0000000000143023

AUTHOR

Jing Zhou

Adaptive PI Control of Bottom Hole Pressure during Oil Well Drilling

Abstract In this paper, we studied the bottom hole pressure (BHP) control in an oil well during drilling. Today marginal wells with narrow pressure windows are frequently being drilled. This requires accurate and precise control to balance the bottom hole pressure between the pore and fracture pressure of the reservoir. This paper presents three control schemes to stabilize the BHP prole, including proportional-integral(PI) control, PI with feed-forward control and adaptive PI with feed-forward control. The proposed schemes are carried out through simulations on a high-fidelity hydraulic drilling simulator for flow rate changes and BHP set-point changes. In fast set-point changes and flow r…

research product

Modeling of Offshore Crane and Marine Craft in Wave Motion

Safe handling of heavy payloads in an offshore environment requires careful planning and depends on the interaction between a crane and a vessel. This paper investigates the coupled dynamics between a multipurpose crane with payload, and an offshore carrying vessel. A classical multi-body model is derived using holonomic constraints and Newton-Euler kinetics. The resulting index-3 system of differential-algebraic equation (DAE) is transformed into an index-1 system and solved using commonly used numerical ode solvers. Numerical simulations are carried out to show that the proposed models behave in a physically realistic manner. © 2020 IEEE. Personal use of this material is permitted. Permis…

research product

Adaptive Backstepping Control of a 2-DOF Helicopter System in the Presence of Quantization

Author's accepted manuscript. © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This paper studies the attitude tracking control for an uncertain 2-degrees of freedom helicopter system where the inputs and the states are quantized. An adaptive backstepping based control scheme is proposed to handle the effect of quantization for tracking of reference angles for p…

research product

Attitude Control of a 2-DOF Helicopter System with Input Quantization and Delay

Author's accepted manuscript © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. In this paper the attitude tracking control problem of a 2 degrees-of-freedom helicopter system with network induced constraints is studied. A predictor feedback control law is developed to compensate a known delay in the communication, where the inputs are quantized before transmitted…

research product

Distributed Adaptive Control for Asymptotically Consensus Tracking of Uncertain Nonlinear Systems With Intermittent Actuator Faults and Directed Communication Topology

In this article, we investigate the output consensus tracking problem for a class of high-order nonlinear systems with unknown parameters, uncertain external disturbances, and intermittent actuator faults. Under the directed topology conditions, a novel distributed adaptive controller is proposed. The common time-varying trajectory is allowed to be totally unknown by part of subsystems. Therefore, the assumption on the linearly parameterized trajectory signal in most literature is no longer needed. To achieve the relaxation, extra distributed parameter estimators are introduced in all subsystems. Besides, to handle the actuator faults occurring at possibly infinite times, a new adaptive com…

research product

Event-triggered robust adaptive control for discrete time uncertain systems with unmodelled dynamics and disturbances

In practice, modelling errors caused by high-order unmodelled dynamics and external disturbances are unavoidable. How to ensure the robustness of an adaptive controller with respect to such modelling errors is always a critical concern. In this study, the authors consider the design of event-triggered robust adaptive control for a class of discrete-time uncertain systems which involve such modelling errors and also are allowed to be non-minimum phase. Unlike some existing event-triggered control schemes, the developed controllers do not require that the measurement errors meet the corresponding input-to-state stable condition. Global stability of the closed-loop system which means that all …

research product

Expression quantitative trait loci for PAX8 contributes to the prognosis of hepatocellular carcinoma

Paired-box family member PAX8 encodes a transcription factor that has a role in cell differentiation and cell growth and may participate in the prognosis of hepatocellular carcinoma (HCC). By bioinformatics analysis, we identified several single nucleotide polymorphisms (SNPs) within a newly identified long non-coding RNA (lncRNA) AC016683.6 as expression quantitative trait loci (eQTLs) for PAX8. Hence, we hypothesized that PAX8eQTLs in lncRNA AC016683.6 may influence the HCC prognosis. We then performed a case-only study to assess the association between the two SNPs as well as the prognosis of HCC in 331 HBV-positive HCC patients without surgical treatment. Cox proportional hazard models …

