0000000000158445
AUTHOR
Nikolay Kuznetsov
Aircraft wing rock oscillations suppression by simple adaptive control
Abstract Roll angular motion of the modern aircraft operating in non-linear flight modes with a high angle of attack often demonstrates the limit cycle oscillations, which is commonly known as the wing rock phenomenon. Wing rock dynamics are represented by a substantially non-linear model, with parameters varying over a wide range, depending on the flight conditions (altitude, Mach number, payload mass, etc.) and angle of attack. A perspective approach of the wing rock suppression lies in the adaptation methods. In the present paper an application of the simple adaptive control approach with the Implicit Reference Model (IRM) is proposed and numerically studied. The IRM adaptive controller …
Numerical analysis of dynamical systems: unstable periodic orbits, hidden transient chaotic sets, hidden attractors, and finite-time Lyapunov dimension
In this article, on the example of the known low-order dynamical models, namely Lorenz, Rossler and Vallis systems, the difficulties of reliable numerical analysis of chaotic dynamical systems are discussed. For the Lorenz system, the problems of existence of hidden chaotic attractors and hidden transient chaotic sets and their numerical investigation are considered. The problems of the numerical characterization of a chaotic attractor by calculating finite-time time Lyapunov exponents and finite-time Lyapunov dimension along one trajectory are demonstrated using the example of computing unstable periodic orbits in the Rossler system. Using the example of the Vallis system describing the El…
Analytic Exact Upper Bound for the Lyapunov Dimension of the Shimizu–Morioka System
In applied investigations, the invariance of the Lyapunov dimension under a diffeomorphism is often used. However, in the case of irregular linearization, this fact was not strictly considered in the classical works. In the present work, the invariance of the Lyapunov dimension under diffeomorphism is demonstrated in the general case. This fact is used to obtain the analytic exact upper bound of the Lyapunov dimension of an attractor of the Shimizu–Morioka system. peerReviewed
Nonlinear Analysis of Phase-locked Loop-Based Circuits
Main problems of simulation and mathematical modeling of high-frequency signals for analog Costas loop and for analog phase-locked loop (PLL) are considered. Two approachers which allow to solve these problems are considered. In the first approach, nonlinear models of classical PLL and classical Costas loop are considered. In the second approach, engineering solutions for this problems are described. Nonlinear differential equations are derived for both approaches.
Hidden oscillations in SPICE simulation of two-phase Costas loop with non-linear VCO
Simulation is widely used for analysis of Costas loop based circuits. However it may be a non-trivial task, because incorrect choice of integration parameters may lead to qualitatively wrong conclusions. In this work the importance of choosing appropriate parameters and simulation model is discussed. It is shown that hidden oscillations may not be found by simulation in SPICE, however it can be predicted by analytical methods. peerReviewed
Simulation of PLL with impulse signals in MATLAB: Limitations, hidden oscillations, and pull-in range
The limitations of PLL simulation are demonstrated on an example of phase-locked loop with triangular phase detector characteristic. It is shown that simulation in MatLab may not reveal periodic oscillations (e.g. such as hidden oscillations) and thus may lead to unreliable conclusions on the width of pull-in range.
Hidden attractors on one path : Glukhovsky-Dolzhansky, Lorenz, and Rabinovich systems
In this report, by the numerical continuation method we visualize and connect hidden chaotic sets in the Glukhovsky-Dolzhansky, Lorenz and Rabinovich systems using a certain path in the parameter space of a Lorenz-like system.
Hidden Strange Nonchaotic Attractors
In this paper, it is found numerically that the previously found hidden chaotic attractors of the Rabinovich–Fabrikant system actually present the characteristics of strange nonchaotic attractors. For a range of the bifurcation parameter, the hidden attractor is manifestly fractal with aperiodic dynamics, and even the finite-time largest Lyapunov exponent, a measure of trajectory separation with nearby initial conditions, is negative. To verify these characteristics numerically, the finite-time Lyapunov exponents, ‘0-1’ test, power spectra density, and recurrence plot are used. Beside the considered hidden strange nonchaotic attractor, a self-excited chaotic attractor and a quasiperiodic at…
Hidden attractors in electromechanical systems with and without equilibria
This paper studies hidden oscillations appearing in electromechanical systems with and without equilibria. Three different systems with such effects are considered: translational oscillator-rotational actuator, drilling system actuated by a DC-motor and drilling system actuated by induction motor. We demonstrate that three systems experience hidden oscillations in sense of mathematical definition. While some of these hidden oscillations can be easily seen in natural physical experiments, the localization of others requires special efforts. peerReviewed
Nonlinear analysis of classical phase-locked loops in signal's phase space
Abstract Discovery of undesirable hidden oscillations, which cannot be found by the standard simulation, in phase-locked loop (PLL) showed the importance of consideration of nonlinear models and development of rigorous analytical methods for their analysis. In this paper for various signal waveforms, analytical computation of multiplier/mixer phase-detector characteristics is demonstrated, and nonlinear dynamical model of classical analog PLL is derived. Approaches to the rigorous nonlinear analysis of classical analog PLL are discussed.
