0000000000161626

AUTHOR

R. Zabels

Nanoindentation and Raman Spectroscopic Study of Graphite Irradiated with Swift238U Ions

Modifications of the structure and mechanical properties of the isotropic fine-grained graphite R6650 irradiated with 2.6 GeV 238U ions at fluences up to 1013 ions/cm2 at room temperature are studied. A strong ion-induced increase of Young's modulus and hardness is observed that points to the formation of a hard form of carbon. Raman spectra ascertain the disordering of graphite and its transformation to glassy carbon.

research product

Deformation behavior and interfacial sliding in carbon/copper nanocomposite films deposited by high power DC magnetron sputtering

Abstract Amorphous carbon–copper nanocomposite films with a carbon content from 7 to 40 at.% have been deposited onto steel, silicon and glass substrates using a high power (> 60 W/cm 2 ) and high-rate DC magnetron sputtering technique. XRD, Raman spectroscopy and TEM results confirm that the deposited films consist of copper nanograins (size

research product

The influence of Cr and Ni doping on the microstructure of oxygen containing diamond-like carbon films

Abstract Non-hydrogenated diamond-like carbon (DLC) films doped with metals and oxygen were deposited by direct current magnetron sputtering. The influence of chromium and nickel on the surface morphology, elemental composition, bonding structure, adhesion force, optical transmittance and nanohardness of the films was characterized by atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDX), multi-wavelength Raman spectroscopy, UV–VIS–NIR spectrophotometry and nanoindenter. The surface roughness was reduced with the addition of Cr (7.4 at. %) or Ni (8.9 at. %) into DLC films. The EDX measurements indicated that the addition of Cr increased the oxygen content by ~37%, while …

research product

Hardness and modulus of elasticity of atomic layer deposited Al2O3-ZrO2 nanolaminates and mixtures

This work was funded by the European Regional Development Fund project TK134 “Emerging orders in quantum and nanomaterials”, Estonian Research Agency project PRG4 “Emerging novel phases in strongly frustrated quantum magnets”.

research product

Formation of dislocations in LiF irradiated with 3He and 4He ions

Influence of the irradiation with 13.5 MeV 3He and 5 MeV 4He ions on the micro-structure and mechanical properties of LiF single crystals was studied. The depth profiles of nanoindentation, dislocation mobility, selective chemical etching and photoluminescence served for the characterization of damage. Strong ion-induced increase of hardness and decrease in dislocation mobility at the stage of track overlapping due to accumulation of dislocations and other extended defects was observed. At high fluences (1015 ions/cm2) the hardness saturates at about 3.5 GPa (twofold increase in comparison to a virgin crystal) thus confirming high efficiency of light projectiles in modifications of structur…

research product

Modification of the Structure and Nano-Mechanical Properties of LiF Crystals Under Irradiation with Swift Heavy Ions

The modifications of the structure and hardness of LiF crystals under high-fluence irradiation with MeV- and GeV-energy Au ions have been studied using nanoindentation and atomic force microscopy. The formation of ion-induced dislocations and bulk nanostructures consisting of grains with nanoscale dimensions (50 nm - 100 nm) has been observed. The structural modifications are accompanied by a strong ion-induced hardening which is related to dislocation impeding by assemblies of defect aggregates, dislocation loops of vacancy and interstitial types and grain boundaries. For MeV ions, the modifications are localized in a thin surface layer (few mm) where much higher density of deposited energ…

research product

Swift heavy ion induced modifications of luminescence and mechanical properties of polypropylene/ZnO nanocomposites