research product

Tailoring large magnetoresistance in Dirac semimetal SrIrO3 films

Perovskite SrIrO3 is a special Dirac material with fascinating effects due to its strong electron correlation and spin–orbit coupling. In this work, a large magnetoresistance (MR) was observed not only in epitaxial SrIrO3 films but also in a SrIrO3/PbZr0.2Ti0.8O3 epitaxial heterostructure with a magnetic field applied perpendicular to the external electric field. The magnetoresistance of SrIrO3 (10 nm) and SrIrO3/PbZr0.2Ti0.8O3 (10 nm/30 nm) reach values as large as 40% and 110% at 9 T and 5 K, respectively. We believe that the unusual magnetoresistance is from the Dirac/Weyl state. Especially, the SrIrO3/PbZr0.2Ti0.8O3 bilayer shows negative magnetoresistance with strong oscillations close…

research product

Adaptive Backstepping Control of a 2-DOF Helicopter

This paper proposes an adaptive nonlinear controller for a 2-Degree of Freedom (DOF) helicopter. The proposed controller is designed using backstepping control technique and is used to track the pitch and yaw position references independently. A MIMO nonlinear mathematical model is derived for the 2DOF helicopter based on Euler-Lagrange equations, where the system parameters and the control coefficients are uncertain. Unlike some existing control schemes for the helicopter control, the developed controller does not require the knowledge on the system uncertain parameters. Updating laws are used to estimate the unknown parameters. It is shown that not only the global stability is guaranteed …

research product

Modeling and simulation of an offshore crane

This paper presents a mathematical modeling of a crane system using robot modeling theory as well as the numerical simulation of the dynamics of a crane and a marine craft. The simulations are performed in SimulationX and Matlab Simulink. The simulation platform includes a SimulationX-model of the crane, a realistic model of a marine craft using the Marine Systems Simulator(MSS) and the hydrodynamic sea-keeping calculations (VERES program code). The simulation results show a very good picture of the dynamic behavior of the real crane in offshore environment and verify the validation and effectiveness of the presented modeling approach.

research product

Constraints on the origin of cosmic rays above 10^18 eV from large-scale anisotropy searches in data of the Pierre Auger Observatory

A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10(18) eV at the Pierre Auger Observatory is reported. For the first time, these large-scale anisotropy searches are performed as a function of both the right ascension and the declination and expressed in terms of dipole and quadrupole moments. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Upper limits on dipole and quadrupole amplitudes are derived under the hypothesis that any cosmic ray anisotropy is dominated by such moments in this energy range. These upper limits provide constraints on the production of cosmic rays above 10(…

research product

Adaptive consensus of uncertain nonlinear systems with event triggered communication and intermittent actuator faults

This paper investigates distributed consensus tracking problem for uncertain nonlinear systems with event-triggered communication. The common desired trajectory information and each subsystem's state will be broadcast to their linked subsystems only when predefined triggering conditions are satisfied. Compared with the existing related literature, the main features of the results presented in this paper include four folds. (i) A totally distributed adaptive control scheme is developed for multiple nonlinear systems without Lipschitz condition, while with parametric uncertainties. (ii) The derivative of desired trajectory function is allowed unknown by all subsystems and directed communicati…

research product

Adaptive Asymptotically Tracking Control for Uncertain Strict-Feedback Nonlinear Systems with Input Quantization

In this paper, we investigate the output tracking control problem for a class of uncertain nonlinear systems in parametric strict feedback form with quantized input. A novel backstepping based adaptive quantized control scheme is proposed. Different from the existing results, the true quantization parameters are allowed to be unknown in the design of adaptive controller. It is shown that with the proposed control scheme, the system output can track the desired trajectory asymptotically and all the closed-loop signals are globally uniformly bounded.

research product

Calibration strategy of the JUNO experiment

We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector can achieve a better than 1% energy linearity and a 3% effective energy resolution, required by the neutrino mass ordering determination. [Figure not available: see fulltext.]

research product

Adaptive control of a class of strict-feedback time-varying nonlinear systems with unknown control coefficients