Hidden attractors and multistability in a modified Chua’s circuit
The first hidden chaotic attractor was discovered in a dimensionless piecewise-linear Chua’s system with a special Chua’s diode. But designing such physical Chua’s circuit is a challenging task due to the distinct slopes of Chua’s diode. In this paper, a modified Chua’s circuit is implemented using a 5-segment piecewise-linear Chua’s diode. In particular, the coexisting phenomena of hidden attractors and three point attractors are noticed in the entire period-doubling bifurcation route. Attraction basins of different coexisting attractors are explored. It is demonstrated that the hidden attractors have very small basins of attraction not being connected with any fixed point. The PSIM circui…
Chaos and its Degradation-Promoting-Based Control in an Antithetic Integral Feedback Circuit
This letter deals with a novel variant of antithetic integral feedback controller (AIFC) motifs which can feature robust perfect adaptation, a pervasive (desired) ability in natural (synthetic) biomolecular circuits, when coupled with a wide class of process networks to be regulated. Using the separation of timescales in the proposed kind of AIFC, here we find a reducedorder controller that captures the governing slow part of the original solutions under suitable assumptions. Inspired by R(ossler systems, we then make use of such a simpler controller to show that the antithetic circuit can exhibit chaotic behaviors with strange attractors, where the bifurcation from a homeostatic state to c…
Coupled Discrete Fractional-Order Logistic Maps
This paper studies a system of coupled discrete fractional-order logistic maps, modeled by Caputo’s delta fractional difference, regarding its numerical integration and chaotic dynamics. Some interesting new dynamical properties and unusual phenomena from this coupled chaotic-map system are revealed. Moreover, the coexistence of attractors, a necessary ingredient of the existence of hidden attractors, is proved and analyzed.
Hidden attractors in dynamical models of phase-locked loop circuits : limitations of simulation in MATLAB and SPICE
During recent years it has been shown that hidden oscillations, whose basin of attraction does not overlap with small neighborhoods of equilibria, may significantly complicate simulation of dynamical models, lead to unreliable results and wrong conclusions, and cause serious damage in drilling systems, aircrafts control systems, electromechanical systems, and other applications. This article provides a survey of various phase-locked loop based circuits (used in satellite navigation systems, optical, and digital communication), where such difficulties take place in MATLAB and SPICE. Considered examples can be used for testing other phase-locked loop based circuits and simulation tools, and m…
Analytical-Numerical Localization of Hidden Attractor in Electrical Chua’s Circuit
Study of hidden oscillations and hidden chaotic attractors (basin of attraction of which does not contain neighborhoods of equilibria) requires the development of special analytical-numerical methods. Development and application of such methods for localization of hidden chaotic attractors in dynamical model of Chua’s circuit are demonstrated in this work.
IWCFTA2012 Keynote Speech I - Hidden attractors in dynamical systems: From hidden oscillation in Hilbert-Kolmogorov, Aizerman and Kalman problems to hidden chaotic attractor in Chua circuits
Summary form only given. In this survey an attempt is made to reflect the current trends in the synthesis of analytical and numerical methods to develop efficient analytical-numerical methods, based on harmonic linearization, applied bifurcation theory and numerical methods, for searching hidden oscillations.
Hidden oscillations in aircraft flight control system with input saturation
Abstract The presence of actuator saturation can dramatically degrade the system performance. Since the feedback loop is broken when the actuator saturates the unstable modes of the regulator may then drift to undesirable values. The consequences are that undesired nonlinear oscillations appear and that the settling time may unacceptably increase. Rigorous analysis of nonlinear aircraft models is a very difficult task, that is why a numerical simulation is often used as an analysis and design tool. In this paper difficulties of numerical analysis related to the existence of hidden oscillations in the aircraft control system are demonstrated.
