0000000000147684

AUTHOR

Oliver G. Schmidt

0000-0001-9503-8367

Multiphoton photoemission electron microscopy using femtosecond laser radiation

Abstract The interaction of intense, pulsed laser radiation with surfaces results in non-linear optical effects that are responsible for emission of electrons even if the photon energies are below the work function. In the present study, photoelectrons have been excited by means of femtosecond laser pulses from a frequency doubled Ti:sapphire laser with a photon energy of 3.1 eV. The spatial distribution of the photo emitted electrons was imaged using a photoemission electron microscope. All samples exhibit centres of enhanced second or higher order photoemission yield, so called ‘hot spots’. These ‘hot spots’ were preferentially excited with s-polarised light. This behaviour may be explain…

research product

Recent progress in photoemission microscopy with emphasis on chemical and magnetic sensitivity

Abstract With the improved access to synchrotron radiation sources photoemission electron microscopy is developing into a versatile analytical tool in surface and materials science. The broad spectral range and the well-defined polarization characteristics of synchrotron light permit a unique combination of topographic, chemical, and even magnetic investigations down to a mesoscopic scale. The potentiality of photoemission electron microscopy is demonstrated by several experiments on surfaces and microstructured thin film systems, which have been carried out with a newly designed instrument. We discuss its different modes of operation with respect to both microscopy and spectroscopy. A comb…

research product

Time-of-flight photoelectron emission microscopy TOF-PEEM: first results

The time structure of the synchrotron radiation at BESSY (Berlin) is used to operate a photoemission electron microscope in a time-of-flight (TOF) mode. The electrons which are emitted from the sample surface with different energies are dispersed in a drift tube subsequent to the imaging optics. The screen of the microscope was replaced by a fast scintillator (tau = 1.4 ns) and the light is detected by an ultra fast gated intensified CCD camera (800 ps gate 1 MHz repetition rate). The resolving power in the energy domain is demonstrated and possible implications on the spatial resolution (chromatic correction) are discussed. Additionally, an improved contrast at very low emission energies i…

research product

Time-of-flight photoemission electron microscopy – a new way to chemical surface analysis

Abstract The time structure of synchrotron radiation at BESSY I (Berlin) was utilised to operate a photoemission electron microscope in the time-of-flight mode. The electrons that are emitted from the sample surface with different energies are dispersed in a drift tube subsequent to the imaging optics. Two ways of fast image detection have been explored, a fast gated intensified CCD camera (800 ps gate time) and a special counting electronics in combination with a 3D (x,y,t)-resolving delay line detector ( time resolution ps). The latter device has a lateral resolution of about 50 μm in the image plane being equivalent to 1000 pixels along the image diagonal. An energy resolution of 400 meV…

research product

Three-Dimensional Superconducting Nanohelices Grown by He+-Focused-Ion-Beam Direct Writing

Novel schemes based on the design of complex three-dimensional (3D) nanoscale architectures are required for the development of the next generation of advanced electronic components. He+ focused-ion-beam (FIB) microscopy in combination with a precursor gas allows one to fabricate 3D nanostructures with an extreme resolution and a considerably higher aspect ratio than FIB-based methods, such as Ga+ FIB-induced deposition, or other additive manufacturing technologies. In this work, we report the fabrication of 3D tungsten carbide nanohelices with on-demand geometries via controlling key deposition parameters. Our results show the smallest and highest-densely packed nanohelix ever fabricated s…

research product

The lateral variation of solid state reactions at surfaces studied by means of photoemission electron microscopy: formation of titanium silicides

The alloying and oxygen reduction at titanium silicon interfaces were studied by means of photoemission microscopy. The microscopic chemical composition of the sample surface was characterised by means of imaging X-ray absorption. The silicide formation was studied at clean and oxidised silicon substrates both covered with micron-sized titanium patterns.

research product

Characterisation of structured thin films made from complex materials by photoabsorption spectromicroscopy