Abstract In this paper, robust adaptive control of a class of strict-feedback nonlinear systems with unknown control directions is investigated. A novel Nussbaum-type function is developed and a key theorem is drawn which involves quantifying the addition of multiple Nussbaum functions with different control directions in a single inequality. Global stability of the closed-loop system and asymptotic stabilization of system output are proved. A simulation example is given to illustrate the effectiveness of the proposed control scheme.

research product

Adaptive Backstepping Control of a 2-DOF Helicopter System with Uniform Quantized Inputs

Author's accepted manuscript © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This paper proposes a new adaptive controller for a 2-Degree of Freedom (DOF) helicopter system in the presence of input quantization. The inputs are quantized by uniform quantizers. A nonlinear mathematical model is derived for the 2-DOF helicopter system based on Euler-Lagrange equat…

research product

Automated Kick Control Procedure for an Influx in Managed Pressure Drilling Operations

Within drilling of oil and gas wells, the Managed Pressure Drilling (MPD) method with active control of wellbore pressure during drilling has partly evolved from conventional well control procedures. However, for MPD operations the instrumentation is typically more extensive compared to conventional drilling. Despite this, any influx of formation fluids (commonly known as a kick) during MPD operations is typically handled by conventional well control methods, at least if the kick is estimated to be larger than a threshold value. Conventional well control procedures rely on manual control of the blow out preventer, pumps, and choke valves and do not capitalize on the benefits from the instru…

research product

Electrical switching of perpendicular magnetization in a single ferromagnetic layer

We report on the efficient spin-orbit torque (SOT) switching in a single ferromagnetic layer induced by a new type of inversion asymmetry, the composition gradient. The SOT of 6- to 60-nm epitaxial FePt thin films with a $L{1}_{0}$ phase is investigated. The magnetization of the FePt single layer can be reversibly switched by applying electrical current with a moderate current density. Different from previously reported SOTs which either decreases with or does not change with the film thickness, the SOT in FePt increases with the film thickness. We found the SOT in FePt can be attributed to the composition gradient along the film normal direction. A linear correlation between the SOT and th…

research product

Adaptive backstepping based consensus tracking of uncertain nonlinear systems with event-triggered communication

Abstract This paper investigates the consensus tracking problem for a class of uncertain high-order nonlinear systems with parametric uncertainties and event-triggered communication. Under a directed communication condition, a totally distributed adaptive backstepping based control scheme is presented. Specifically, a decentralized triggering condition is adopted in this paper such that continuous monitoring of neighboring states, as required in some existing results, can be avoided. Besides, to handle the non-differentiability problem of virtual controllers, which arises from the utilization of neighboring states collected only at the triggering instants, the virtual controllers in each re…

research product

Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory

The Pierre Auger Observatory in Malargue, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, lo…

research product

Adaptive Tracking Control of Nonlinear Time-Varying Systems with Unknown Control Coefficients and Unknown Time-Varying Parameters

This paper investigates the tracking control of a class of strict-feedback uncertain nonlinear systems in the presence of unknown signs of control coefficients and unknown time-varying parameters as well as unknown disturbances. A robust adaptive controller and a new decoupled backstepping approach to stability analysis are developed by constructing a new compensation scheme. By introducing a Nussbaum function and a new type of hyperbolic tangent function, the effects of unknown time-varying parameters and unknown control coefficients are effectively compensated. By using the decoupled backstepping technique, it is proved that under the proposed control, all closed-loop states are uniform u…

research product

Identifying clouds over the Pierre Auger Observatory using infrared satellite data

We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud. identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km(2) of the Pierre Auger Observatory twice per hour with a spatial resolution of similar to 2.4 km by similar to 5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories. (C) 2013 Elsevier B.V. All rights reserved.

research product

Distributed adaptive leader–follower and leaderless consensus control of a class of strict-feedback nonlinear systems : a unified approach