On differences and similarities in the analysis of Lorenz, Chen, and Lu systems
Currently it is being actively discussed the question of the equivalence of various Lorenzlike systems and the possibility of universal consideration of their behavior (Algaba et al., 2013a,b, 2014b,c; Chen, 2013; Chen and Yang, 2013; Leonov, 2013a), in view of the possibility of reduction of such systems to the same form with the help of various transformations. In the present paper the differences and similarities in the analysis of the Lorenz, the Chen and the Lu systems are discussed. It is shown that the Chen and the Lu systems stimulate the development of new methods for the analysis of chaotic systems. Open problems are discussed. peerReviewed
Counterexamples to the Kalman Conjectures
In the paper counterexamples to the Kalman conjecture with smooth nonlinearity basing on the Fitts system, that are periodic solution or hidden chaotic attractor are presented. It is shown, that despite the fact that Kalman’s conjecture (as well as Aizerman’s) turned out to be incorrect in the case of n > 3, it had a huge impact on the theory of absolute stability, namely, the selection of the class of nonlinear systems whose stability can be studied with linear methods. peerReviewed
Computation of lock-in range for classic PLL with lead-lag filter and impulse signals
For a classic PLL with square waveform signals and lead-lag filter for all possible parameters lock-in range is computed and corresponding diagrams are given. peerReviewed
Nonlinear dynamical model of Costas loop and an approach to the analysis of its stability in the large
The analysis of the stability and numerical simulation of Costas loop circuits for highfrequency signals is a challenging task. The problem lies in the fact that it is necessary to simultaneously observe very fast time scale of the input signals and slow time scale of phase difference between the input signals. To overcome this difficult situation it is possible, following the approach presented in the classical works of Gardner and Viterbi, to construct a mathematical model of Costas loop, in which only slow time change of signal's phases and frequencies is considered. Such a construction, in turn, requires the computation of phase detector characteristic, depending on the waveforms of the…
Tutorial on dynamic analysis of the Costas loop
Abstract Costas loop is a classical phase-locked loop (PLL) based circuit for carrier recovery and signal demodulation. The PLL is an automatic control system that adjusts the phase of a local signal to match the phase of the input reference signal. This tutorial is devoted to the dynamic analysis of the Costas loop. In particular the acquisition process is analyzed. Acquisition is most conveniently described by a number of frequency and time parameters such as lock-in range, lock-in time, pull-in range, pull-in time, and hold-in range. While for the classical PLL equations all these parameters have been derived (many of them are approximations, some even crude approximations), this has not…
Hidden oscillations in stabilization system of flexible launcher with saturating actuators
Abstract In the paper the attitude stabilization system of the unstable flexible launcher with saturating input is considered. It is demonstrated that due to actuator saturation the system performance can significantly degrade. The analytical-numerical method is applied to demonstrate possibility of hidden oscillations and localize their attractor.
Approximating hidden chaotic attractors via parameter switching.
In this paper, the problem of approximating hidden chaotic attractors of a general class of nonlinear systems is investigated. The parameter switching (PS) algorithm is utilized, which switches the control parameter within a given set of values with the initial value problem numerically solved. The PS-generated attractor approximates the attractor obtained by averaging the control parameter with the switched values, which represents the hidden chaotic attractor. The hidden chaotic attractors of a generalized Lorenz system and the Rabinovich-Fabrikant system are simulated for illustration. In Refs. 1–3, it is proved that the attractors of a chaotic system, considered as the unique numerical …
A short survey on nonlinear models of the classic Costas loop: rigorous derivation and limitations of the classic analysis
Rigorous nonlinear analysis of the physical model of Costas loop --- a classic phase-locked loop (PLL) based circuit for carrier recovery, is a challenging task. Thus for its analysis, simplified mathematical models and numerical simulation are widely used. In this work a short survey on nonlinear models of the BPSK Costas loop, used for pre-design and post-design analysis, is presented. Their rigorous derivation and limitations of classic analysis are discussed. It is shown that the use of simplified mathematical models, and the application of non rigorous methods of analysis (e.g., simulation and linearization) may lead to wrong conclusions concerning the performance of the Costas loop ph…
Graphical Structure of Attraction Basins of Hidden Chaotic Attractors : The Rabinovich-Fabrikant System
The attraction basin of hidden attractors does not intersect with small neighborhoods of any equilibrium point. To the best of our knowledge this property has not been explored using realtime interactive three-dimensions graphics. Aided by advanced computer graphic analysis, in this paper, we explore this characteristic of a particular nonlinear system with very rich and unusual dynamics, the Rabinovich–Fabrikant system. It is shown that there exists a neighborhood of one of the unstable equilibria within which the initial conditions do not lead to the considered hidden chaotic attractor, but to one of the stable equilibria or are divergent. The trajectories starting from any neighborhood o…
Hidden oscillations in nonlinear control systems
Abstract The method of harmonic linearization, numerical methods, and the applied bifurcation theory together discover new opportunities for analysis of hidden oscillations of control systems. In the present paper new analytical-numerical algorithm for hidden oscillation localization is discussed. Counterexamples construction to Aizerman's conjecture and Kalman's conjecture on absolute stability of control systems are considered.
Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system
The Rabinovich system, describing the process of interaction between waves in plasma, is considered. It is shown that the Rabinovich system can exhibit a {hidden attractor} in the case of multistability as well as a classical {self-excited attractor}. The hidden attractor in this system can be localized by analytical-numerical methods based on the {continuation} and {perpetual points}. For numerical study of the attractors' dimension the concept of {finite-time Lyapunov dimension} is developed. A conjecture on the Lyapunov dimension of self-excited attractors and the notion of {exact Lyapunov dimension} are discussed. A comparative survey on the computation of the finite-time Lyapunov expon…
Convergence-based Analysis of Robustness to Delay in Anti-windup Loop of Aircraft Autopilot∗∗This work was supported by Russian Scientific Foundation (project 14-21-00041) and Saint-Petersburg State University.
