Low density lipoproteins and human serum albumin as the carriers of squalenoylated drugs: insights from molecular simulations
We have studied the interaction of three clinically promising squalenoylated drugs (gemcitabine-squalene, adenine-squalene, and doxorubicin-squalene) with low-density lipoproteins (LDL) by means of atomistic molecular dynamics simulations. It is shown that all studied squalenoylated drugs accumulate inside the LDL particles. This effect is promoted by the squalene moiety, which acts as an anchor and drives the hydrophilic drugs into the hydrophobic core of the LDL lipid droplet. Our data suggest that LDL particles could be a universal carriers of squalenoylated drugs in the bloodstream. Interaction of gemcitabine-squalene with human serum albumin (HSA) was also studied by ensemble of dockin…
Lipoproteins LDL versus HDL as nanocarriers to target either cancer cells or macrophages
free open access article 31 p.; International audience; In this work, we have explored natural unmodified low- and high-density lipoproteins (LDL and HDL) as selective delivery vectors in colorectal cancer therapy. We show in vitro in cultured cells and in vivo (NanoSPECT/CT) in the CT-26 mice colorectal cancer model that LDLs are mainly taken up by cancer cells, while HDLs are preferentially taken up by macrophages. We loaded LDLs with cisplatin and HDLs with the heat shock protein-70 inhibitor AC1LINNC, turning them into a pair of “Trojan horses” delivering drugs selectively to their target cells as demonstrated in vitro in human colorectal cancer cells and macrophages, and in vivo. Coupl…
Stacking as a key property for creating nanoparticles with tunable shape: The case of squalenoyl-doxorubicin
The development of elongated nanoparticles for drug delivery is of growing interest in recent years, due to longer blood circulation and improved efficacy compared to spherical counterparts. Squalenoyl-doxorubicin (SQ-Dox) conjugate was previously shown to form elongated nanoparticles with improved therapeutic efficacy and decreased toxicity compared to free doxorubicin. By using experimental and computational techniques, we demonstrate here that the specific physical properties of SQ-Dox, which include stacking and electrostatic interactions of doxorubicin as well as hydrophobic interactions of squalene, are involved in the formation of nanoassemblies with diverse elongated structures. We …
Interaction of C 60 fullerenes with asymmetric and curved lipid membranes: a molecular dynamics study
Interaction of fullerenes with asymmetric and curved DOPC/DOPS bicelles is studied by means of coarse-grained molecular dynamics simulations. The effects caused by asymmetric lipid composition of the membrane leaflets and the curvature of the membrane are analyzed. It is shown that the aggregates of fullerenes prefer to penetrate into the membrane in the regions of the moderately positive mean curvature. Upon penetration into the hydrophobic core of the membrane fullerenes avoid the regions of the extreme positive or the negative curvature. Fullerenes increase the ordering of lipid tails, which are in direct contact with them, but do not influence other lipids significantly. Our data sugges…
Curvature increases permeability of the plasma membrane for ions, water and the anti-cancer drugs cisplatin and gemcitabine
ABSTRACTIn this work the permeability of a model asymmetric plasma membrane, for ions, water and the anti-cancer drugs cisplatin and gemcitabine is studied by means of all-atom molecular dynamics simulations. It is shown that permeability of the membranes increases from one to three orders of magnitude upon membrane bending depending on the compound and the sign of curvature. Our results show that the membrane curvature is an important factor which should be considered during evaluation of drug translocation.TOC GRAPHICS
Squalene versus cholesterol: Which is the best nanocarrier for the delivery to cells of the anticancer drug gemcitabine?
Comptes Rendus Chimie - In Press.Proof corrected by the author Available online since jeudi 22 mars 2018
Fluorescence Probes Exhibit Photoinduced Structural Planarization: Sensing <i>in vitro</i> and <i>in vivo</i> Microscopic Dynamics of Viscosity Free from Polarity Interference
We demonstrate the construction of wavelength λ-ratiometric images that allow visualizing the distribution of microscopic dynamics within living cells and tissues by using the newly developed principle of fluorescence response. The bent-to-planar motion in the excited state of incorporated fluorescence probes leads to elongation of the π-delocalization, resulting in microviscosity-dependent but polarity-insensitive interplay between well-separated blue and red bands in emission spectra. This allows constructing the exceptionally contrasted images of cellular dynamics. Moreover, the application of probes with increased affinity towards biological membranes allowed detecting the differences i…
Double-exponential kinetics of binding and redistribution of the fluorescent dyes in cell membranes witness for the existence of lipid microdomains.