Al3 and YBa2Cu3O7/PrBa2Cu3O7. To investigate devices built from these complex materials we applied element-sensitive photoemission electron microscopy (PEEM). Information about the chemical composition of the imaged sample can be obtained by PEEM via tuning the photon energy to X-ray absorption edges. To apply spectromicroscopy we acquired microscopic images using photon energies near and at the edges. Such images give the lateral distribution of a specific element. Microspectroscopy is performed by recording the intensity of the true secondary electrons in selected spots during a sweep of the photon energy. The main aim of our work was to observe oxygen-related defects and changes in the c…

research product

Orbital mapping of carbon thin films by XANES-spectromicroscopy

Abstract A laterally resolved micro-XANES study (X-ray absorption near edge structure) of amorphous carbon, hydrogen terminated CVD-diamond (100) and highly oriented pyrolytic graphite (HOPG) is presented. The results were obtained by means of a photoemission electron microscope. Using this technique the well-known spectral features of carbon in its different chemical states (sp 2 , sp 3 ) could be recorded. The sp 2 /sp 3 content of the films was extracted from the spectra. Images, taken at X-ray energies corresponding to maxima (π*, C–H*) of the unoccupied density of states in these spectra, map the lateral distribution of the different orbitals at the sample surface. This study revealed …

research product

Fast elemental mapping and magnetic imaging with high lateral resolution using a novel photoemission microscope

Abstract Using tunable soft X-ray synchrotron radiation and a new-generation photoemission electron microscope with integral sample stage and microarea selector, elemental images and local XANES spectra have been measured. Given the present conditions (PM3 at BESSY), the lateral resolution was in the range of 130 nm with the potential of considerable improvement with high-brilliance sources (a base resolution of 25 nm was obtained in threshold photoemission). Measurements at the oxygen K-edge demonstrate that differences in the local chemical environment of the emitter atom are clearly revealed and can thus be used as a fingerprint technique for its chemical state and geometrical surroundin…

research product

Microanalysis of the surfaces of natural iron-based minerals by means of synchrotron radiation based experimental techniques

We investigated the surfaces of natural iron-based minerals that are magnetite, hematite, goethite, pyrite, pyrrhotite, chalcopyrite, bornite and vivianite, using synchrotron radiation based techniques. Most iron chalkogenides are very suitable for photoemission microscopy studies due to their low resistivity, which prevents from surface charging. The local compositions were studied employing photoemission microscopy in combination with X-ray absorption spectroscopy. Imaging of the sample in the near-edge region of the absorption edges was used to visualise the spatial distributions of the chemical phases on the surface. Distributions of trace elements are imaged with high chemical and late…

research product

The spatial distribution of non-linear effects in multi-photon photoemission from metallic adsorbates on Si(1 1 1)

Multi-photon excitations from thin metallic films on silicon substrates have been observed utilising photoemission electron microscopy. The photoelectrons have been excited by means of high power femtosecond laser pulses with a photon energy below the work function threshold. The strong spatial variations of the non-linear effects became directly visible in electron emission from the adsorbed thin films. Centres of enhanced photoelectron yield, so-called hot spots, were observed on the surfaces of various samples. The multi-photon electron yield of the metallic films (permalloy and lead) depends strongly on the sample topography and the photon polarisation.

research product

Photoemission microscopy with microspot-XPS by use of undulator radiation and a high-throughput multilayer monochromator at BESSY

We present a new experiment for photoelectron microspectroscopy by use of undulator radiation, which has been set up at the beamline U2 at the Berlin electron storage ring BESSY 1. This approach employs a non-imaging simulated hemispherical electron energy analyser attached to an imaging photoemission electron microscope (FOCUS IS-PEEM) with integrated microarea selector. The photoemission microscope exhibits a lateral resolution of 25 nm (with 4.9 eV UV-excitation), while the resolution with incident synchrotron radiation in the soft X-ray range is about 100-120 nm (mainly due to chromatic aberrations). Photoemission microscopy as well as photoelectron microspectroscopy of selected areas o…

research product

Microspectroscopy and spectromicroscopy with photoemission electron microscopy using a new kind of imaging energy filter

The use of an imaging retarding field analyser attached to the FOCUS IS-PEEM is described. This kind of energy filter is a simple, powerful tool to obtain microspectra from areas of down to about 1 μm using (V)UV and X-ray excitation sources. First results of microspectroscopy measured by excitation with a laboratory as well as a synchrotron X-ray source are presented.

research product

Size dependence of magnetic domain patterns in exchange-biased Permalloy/NiO microstructures

The magnetic domain structure in Permalloy (Ni81Fe19) micropatterns (10?100??m) on NiO has been investigated by means of soft x-ray photoemission electron microscopy. The exchange anisotropy between the Ni81Fe19 patterns and the NiO layer results in the formation of complex domain structures which markedly differ from the simple Landau?Lifshitz configurations. The domain structures reflect the competition between the exchange anisotropy and the dipole?dipole interaction in a weakly coupled system. The observed domain structures change with the feature size, as the domain patterns lose complexity in the smaller structures.

research product