In this paper, distributed adaptive consensus for a class of strict-feedback nonlinear systems under directed topology condition is investigated. Both leader–follower and leaderless cases are considered in a unified framework. To design distributed controller for each subsystem, a local compensatory variable is generated based on the signals collected from its neighbors. Such a technique enables us to solve the leader–follower consensus and leaderless consensus problems in a unified framework. And it further allows us to treat the leaderless consensus as a special case of the leader–follower consensus. For leader–follower consensus, the assumption that the leader trajectory is linearly para…

research product

Adaptive quantized control of uncertain nonlinear rigid body systems

This paper investigates the attitude tracking control problem for uncertain nonlinear rigid body systems, where both inputs and states are quantized. It is common in networked control systems that sensor and control signals are quantized before they are transmitted via a communication network. An adaptive backstepping control algorithm is developed for a class of uncertain multiple-input multiple-output (MIMO) systems where a class of sector bounded quantizers is considered. It is shown that all the closed-loop signals are ensured uniformly bounded and tracking is achieved. Further, the tracking errors are shown to converge towards a compact set containing the origin and the set can be made…

research product

Decentralized Adaptive Control for Interconnected Nonlinear Systems with Input Quantization

Abstract In this paper, a decentralized adaptive control scheme is proposed for a class of uncertain nonlinear interconnected systems with input quantization. A hysteresis uniform quantization is introduced to reduce chattering. In the control design, a smooth function is introduced with backstepping technique to compensate for the effects of interactions. It is shown that the proposed decentralized adaptive controllers can ensure global boundedness of all the signals in the closed-loop interconnected systems and the tracking errors of subsystem converge to a residual, which can be adjusted by choosing suitable design parameters. Simulation results illustrate the effectiveness of the propos…

research product

Modelling of a hydro-pneumatic system for heave compensation

This paper presents a mathematical model of the dynamic behaviour of a passive heave compensation system. The main purpose is to develop a model that enables cost-efficient prototyping and testing of the control system in an active heave compensator. The physics are described by first principles, and result in 21 ordinary differential equations. Temperature calculations are included as an option during simulation in order to investigate its effect on the results. Similarly is a non-ideal gas law (Redlich-Kwong equation) implemented and compared to the ideal gas law. Verification against field data shows that the model is in good accordance with real-life drilling operations. It is further s…

research product

Probing the radio emission from air showers with polarization measurements

The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed which cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially wit…

research product

The Design and Sensitivity of JUNO's scintillator radiopurity pre-detector OSIRIS

The European physical journal / C 81(11), 973 (2021). doi:10.1140/epjc/s10052-021-09544-4

research product

Adaptive Backstepping Control of Nonlinear Uncertain Systems With Quantized States

This paper investigates the stabilization problem for uncertain nonlinear systems with quantized states. All states in the system are quantized by a static bounded quantizer, including uniform quantizer, hysteresis-uniform quantizer, and logarithmic-uniform quantizer as examples. An adaptive backstepping-based control algorithm, which can handle discontinuity, resulted from the state quantization and a new approach to stability analysis are developed by constructing a new compensation scheme for the effects of the state quantization. Besides showing the global ultimate boundedness of the system, the stabilization error performance is also established and can be improved by appropriately adj…

research product

Search for point-like sources of ultra-high energy neutrinos at the pierre auger observatory and improved limit on the diffuse flux of tau neutrinos

The surface detector array of the Pierre Auger Observatory can detect neutrinos with energy Eν between 1017 eV and 1020 eV from point-like sources across the sky south of +55º and north of −65º declinations. A search has been performed for highly inclined extensive air showers produced by the interaction of neutrinos of all flavors in the atmosphere (downward-going neutrinos), and by the decay of tau leptons originating from tau neutrino interactions in Earth’s crust (Earth-skimming neutrinos). No candidate neutrinos have been found in data up to 2010 May 31. This corresponds to an equivalent exposure of ∼3.5 years of a full surface detector array for the Earth-skimming channel and ∼2 years…

research product

A Targeted Search for Point Sources of EeV Neutrons

A flux of neutrons from an astrophysical source in the Galaxy can be detected in the Pierre Auger Observatory as an excess of cosmic-ray air showers arriving from the direction of the source. To avoid the statistical penalty for making many trials, classes of objects are tested in combinations as nine “target sets”, in addition to the search for a neutron flux from the Galactic Center or from the Galactic Plane. Within a target set, each candidate source is weighted in proportion to its electromagnetic flux, its exposure to the Auger Observatory, and its flux attenuation factor due to neutron decay. These searches do not find evidence for a neutron flux from any class of candidate sources. …

research product

Large-scale distribution of arrival directions of cosmic rays detected above 1018 eV at the Pierre Auger Observatory

