0000000000048363

AUTHOR

N. Weber

Energy- and time-resolved microscopy using PEEM: recent developments and state-of-the-art

Two novel methods of spectroscopic surface imaging are discussed, both based on photoemission electron microscopy PEEM. They are characterised by a simple electron-optical set up retaining a linear column. An imaging high-pass energy filter has been developed on the basis of lithographically-fabricated microgrids. Owing to a mesh size of only 7μm, no image distortions occur. The present energy resolution is 70 meV. The second approach employs time-of-flight energy dispersion and time-resolved detection using a Delayline Detector. In this case, the drift energy and the time resolution of the detector determine the energy resolution. The present time resolution is 180 ps, giving rise to an en…

research product

Inspection of EUVL mask blank defects and patterned masks using EUV photoemission electron microscopy

We report on recent developments of an "at-wavelength" full-field imaging technique for inspection of multilayer mask blank defects and patterned mask samples for extreme ultraviolet lithography (EUVL) by EUV photoemission electron microscopy (EUV-PEEM). A bump-type line defect with a width of approximately 35nm that is buried beneath Mo/Si multilayer has been detected clearly, and first inspection results obtained from a patterned TaN absorber EUVL mask sample is reported. Different image contrast of a similar width of multilayer-covered substrate line defect and on top TaN absorber square has been observed in the EUV-PEEM images, and origin of the difference in their EUV-PEEM image contra…

research product

A new approach for actinic defect inspection of EUVL multilayer mask blanks: Standing wave photoemission electron microscopy

Extreme ultraviolet lithography (EUVL) at 13.5 nm is the next generation lithography technique capable of printing sub-50 nm structures. With decreasing feature sizes to be printed, the requirements for the lithography mask also become more stringent in terms of defect sizes and densities that are still acceptable and the development of lithography optics has to go along with the development of new mask defect inspection techniques that are fast and offer high resolution (preferable in the range of the minimum feature size) at the same time. We report on the development and experimental results of a new 'at wavelength' full-field imaging technique for defect inspection of multilayer mask bl…

research product

Actinic inspection of sub-50 nm EUV mask blank defects

A new actinic mask inspection technology to probe nano-scaled defects buried underneath a Mo/Si multilayer reflection coating of an Extreme Ultraviolet Lithography mask blank has been implemented using EUV Photoemission Electron Microscopy (EUV-PEEM). EUV PEEM images of programmed defect structures of various lateral and vertical sizes recorded at around 13 nm wavelength show that 35 nm wide and 4 nm high buried line defects are clearly detectable. The imaging technique proves to be sensitive to small phase jumps enhancing the visibility of the edges of the phase defects which is explained in terms of a standing wave enhanced image contrast at resonant EUV illumination.

research product

NanoESCA: imaging UPS and XPS with high energy resolution

Abstract A novel imaging electron spectrometer has been used for laterally resolved ultraviolet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS) in the soft X-ray range. The instrument is based on a high-resolution emission microscope optics using a cathode lens and an imaging dispersive analyser. The analyser is corrected for the leading aberration term ( α 2 -term) by means of two hemispherical analysers in antisymmetric configuration with an appropriate transfer lens. Small-area spectra as well as energy-filtered images have been taken in the soft X-ray range for a meteorite sample and in the range of the d-band of a Cu polycrystal. An energy resolution of 106 …

research product

At-wavelength inspection of sub-40 nm defects in extreme ultraviolet lithography mask blank by photoemission electron microscopy.

A new at-wavelength inspection technology to probe nanoscale defects buried underneath Mo/Si multilayers on an extreme ultraviolet (EUV) lithography mask blank has been implemented using EUV photoemission electron microscopy (EUV-PEEM). EUV-PEEM images of programmed defect structures of various lateral and vertical sizes recorded at an ~13.5 nm wavelength show that 35 nm wide and 4 nm high buried line defects are clearly detectable. The imaging technique proves to be sensitive to small phase jumps, enhancing the edge visibility of the phase defects, which is explained in terms of a standing wave enhanced image contrast at resonant EUV illumination.

research product

Progress in Arabidopsis genome sequencing and functional genomics

Arabidopsis thaliana has a relatively small genome of approximately 130 Mb containing about 10% repetitive DNA. Genome sequencing studies reveal a gene-rich genome, predicted to contain approximately 25 000 genes spaced on average every 4.5 kb. Between 10 to 20% of the predicted genes occur as clusters of related genes, indicating that local sequence duplication and subsequent divergence generates a significant proportion of gene families. In addition to gene families, repetitive sequences comprise individual and small clusters of two to three retroelements and other classes of smaller repeats. The clustering of highly repetitive elements is a striking feature of the A. thaliana genome emer…

research product

Phase defect inspection of multilayer masks for 13.5 nm optical lithography using PEEM in a standing wave mode

We report on recent developments of an "at wavelength" full-field imaging technique for defect inspection of multilayer mask blanks for extreme ultraviolet lithography (EUVL). Our approach uses photoemission electron microscopy (PEEM) in a near normal incidence mode at 13.5 nut wavelength to image the photoemission induced by the EUV wave field on the multilayer blank surface. We analyze buried defects on Mo/Si multilayer samples down to a lateral size of 50 nm and report on first, results obtained from a six inches mask blank prototype as prerequisite for industrial usage. (c) 2007 Elsevier B.V. All rights reserved.

research product

Three-dimensional characterization of extreme ultraviolet mask blank defects by interference contrast photoemission electron microscopy

A photoemission electron microscope based on a new contrast mechanism "interference contrast" is applied to characterize extreme ultraviolet lithography mask blank defects. Inspection results show that positioning of interference destructive condition (node of standing wave field) on surface of multilayer in the local region of a phase defect is necessary to obtain best visibility of the defect on mask blank. A comparative experiment reveals superiority of the interference contrast photoemission electron microscope (Extreme UV illumination) over a topographic contrast one (UV illumination with Hg discharge lamp) in detecting extreme ultraviolet mask blank phase defects. A depth-resolved det…

research product

Trace element analysis in pre-solar stardust grains via full-field imaging XPS (Nano-ESCA)

An acid-resistant, SiC-rich, residue from the Murchison meteorite was investigated by means of a novel imaging XPS instrument. The micrometer-sized grains were deposited on a Si wafer from an aqueous suspension. Energy filtered ESCA images have been taken in the kinetic energy range from the threshold up to about 400 eV for various photon energies. A lateral resolution of the order of 120 nm along with a high energy resolution in the range of 100 meV provides the basis for chemical trace element analysis with maximum sensitivity. Apart from major (Si, C) and minor (N, Mg, Al, Fe) elements, the energy filtered images and local microspectra revealed the presence of a variety of heavy trace el…

research product

Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana

The higher plant Arabidopsis thaliana (Arabidopsis) is an important model for identifying plant genes and determining their function. To assist biological investigations and to define chromosome structure, a coordinated effort to sequence the Arabidopsis genome was initiated in late 1996. Here we report one of the first milestones of this project, the sequence of chromosome 4. Analysis of 17.38 megabases of unique sequence, representing about 17% of the genome, reveals 3,744 protein coding genes, 81 transfer RNAs and numerous repeat elements. Heterochromatic regions surrounding the putative centromere, which has not yet been completely sequenced, are characterized by an increased frequency …

research product