Abstract The windup phenomenon is interpreted as a consequence of the convergent property absence for system with a saturation. This makes it possible to use the frequency-domain criterion for analysis of anti-windup augmentation in the case of stable and marginally stable plants. Based on this approach, robustness of the systems with respect to time delay in the anti-windup loop is examined and the approach for an optimal choice of the static anti-windup gain is proposed. An application of the convergence-based anti-windup control strategy to aircraft flight control for the case of time-delay in the anti-windup loop is described and studied by simulations.
D3 Dihedral Logistic Map of Fractional Order
In this paper, the D3 dihedral logistic map of fractional order is introduced. The map presents a dihedral symmetry D3. It is numerically shown that the construction and interpretation of the bifurcation diagram versus the fractional order requires special attention. The system stability is determined and the problem of hidden attractors is analyzed. Furthermore, analytical and numerical results show that the chaotic attractor of integer order, with D3 symmetries, looses its symmetry in the fractional-order variant.
Nonlinear Analysis of Charge-Pump Phase-Locked Loop : The Hold-In and Pull-In Ranges
In this paper a fairly complete mathematical model of CP-PLL, which reliable enough to serve as a tool for credible analysis of dynamical properties of these circuits, is studied. We refine relevant mathematical definitions of the hold-in and pull-in ranges related to the local and global stability. Stability analysis of the steady state for the charge-pump phase locked loop is non-trivial: straight-forward linearization of available CP-PLL models may lead to incorrect conclusions, because the system is not smooth near the steady state and may experience overload. In this work necessary details for local stability analysis are presented and the hold-in range is computed. An upper estimate o…
Prediction of Hidden Oscillations Existence in Nonlinear Dynamical Systems: Analytics and Simulation
From a computational point of view, in nonlinear dynamical systems, attractors can be regarded as self-excited and hidden attractors. Self-excited attractors can be localized numerically by a standard computational procedure, in which after a transient process a trajectory, starting from a point of unstable manifold in a neighborhood of equilibrium, reaches a state of oscillation, therefore one can easily identify it. In contrast, for a hidden attractor, a basin of attraction does not intersect neighborhoods of equilibria. While classical attractors are self-excited, attractors can therefore be obtained numerically by the standard computational procedure, for localization of hidden attracto…
Hidden attractors in Chua circuit: mathematical theory meets physical experiments
AbstractAfter the discovery in early 1960s by E. Lorenz and Y. Ueda of the first example of a chaotic attractor in numerical simulation of a real physical process, a new scientific direction of analysis of chaotic behavior in dynamical systems arose. Despite the key role of this first discovery, later on a number of works have appeared supposing that chaotic attractors of the considered dynamical models are rather artificial, computer-induced objects, i.e., they are generated not due to the physical nature of the process, but only by errors arising from the application of approximate numerical methods and finite-precision computations. Further justification for the possibility of a real exi…
On Leonov’s method for computing the linearization of the transverse dynamics and analysis of Zhukovsky stability
The paper focuses on a comprehensive discussion of G. A. Leonov’s results aimed at analyzing the Zhukovsky stability of a solution to a nonlinear autonomous system by linearization. The main contribution is deriving the linear system that approximates dynamics of the original nonlinear systems transverse to the vector-flow on a nominal behavior. As illustrated, such a linear comparison system becomes instrumental in the analysis and re-design of classical feedback controllers developed previously for the stabilization of motions of nonlinear mechanical systems.
Hidden Oscillations In The Closed-Loop Aircraft-Pilot System And Their Prevention
The paper is devoted to studying and prevention of a special kind of oscillations-the Pilot Involved Oscillations (PIOs) which may appear in man-machine closed-loop dynamical systems. The PIO of categories II and III are defined as essentially non-linear unintended steady fluctuations of the piloted aircraft, generated due to pilot efforts to control the aircraft with a high precision. The main non-linear factor leading to the PIO is, generally, rate limitations of the aircraft control surfaces, resulting in a delay in the response of the aircraft to pilot commands. In many cases, these oscillations indicate presence of hidden, rather than self-excited attractors in the aircraft-pilot state…
Attractor as a convex combination of a set of attractors
This paper presents an effective approach to constructing numerical attractors of a general class of continuous homogenous dynamical systems: decomposing an attractor as a convex combination of a set of other existing attractors. For this purpose, the convergent Parameter Switching (PS) numerical method is used to integrate the underlying dynamical system. The method is built on a convergent fixed step-size numerical method for ODEs. The paper shows that the PS algorithm, incorporating two binary operations, can be used to approximate any numerical attractor via a convex combination of some existing attractors. Several examples are presented to show the effectiveness of the proposed method.…
Analytical-numerical methods for investigation of hidden oscillations in nonlinear control systems
The method of harmonic linearization, numerical methods, and the applied bifurcation the- ory together discover new opportunities for analysis of oscillations of control systems. In the present survey analytical-numerical algorithms for hidden oscillation localization are discussed. Examples of hidden attrac- tor localization in Chua's circuit and counterexamples construction to Aizerman's conjecture and Kalman's conjecture are considered.