A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 1018 eV at the Pierre Auger Observatory is presented. This search is performed as a function of both declination and right ascension in several energy ranges above 1018 eV, and reported in terms of dipolar and quadrupolar coefficients. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Assuming that any cosmic-ray anisotropy is dominated by dipole and quadrupole moments in this energy range, upper limits on their amplitudes are derived. These upper limits allow us to test the origin of cosmic rays above 1018 eV from stationary Galactic …

research product

Adaptive Control Design for Underactuated Cranes With Guaranteed Transient Performance: Theoretical Design and Experimental Verification

For antiswing control of underactuated cranes, how to guarantee the converging speed of cranes through control design is essential but still remains unsolved. In this paper, the adaptive antiswing control for underactuated gantry cranes with guaranteed transient performance under unmodeled dynamics and external disturbances is investigated. To sovle this problem, a set of filters are proposed to make the backstepping technique applicable for the control of crane systems. Then through variable transformation the position error and swing angel could be guaranteed converging to the origin with a given exponential speed. Hardware experiments are conducted to show that the proposed scheme achiev…

research product

Radioactivity control strategy for the JUNO detector

JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day, therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration…

research product

Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Observatory.

The Pierre Auger Observatory is exploring the potential of the radio detection technique to study extensive air showers induced by ultra-high energy cosmic rays. The Auger Engineering Radio Array (AERA) addresses both technological and scientific aspects of the radio technique. A first phase of AERA has been operating since September 2010 with detector stations observing radio signals at frequencies between 30 and 80 MHz. In this paper we present comparative studies to identify and optimize the antenna design for the final configuration of AERA consisting of 160 individual radio detector stations. The transient nature of the air shower signal requires a detailed description of the antenna s…

research product

The passive state: A protective mechanism for information in working memory tasks.

Memory representations can be stored in a passive state in a visual working memory (VWM) task. However, it remains unclear whether the representations stored in the passive state are prone to interference and decay. To explore this issue, we asked participants to successively remember two sets of memory items (M1 and M2) in three test manners: a combined test (both M1 and M2 are probed simultaneously), a backward test (probe M2 first and M1 second), or a forward test (probe M1 first and M2 second). We found that the contralateral delay activity (CDA) amplitude after the onset of M2 only tracked M2 independently of M1 in the two separate tests (Experiments 1-3), and the accuracy of M1 was we…

research product

Adaptive control of a drilling system with unknown time-delay and disturbance

In this paper, we address adaptive predictor feedback design for a simplified drilling system in the presence of disturbance and time-delay. The main objective is to stabilize the bottomhole pressure at a critical depth at a desired set-point directly. The stabilization of the dynamic system and the asymptotic tracking are demonstrated by the proposed adaptive control, where the adaptation employs Lyapunov update law design with normalization. The proposed method is evaluated using a high fidelity drilling simulator and cases from a North Sea drilling operation are simulated. The results show that the proposed predictor controller is effective to stabilize the bottom hole pressure within th…

research product

Adaptive backstepping control of uncertain systems in the presence of unmodeled dynamics and time-varying delays

In this paper, the problem of adaptive backstepping control for uncertain systems in the presence of unmodeled dynamics and input time-varying delays is studied. Under some mild assumptions, a robust adaptive controller is designed such that the system is globally stabilized by using adaptive backstepping technique. Meanwhile, the transient system performance in L2 and norms of system output can be adjusted by choosing the design parameters. Finally, a simulation example is given to show the effectiveness of the results.

research product

Robust adaptive tracking control of uncertain systems with time-varying input delays

ABSTRACTIn this paper, the problem of robust adaptive tracking control of uncertain systems with time-varying input delays is studied. Under some mild assumptions, a robust adaptive controller is designed by using adaptive backstepping technique such that the system is globally stable and the system output can track a given reference signal. At the same time, a root mean square type of bound is obtained for the tracking error as a function of design parameters and thus can be adjusted. Finally, one numerical example is given to show the effectiveness of the proposed scheme.

