskyla, Finland, was implanted in a thin carbon foil and the β spectrum measured using a magnetic transporter and a plastic-scintillator detector. The β-decay branching ratio inferred from the measurement is bβ=[0.41±0.08(stat)±0.07(sys)]×10-5 corresponding to logft=10.89(11), making this one of the strongest second-forbidden, nonunique β transitions ever measured. The experimental result is supported by shell-model calculations and has significant implications for the final evolution of stars tha…

research product

Resonance ionization spectroscopy of thorium isotopestowards a laser spectroscopic identification of the low-lying 7.6 eV isomer of 229Th

International audience; In-source resonance ionization spectroscopy was used to identify an efficient and selective three step excitation/ionization scheme of thorium, suitable for titanium:sapphire (Ti:sa) lasers. The measurements were carried out in preparation of laser spectroscopic investigations for an identification of the low-lying 229 m Th isomer predicted at 7.6 ± 0.5 eV above the nuclear ground state. Using a sample of 232 Th, a multitude of optical transitions leading to over 20 previously unknown intermediate states of even parity as well as numerous high-lying odd parity auto-ionizing states were identified. Level energies were determined with an accuracy of 0.06 cm −1 for inte…

research product

β decay of Cd 127 and excited states in In 127

22 pags., 8 figs., 4 tabs., 1 app.

research product

Total absorption spectroscopy study of the β decay of Br86 and Rb91

The beta decays of 86Br and 91Rb have been studied using the total absorption spectroscopy technique. The radioactive nuclei were produced at the IGISOL facility in Jyvaskyla and further purified using the JYFLTRAP. 86Br and 91Rb are considered high priority contributors to the decay heat in reactors. In addition 91Rb was used as a normalization point in direct measurements of mean gamma energies released in the beta decay of fission products by Rudstam et al. assuming that this decay was well known from high-resolution measurements. Our results shows that both decays were suffering from the Pandemonium effect and that the results of Rudstam et al. should be renormalized.

research product

Disentangling decaying isomers and searching for signatures of collective excitations in β decay

6 pags., 3 figs., 1 tab. -- 27th International Nuclear Physics Conference (INPC2019) 29 July - 2 August 2019, Glasgow, UK

research product