Localization of hidden Chua's attractors
Abstract The classical attractors of Lorenz, Rossler, Chua, Chen, and other widely-known attractors are those excited from unstable equilibria. From computational point of view this allows one to use numerical method, in which after transient process a trajectory, started from a point of unstable manifold in the neighborhood of equilibrium, reaches an attractor and identifies it. However there are attractors of another type: hidden attractors, a basin of attraction of which does not contain neighborhoods of equilibria . In the present Letter for localization of hidden attractors of Chuaʼs circuit it is suggested to use a special analytical–numerical algorithm.
Nonlinear dynamical model of Costas loop and an approach to the analysis of its stability in the large
The analysis of the stability and numerical simulation of Costas loop circuits for high-frequency signals is a challenging task. The problem lies in the fact that it is necessary to simultaneously observe very fast time scale of the input signals and slow time scale of phase difference between the input signals. To overcome this difficult situation it is possible, following the approach presented in the classical works of Gardner and Viterbi, to construct a mathematical model of Costas loop, in which only slow time change of signal?s phases and frequencies is considered. Such a construction, in turn, requires the computation of phase detector characteristic, depending on the waveforms of th…
Hold-in, Pull-in and Lock-in Ranges for Phase-locked Loop with Tangential Characteristic of the Phase Detector
In the present paper the phase-locked loop (PLL), an electric circuit widely used in telecommunications and computer architectures is considered. A new modification of the PLL with tangential phase detector characteristic and active proportionally-integrating (PI) filter is introduced. Hold-in, pull-in and lock-in ranges for given circuit are studied rigorously. It is shown that lock-in range of the new PLL model is infinite, compared to the finite lock-in range of the classical PLL. peerReviewed
Looking More Closely at the Rabinovich-Fabrikant System
Recently, we looked more closely into the Rabinovich–Fabrikant system, after a decade of study [Danca & Chen, 2004], discovering some new characteristics such as cycling chaos, transient chaos, chaotic hidden attractors and a new kind of saddle-like attractor. In addition to extensive and accurate numerical analysis, on the assumptive existence of heteroclinic orbits, we provide a few of their approximations.
Hidden attractors in dynamical systems
Complex dynamical systems, ranging from the climate, ecosystems to financial markets and engineering applications typically have many coexisting attractors. This property of the system is called multistability. The final state, i.e., the attractor on which the multistable system evolves strongly depends on the initial conditions. Additionally, such systems are very sensitive towards noise and system parameters so a sudden shift to a contrasting regime may occur. To understand the dynamics of these systems one has to identify all possible attractors and their basins of attraction. Recently, it has been shown that multistability is connected with the occurrence of unpredictable attractors whi…
Parameter Switching Synchronization
In this paper we show how the Parameter Switching algorithm, utilized initially to approximate attractors of a general class of nonlinear dynamical systems, can be utilized also as a synchronization-induced method. Two illustrative examples are considered: the Lorenz system and the Rabinovich-Fabrikant system.
Numerical analysis of dynamical systems : unstable periodic orbits, hidden transient chaotic sets, hidden attractors, and finite-time Lyapunov dimension
In this article, on the example of the known low-order dynamical models, namely Lorenz, Rössler and Vallis systems, the difficulties of reliable numerical analysis of chaotic dynamical systems are discussed. For the Lorenz system, the problems of existence of hidden chaotic attractors and hidden transient chaotic sets and their numerical investigation are considered. The problems of the numerical characterization of a chaotic attractor by calculating finite-time time Lyapunov exponents and finite-time Lyapunov dimension along one trajectory are demonstrated using the example of computing unstable periodic orbits in the Rössler system. Using the example of the Vallis system describing the El…
Synchronization of hidden chaotic attractors on the example of radiophysical oscillators
In the present paper we consider the problem of synchronization of hidden and self-excited attractors in the context of application to a system of secure communication. The system of two coupled Chua models was studied. Complete synchronization was observed as for self-excited, as hidden attractors. Beside it for hidden attractors some special type of dynamic was revealed.
Unusual dynamics and hidden attractors of the Rabinovich-Fabrikant system
This paper presents some unusual dynamics of the Rabinovich-Fabrikant system, such as "virtual" saddles, "tornado"-like stable cycles and hidden chaotic attractors. Due to the strong nonlinearity and high complexity, the results are obtained numerically with some insightful descriptions and discussions.