Abstract New technique of detecting lateral heterogeneity of the plasma membrane of living cells by means of membrane-binding fluorescent dyes is proposed. The kinetics of dye incorporation into the membrane or its lateral diffusion inside the membrane is measured and decomposed into exponential components by means of the Maximum Entropy Method. Two distinct exponential components are obtained consistently in all cases for several fluorescent dyes, two different cell lines and in different types of experiments including spectroscopy, flow cytometry and fluorescence recovery after photobleaching. These components are attributed to the liquid-ordered and disordered phases in the plasma membra…
Influence of Substrate Hydrophilicity on Structural Properties of Supported Lipid Systems on Graphene, Graphene Oxides, and Silica
Pristine graphene, a range of graphene oxides, and silica substrates were used to investigate the effect of surface hydrophilicity on supported lipid bilayers by means of all-atom molecular dynamics simulations. Supported 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid bilayers were found in close-contact conformations with hydrophilic substrates with as low as 5% oxidation level, while self-assembled monolayers occur on pure hydrophobic graphene only. Lipids and water at the surface undergo large redistribution to maintain the stability of the supported bilayers. Deposition of bicelles on increasingly hydrophilic substrates shows the continuous process of reshaping of the supported system a…
Molecular modeling in cardiovascular pharmacology: Current state of the art and perspectives.
Abstract Molecular modeling in pharmacology is a promising emerging tool for exploring drug interactions with cellular components. Recent advances in molecular simulations, big data analysis, and artificial intelligence (AI) have opened new opportunities for rationalizing drug interactions with their pharmacological targets. Despite the obvious utility and increasing impact of computational approaches, their development is not progressing at the same speed in different fields of pharmacology. Here, we review current in silico techniques used in cardiovascular diseases (CVDs), cardiological drug discovery, and assessment of cardiotoxicity. In silico techniques are paving the way to a new era…
EnCurv: Simple Technique of Maintaining Global Membrane Curvature in Molecular Dynamics Simulations.
The EnCurv method for maintaining membrane curvature in molecular dynamics simulations is introduced. The method allows maintaining any desired curvature in a sector of lipid membrane bent in a single plane without adding any unphysical interactions into the system and without restrictions on lateral and transversal lipid diffusion and distribution. The current implementation is limited to the membranes curved in a single plane but generalization to arbitrary curvature and membrane topology is possible. The method is simple, easy to implement, and scales linearly with the system size. EnCurv is agnostic to the force field, simulation parameters, and membrane composition. The proof of princi…
Fluorescence Probes Exhibit Photoinduced Structural Planarization: Sensing In Vitro and In Vivo Microscopic Dynamics of Viscosity Free from Polarity Interference
We demonstrate the construction of wavelength λ-ratiometric images that allow visualizing the distribution of microscopic dynamics within living cells and tissues by using the newly developed principle of fluorescence response. The bent-to-planar motion in the excited state of incorporated fluorescence probes leads to elongation of the π-delocalization, resulting in microviscosity-dependent but polarity-insensitive interplay between well-separated blue and red bands in emission spectra. This allows constructing the exceptionally contrasted images of cellular dynamics. Moreover, the application of probes with increased affinity toward biological membranes allowed detecting the differences in…
Structures of single, double and triple layers of lipids adsorbed on graphene: Insights from all-atom molecular dynamics simulations
Abstract Non-covalent functionalization of graphene with phospholipids is a promising technique for biosensing applications and intracellular delivery of analytical probes and drugs. However, molecular details of the self-assembly of lipids on graphene surface is still poorly understood and hard to control. There is a clear lack of understanding of why various kinds of lipid aggregates can form on graphene. In the current work, we address this question by investigating equilibrium and dynamical properties of lipid layers adsorbed on graphene in water environment and in vacuum using all-atom Molecular Dynamics simulations. It is shown that a variety of lipid aggregates can form on top of gra…
TTAPE-Me dye is not selective to cardiolipin and binds to common anionic phospholipids nonspecifically
Identification, visualization, and quantitation of cardiolipin (CL) in biological membranes is of great interest because of the important structural and physiological roles of this lipid. Selective fluorescent detection of CL using noncovalently bound fluorophore 1,1,2,2-tetrakis[4-(2-trimethylammonioethoxy)-phenylethene (TTAPE-Me) has been recently proposed. However, this dye was only tested on wild-type mitochondria or liposomes containing negligible amounts of other anionic lipids, such as phosphatidylglycerol (PG) and phosphatidylserine (PS). No clear preference of TTAPE-Me for binding to CL compared to PG and PS was found in our experiments on artificial liposomes, Escherichia coli ins…
Selective Inhibition of STAT3 with Respect to STAT1: Insights from Molecular Dynamics and Ensemble Docking Simulations
STAT3 protein, which is known to be involved in cancer development, is a promising target for anticancer therapy. Successful inhibitors of STAT3 should not affect an activity of closely related protein STAT1, which makes their development challenging. The mechanisms of selectivity of several existing STAT3 inhibitors are not clear. In this work, we studied molecular mechanisms of selectivity of 13 experimentally tested STAT3 inhibitors by means of extensive molecular dynamics and ensemble docking simulations. It is shown that all studied inhibitors bind to the large part of the protein surface in an unspecific statistical manner. The binding to the dimerization interface of the SH2 domain, …