research product

Adaptive Control of Quantized Uncertain Nonlinear Systems

Abstract This paper proposes a new adaptive controller for uncertain nonlinear systems in presence of quantized input signal and unknown external disturbance. A hysteresis quantizer is incorporated to reduce chattering phenomenon. By proposing a new transformation of the final control signal, using the sector-bound property of the quantizer and introducing a hyperbolic tangent function, the effects from input quantization and external disturbance are effectively compensated and the Lipschitz condition required for the nonlinear functions in the systems is removed. Besides showing global stability, tracking error performance is also established and can be adjusted by tuning certain design pa…

research product

Adaptive Backstepping Attitude Control of a Rigid Body with State Quantization

Author's accepted manuscript © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. In this paper, the attitude tracking control problem of a rigid body is investigated where the states are quantized. An adaptive backstepping based control scheme is developed and a new approach to stability analysis is developed by constructing a new compensation scheme for the effect…

research product

Muons in air showers at the Pierre Auger Observatory

We present the first hybrid measurement of the average muon number in air showers at ultrahigh energies, initiated by cosmic rays with zenith angles between 62° and 80°. The measurement is based on 174 hybrid events recorded simultaneously with the surface detector array and the fluorescence detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 1019eV shower with a zenith angle of 67°, which arrives at the surface detector array at an altitude of 1450 m above sea level, contains on average (2.68±0.04±0.48(sys))×107 muons with energies large…

research product

Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory

Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E ≥ 6×1019 eV by analyzing cosmic rays with energies above E ≥ 5×1018 eV arriving within an angular separation of approximately 15∘. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. The comparison of these measurements with …

research product

Distributed Adaptive Consensus Tracking Control of Uncertain High-order Nonlinear Systems under Directed Graph Condition

In this paper, we investigate the output consensus tracking problem for a class of high-order nonlinear systems subjected to unknown parameters and uncertain external disturbances. A novel backstepping based distributed adaptive control scheme is presented under the directed communication status. For the subsystems without direct access to time-varying desired trajectory, local estimators are introduced and the corresponding adaptive laws are designed in a totally distributed fashion. With the presented scheme, the assumption on linearly parameterized reference signal and the information exchange operation of subsystem inputs in the existing results are no longer needed. It is shown that al…

research product

Searches for anisotropies in the arrival directions of the highest energy cosmic rays detected by the Pierre Auger Observatory

We analyze the distribution of arrival directions of ultra-high energy cosmic rays recorded at the Pierre Auger Observatory in 10 years of operation. The data set, about three times larger than that used in earlier studies, includes arrival directions with zenith angles up to $80^\circ$, thus covering from $-90^\circ$ to $+45^\circ$ in declination. After updating the fraction of events correlating with the active galactic nuclei (AGNs) in the V��ron-Cetty and V��ron catalog, we subject the arrival directions of the data with energies in excess of 40 EeV to different tests for anisotropy. We search for localized excess fluxes and for self-clustering of event directions at angular scales up t…

research product

JUNO sensitivity to low energy atmospheric neutrino spectra

Atmospheric neutrinos are one of the most relevant natural neutrino sources that can be exploited to infer properties about cosmic rays and neutrino oscillations. The Jiangmen Underground Neutrino Observatory (JUNO) experiment, a 20 kton liquid scintillator detector with excellent energy resolution is currently under construction in China. JUNO will be able to detect several atmospheric neutrinos per day given the large volume. A study on the JUNO detection and reconstruction capabilities of atmospheric $\nu_e$ and $\nu_\mu$ fluxes is presented in this paper. In this study, a sample of atmospheric neutrino Monte Carlo events has been generated, starting from theoretical models, and then pro…

research product

Kick Detection and Influx Size Estimation during Offshore Drilling Operations using Deep Learning

An uncontrolled or unobserved influx or kick during drilling has the potential to induce a well blowout, one of the most harmful incidences during drilling both in regards to economic and environmental cost. Since kicks during drilling are serious risks, it is important to improve kick and loss detection performance and capabilities and to develop automatic flux detection methodology. There are clear patterns during a influx incident. However, due to complex processes and sparse instrumentation it is difficult to predict the behaviour of kicks or losses based on sensor data combined with physical models alone. Emerging technologies within Deep Learning are however quite adapt at picking up …

research product

Design and Implementation of Mechatronics Home Lab for Undergraduate Mechatronics Teaching