Dynamics of the Shapovalov mid-size firm model
Forecasting and analyses of the dynamics of financial and economic processes such as deviations of macroeconomic aggregates (GDP, unemployment, and inflation) from their long-term trends, asset markets volatility, etc., are challenging because of the complexity of these processes. Important related research questions include, first, how to determine the qualitative properties of the dynamics of these processes, namely, whether the process is stable, unstable, chaotic (deterministic), or stochastic; and second, how best to estimate its quantitative indicators including dimension, entropy, and correlation characteristics. These questions can be studied both empirically and theoretically. In t…
Impact of chaotic dynamics on the performance of metaheuristic optimization algorithms : An experimental analysis
Random mechanisms including mutations are an internal part of evolutionary algorithms, which are based on the fundamental ideas of Darwin's theory of evolution as well as Mendel's theory of genetic heritage. In this paper, we debate whether pseudo-random processes are needed for evolutionary algorithms or whether deterministic chaos, which is not a random process, can be suitably used instead. Specifically, we compare the performance of 10 evolutionary algorithms driven by chaotic dynamics and pseudo-random number generators using chaotic processes as a comparative study. In this study, the logistic equation is employed for generating periodical sequences of different lengths, which are use…
On differences and similarities in the analysis of Lorenz, Chen, and Lu systems
Currently it is being actively discussed the question of the equivalence of various Lorenz-like systems and the possibility of universal consideration of their behavior (Algaba et al., 2013a,b, 2014b,c; Chen, 2013; Chen and Yang, 2013; Leonov, 2013a), in view of the possibility of reduction of such systems to the same form with the help of various transformations. In the present paper the differences and similarities in the analysis of the Lorenz, the Chen and the Lu systems are discussed. It is shown that the Chen and the Lu systems stimulate the development of new methods for the analysis of chaotic systems. Open problems are discussed.
Scenario of the Birth of Hidden Attractors in the Chua Circuit
Recently it was shown that in the dynamical model of Chua circuit both the classical selfexcited and hidden chaotic attractors can be found. In this paper the dynamics of the Chua circuit is revisited. The scenario of the chaotic dynamics development and the birth of selfexcited and hidden attractors is studied. It is shown a pitchfork bifurcation in which a pair of symmetric attractors coexists and merges into one symmetric attractor through an attractormerging bifurcation and a splitting of a single attractor into two attractors. The scenario relating the subcritical Hopf bifurcation near equilibrium points and the birth of hidden attractors is discussed.
Harmonic Balance Method and Stability of Discontinuous Systems
The development of the theory of discontinuous dynamical systems and differential inclusions was not only due to research in the field of abstract mathematics but also a result of studies of particular problems in mechanics. One of first methods, used for the analysis of dynamics in discontinuous mechanical systems, was the harmonic balance method developed in the thirties of the 20th century. In our work the results of analysis obtained by the method of harmonic balance, which is an approximate method, are compared with the results obtained by rigorous mathematical methods and numerical simulation. peerReviewed
UAV control with switched GNSS-Estimator navigation system∗∗This work was supported by Russian Scientific Foundation (project 14-21-00041) and Saint-Petersburg State University.
Abstract In the paper the switched GNSS-Estimator navigation system, recently proposed by the authors, is described and numerically studied in the framework of evaluation of the overall UAV control system accuracy.
Analysis of oscillations in discontinuous Lurie systems via LPRS method
We discuss advantages and limitations of the harmonic balance method and the locus of a perturbed relay system (LPRS) method in the problem of finding periodic oscillations. In this paper we present the results of using harmonic balance method and LPRS method while investigating a 3rd order dynamic system in Lurie form. In this system a symmetric periodic oscillation is found, while other two asymmetric periodic motions are not found using both methods.
Nonlinear Analysis of Phase-Locked Loop (PLL): Global Stability Analysis, Hidden Oscillations and Simulation Problems
In the middle of last century the problem of analyzing hidden oscillations arose in automatic control. In 1956 M. Kapranov considered a two-dimensional dynamical model of phase locked-loop (PLL) and investigated its qualitative behavior. In these investigations Kapranov assumed that oscillations in PLL systems can be self-excited oscillations only. However, in 1961, N. Gubar’ revealed a gap in Kapranov’s work and showed analytically the possibility of the existence of another type of oscillations, called later by the authors hidden oscillations, in a phase-locked loop model: from a computational point of view the system considered was globally stable (all the trajectories tend to equilibria…
Lyapunov dimension formula for the global attractor of the Lorenz system
The exact Lyapunov dimension formula for the Lorenz system for a positive measure set of parameters, including classical values, was analytically obtained first by G.A. Leonov in 2002. Leonov used the construction technique of special Lyapunov-type functions, which was developed by him in 1991 year. Later it was shown that the consideration of larger class of Lyapunov-type functions permits proving the validity of this formula for all parameters, of the system, such that all the equilibria of the system are hyperbolically unstable. In the present work it is proved the validity of the formula for Lyapunov dimension for a wider variety of parameters values including all parameters, which sati…
On the Gardner Problem for the Phase-Locked Loops
This report shows the possibilities of solving the Gardner problem of determining the lock-in range for multidimensional phase-locked loops systems. The development of analogs of classical stability criteria for the cylindrical phase space made it possible to obtain analytical estimates of the lock-in range for third-order system.
Nonlinear analysis of phase-locked loop
Abstract New method for the rigorous mathematical nonlinear analysis of PLL systems is suggested. This method allows to calculate the characteristics of phase detectors and carry out a rigorous mathematical analysis of transient process and stability of the system.
New adaptive synchronization algorithm for a general class of complex hyperchaotic systems with unknown parameters and its application to secure communication
Abstract The aim of this report is to investigate an adaptive synchronization (AS) for the general class of complex hyperchaotic models with unknown parameters and a new algorithm to achieve this type of synchronization is proposed. Owing to the intricacy behavior of hyperchaotic models that could be effective in secure communications, the special control based on adaptive laws of parameters is constructed analytically, and the corresponding simulated results are performed to validate the algorithm’s accuracy. The complex Rabinovich model is utilized as an enticing example to examine the proposed synchronization technique. A strategy for secure communication improving the overall cryptosyst…
Hidden Oscillations In The Closed-Loop Aircraft-Pilot System And Their Prevention* *This work was supported by Russian Science Foundation (project 14-21-00041) and Saint-Petersburg State University.
Abstract The paper is devoted to studying and prevention of a special kind of oscillations-the Pilot Involved Oscillations (PIOs) which may appear in man-machine closed-loop dynamical systems. The PIO of categories II and III are defined as essentially non-linear unintended steady fluctuations of the piloted aircraft, generated due to pilot efforts to control the aircraft with a high precision. The main non-linear factor leading to the PIO is, generally, rate limitations of the aircraft control surfaces, resulting in a delay in the response of the aircraft to pilot commands. In many cases, these oscillations indicate presence of hidden, rather than self-excited attractors in the aircraft-pi…
Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations
Nowadays the Lyapunov exponents and Lyapunov dimension have become so widespread and common that they are often used without references to the rigorous definitions or pioneering works. It may lead to a confusion since there are at least two well-known definitions, which are used in computations: the upper bounds of the exponential growth rate of the norms of linearized system solutions (Lyapunov characteristic exponents, LCEs) and the upper bounds of the exponential growth rate of the singular values of the fundamental matrix of linearized system (Lyapunov exponents, LEs). In this work the relation between Lyapunov exponents and Lyapunov characteristic exponents is discussed. The invariance…
Charge pump phase-locked loop with phase-frequency detector: closed form mathematical model
Charge pump phase-locked loop with phase-frequency detector (CP-PLL) is an electrical circuit, widely used in digital systems for frequency synthesis and synchronization of the clock signals. In this paper a non-linear second-order model of CP-PLL is rigorously derived. The obtained model obviates the shortcomings of previously known second-order models of CP-PLL. Pull-in time is estimated for the obtained second-order CP-PLL.
Stability and Chaotic Attractors of Memristor-Based Circuit with a Line of Equilibria
This report investigates the stability problem of memristive systems with a line of equilibria on the example of SBT memristor-based Wien-bridge circuit. For the considered system, conditions of local and global partial stability are obtained, and chaotic dynamics is studied. peerReviewed
The Lyapunov dimension formula for the global attractor of the Lorenz system
The exact Lyapunov dimension formula for the Lorenz system has been analytically obtained first due to G.A.Leonov in 2002 under certain restrictions on parameters, permitting classical values. He used the construction technique of special Lyapunov-type functions developed by him in 1991 year. Later it was shown that the consideration of larger class of Lyapunov-type functions permits proving the validity of this formula for all parameters of the system such that all the equilibria of the system are hyperbolically unstable. In the present work it is proved the validity of the formula for Lyapunov dimension for a wider variety of parameters values, which include all parameters satisfying the …
Computation of the lock-in ranges of phase-locked loops with PI filter
In the present work the lock-in range of PLL-based circuits with proportionallyintegrating filter and sinusoidal phase-detector characteristics are studied. Considered circuits have sinusoidal phase detector characteristics. Analytical approach based on the methods of phase plane analysis is applied to estimate the lock-in ranges of the circuits under consideration. Obtained analytical results are compared with simulation results. peerReviewed
Rich dynamics and anticontrol of extinction in a prey-predator system
This paper reveals some new and rich dynamics of a two-dimensional prey-predator system and to anticontrol the extinction of one of the species. For a particular value of the bifurcation parameter, one of the system variable dynamics is going to extinct, while another remains chaotic. To prevent the extinction, a simple anticontrol algorithm is applied so that the system orbits can escape from the vanishing trap. As the bifurcation parameter increases, the system presents quasiperiodic, stable, chaotic and also hyperchaotic orbits. Some of the chaotic attractors are Kaplan-Yorke type, in the sense that the sum of its Lyapunov exponents is positive. Also, atypically for undriven discrete sys…
On asymmetric periodic solutions in relay feedback systems
Abstract Asymmetric self-excited periodic motions or periodic solutions which are produced by relay feedback systems that have symmetric characteristics are studied in the paper. Two different mechanisms of producing an asymmetric oscillation by a system with symmetric properties are noted and analyzed by the locus of a perturbed relay system (LPRS) method. Bifurcation between the ability to excite symmetric and asymmetric oscillation with variation of system parameters is analyzed. An algorithm of finding asymmetric solutions is proposed.