Author's accepted manuscript © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The field of mechatronics is a multidisciplinary field of engineering, where the combination of physical components and theory from several engineering fields is applied to build complex machines. Mechatronics education is an active learning process through practical laboratory exercis…

research product

Neutrino Physics with JUNO

The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plan…

research product

Adaptive Backstepping Control of Uncertain Nonlinear Systems With Input and State Quantization

Though it is common in network control systems that the sensor and control signals are transmitted via a common communication network, no result is available in investigating the stabilization problem for uncertain nonlinear systems with both input and state quantization. The issue is solved in this paper, by presenting an adaptive backstepping based control algorithm for the systems with sector bounded input and state quantizers. In addition to overcome the difficulty to proceed recursive design of virtual controls with quantized states, the relation between the input signal and error state need be well established to handle the effects due to quantization. It is shown that all closed-loop…

research product

Adaptive Quantized Control of Offshore Underactuated Cranes with Uncertainty

Author's accepted manuscript. © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Paid open access

research product

Adaptive control of uncertain nonlinear systems with quantized input signal

Abstract This paper proposes new adaptive controllers for uncertain nonlinear systems in the presence of input quantization. The control signal is quantized by a class of sector-bounded quantizers including the uniform quantizer, the logarithmic quantizer and the hysteresis quantizer. To clearly illustrate our approaches, we will start with a class of single-loop nonlinear systems and then extend the results to multi-loop interconnected nonlinear systems. By using backstepping technique, a new adaptive control algorithm is developed by constructing a new compensation method for the effects of the input quantization. A hyperbolic tangent function is introduced in the controller with a new tr…

research product

Adaptive predictor control for stabilizing pressure in a managed pressure drilling system under time-delay

Abstract In this paper, we address adaptive predictor feedback design for a simplified ODE drilling system in the presence of unknown parameter, disturbance and time-delay. The main objective is to stabilize the bottomhole pressure at a critical depth at a desired set-point directly. The time-delay in the transmission line of the drilling systems is considered. The stabilization of the dynamic system and the asymptotic tracking are demonstrated by the proposed predictor control, where the adaptation employs Lyapunov update law design with normalization. The proposed method is evaluated using a high fidelity drilling simulator and cases from a North Sea drilling operation are simulated. The …

research product

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1

Contains fulltext : 232759.pdf (Publisher’s version ) (Closed access) In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to…

research product

Muons in air showers at the Pierre Auger Observatory: Measurement of atmospheric production depth

The surface detector array of the Pierre Auger Observatory provides information about the longitudinal development of the muonic component of extensive air showers. Using the timing information from the flash analog-to-digital converter traces of surface detectors far from the shower core, it is possible to reconstruct a muon production depth distribution. We characterize the goodness of this reconstruction for zenith angles around 60° and different energies of the primary particle. From these distributions, we define Xμmax as the depth along the shower axis where the production of muons reaches maximum. We explore the potentiality of Xμmax as a useful observable to infer the mass compositi…

research product

Autophagy

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide…

research product

Adaptive Attitude Control of a Rigid Body with Input and Output Quantization

Author's accepted manuscript. © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. In this paper, the adaptive attitude tracking the problem of a rigid body is investigated where the input and output are transmitted via a network. To reduce the communication burden in a network, a quantizer is introduced in both uplink and downlink communication channels. An adaptiv…

research product

Bounds on the density of sources of ultra-high energy cosmic rays from the Pierre Auger Observatory

We derive lower bounds on the density of sources of ultra-high energy cosmic rays from the lack of significant clustering in the arrival directions of the highest energy events detected at the Pierre Auger Observatory. The density of uniformly distributed sources of equal intrinsic intensity was found to be larger than similar to (0.06 – 5) x 10(-4) Mpc(-3) at 95% CL, depending on the magnitude of the magnetic defections. Similar bounds, in the range (0.2 – 7) x 10(-4) Mpc(-3), were obtained for sources following the local matter distribution.

research product