Study of irregular dynamics in an economic model: attractor localization and Lyapunov exponents
Cyclicity and instability inherent in the economy can manifest themselves in irregular fluctuations, including chaotic ones, which significantly reduces the accuracy of forecasting the dynamics of the economic system in the long run. We focus on an approach, associated with the identification of a deterministic endogenous mechanism of irregular fluctuations in the economy. Using of a mid-size firm model as an example, we demonstrate the use of effective analytical and numerical procedures for calculating the quantitative characteristics of its irregular limiting dynamics based on Lyapunov exponents, such as dimension and entropy. We use an analytical approach for localization of a global at…
Complex dynamics, hidden attractors and continuous approximation of a fractional-order hyperchaotic PWC system
In this paper, a continuous approximation to studying a class of PWC systems of fractionalorder is presented. Some known results of set-valued analysis and differential inclusions are utilized. The example of a hyperchaotic PWC system of fractional order is analyzed. It is found that without equilibria, the system has hidden attractors.
Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity
Abstract In this paper a Lorenz-like system, describing convective fluid motion in rotating cavity, is considered. It is shown numerically that this system, like the classical Lorenz system, possesses a homoclinic trajectory and a chaotic self-excited attractor. However, for the considered system, unlike the classical Lorenz system, along with self-excited attractor a hidden attractor can be localized. Analytical-numerical localization of hidden attractor is demonstrated.
Analytical methods for computation of phase-detector characteristics and PLL design
An effective analytical methods for computation of phase detector characteristics are suggested. For high-frequency oscillators new classes of such characteristics are described. Approaches to a rigorous nonlinear analysis of PLL are discussed.
Combining Academic Education With Soft Skills Development: Some Common Aspects of Educational Preparation of IT Professionals and Schoolteachers
In the modern educational process aimed on preparing professionals in the applied areas, it’s crucial, along with purely professional training, to provide students both with solid theoretical background and help them to develop “soft skills” that will facilitate their smooth and efficient adaptation to the industry realities when they start their professional careers. In this paper we consider practical cases of acquiring soft skills through intensive field experience in two areas related to mathematical education.
Drilling Systems: Stability and Hidden Oscillations
There are many mathematical models of drilling systems Despite, huge efforts in constructing models that would allow for precise analysis, drilling systems, still experience breakdowns. Due to complexity of systems, engineers mostly use numerical analysis, which may lead to unreliable results. Nowadays, advances in computer engineering allow for simulations of complex dynamical systems in order to obtain information on the behavior of their trajectories. However, this simple approach based on construction of trajectories using numerical integration of differential equations describing dynamical systems turned out to be quite limited for investigation of stability and oscillations of these s…
Hidden Oscillations in Electromechanical Systems
In this paper an electromechanical system with two different types of motor is considered. It is shown that during the spin-up, the system with DC motor may experience unwanted vibration—the Sommerfeld effect. This is a well-known effect when the motor of electromechanical system gets stuck near the resonance zone instead of reaching its nominal power. The absence of this effect is demonstrated in the system with synchronous motor. Nowadays, there are many works devoted to the study of this effect in various systems. Here we discuss the Sommerfeld effect from the point of view of localization of the so-called hidden oscillations.
Harmonic Balance Method and Stability of Discontinuous Systems
The development of the theory of discontinuous dynamical systems and differential inclusions was not only due to research in the field of abstract mathematics but also a result of studies of particular problems in mechanics. One of the first methods, used for the analysis of dynamics in discontinuous mechanical systems, was the harmonic balance method developed in the thirties of the twentieth century. In our work, the results of analysis obtained by the method of harmonic balance, which is an approximate method, are compared with the results obtained by rigorous mathematical methods and numerical simulation.
Theory of Differential Inclusions and Its Application in Mechanics
The following chapter deals with systems of differential equations with discontinuous right-hand sides. The key question is how to define the solutions of such systems. The most adequate approach is to treat discontinuous systems as systems with multivalued right-hand sides (differential inclusions). In this work, three well-known definitions of solution of discontinuous system are considered. We will demonstrate the difference between these definitions and their application to different mechanical problems. Mathematical models of drilling systems with discontinuous friction torque characteristics are considered. Here, opposite to classical Coulomb symmetric friction law, the friction torqu…