Abstract The effect of irradiation with 150 MeV Kr ions at fluencies 10 11 and 10 12  ions/cm 2 on luminescence of PP/ZnO nanocomposites and PP matrix has been studied. In unirradiated composite the luminescence is comparatively weak and is contributed mainly by the excitonic luminescence of ZnO. Irradiation of nanocomposite and PP matrix leads to a strong increase of luminescence intensity in a wide spectral range of 360–600 nm. It follows from the obtained results that the enhancement of luminescence originates mainly from the broken bonds in PP matrix. Ion-induced scission of polymer bonds and fragmentation of polymer chains is deduced also from the nanoindentation tests which show a rem…

research product

Mechanical properties of sol–gel derived SiO2 nanotubes

The mechanical properties of thick-walled SiO2 nanotubes (NTs) prepared by a sol–gel method while using Ag nanowires (NWs) as templates were measured by using different methods. In situ scanning electron microscopy (SEM) cantilever beam bending tests were carried out by using a nanomanipulator equipped with a force sensor in order to investigate plasticity and flexural response of NTs. Nanoindentation and three point bending tests of NTs were performed by atomic force microscopy (AFM) under ambient conditions. Half-suspended and three-point bending tests were processed in the framework of linear elasticity theory. Finite element method simulations were used to extract Young’s modulus values…

research product

Color centers and nanodefects in LiF crystals irradiated with 150MeV Kr ions

Abstract The modifications of structure, optical and nano-mechanical properties of LiF crystals after irradiation with 150-MeV Kr +14 ions at a fluence of 6 × 10 12  ions cm −2 have been studied using optical absorption spectroscopy, scanning electron and atomic force microscopy, and nanoindentation. Optical spectroscopy shows the saturation of F centers and a comparatively high number of F n centers. AFM and SEM imaging reveals a nanostructured region with columnar nanocrystallites (size 30–90 nm). Nanostructuring occurs in depths up to 10 μm, where the ion energy loss surpasses a critical threshold of about 10 keV/nm. At a lower energy loss a zone enriched with dislocations is observed. S…

research product

Changes in Amorphous Hydrogenated Carbon Films by Ultraviolet and Infrared Laser Irradiation

Amorphous hydrogenated carbon lms were formed on the Si (100) wafers by a direct-ion beam deposition method from pure acetylene and acetylene hydrogen gas mixtures. The lms were irradiated with a nanosecond Nd:YAG laser working at the rst harmonics (λ1 = 1064 nm), the fourth harmonics (λ4 = 266 nm) or with a Nd:YVO4 laser working at the third harmonic (λ3 = 355 nm). The lms were studied by the Raman scattering, micro-Fourier transform infrared and Fourier transform infrared spectroscopies, null-ellipsometry, optical and scanning electron microscope, and Vickers hardness method. Irradiation by the wavelength λ1 = 1064 nm leads to graphitization and formation of the silicon carbide, because o…

research product

Nanoindentation and photoluminescence characterization of ZnO thin films and single crystals

In this work an optical and micromechanical properties of ZnO films deposited on glass by simple method based on the mechanoactivated oxidation have been investigated and compared with those of bulk ZnO single crystal and commercial ZnO films. Results showed that investigated ZnO films have stable high adhesion with glass and can form grained structure with hardness 8–10 GPa or whiskers nanostructure with high hardness 18–20 GPa. Young’s modulus is in range from 80 to 120 GPa. Optical properties of obtained ZnO films with whiskers structure are typical for transparent high quality ZnO single crystal. These coatings also exhibit a photo-electric response which reflects on the change in resis…

research product

Plasmonic photoluminescence enhancement by silver nanowires

Strong enhancement of photoluminescence is demonstrated for CdS nanocrystals and ruthenium-based dye (N719) due to localized surface plasmon resonance of silver nanowires placed on silver film. Alternative reasons for photoluminescence modulation such as mirror effect and uneven coating by dye or nanocrystals due to geometrical factors are discussed. An artifact such as carbon contamination at the surface of silver nanowires at high laser power is demonstrated and taken into consideration. Silver nanowire on silver film is proved to be an effective system for photoluminescence enhancement by localized surface plasmon resonance.

research product

The role of nanopowder particle surfaces and grain boundary defects in the sintering of ZnO ceramics

This work focuses on the characteristics of sintered ZnO ceramics and explores the role of source powder morphology in the process of sintering. The source ZnO powders had grained (d = 100 nm) and tetrapod-like (d=50-100 nm, l=3−10 μm) morphologies, they were compacted and sintered at 1200° C. The results have shown that ceramics sintered from the grained powder exhibit relatively high (8%) porosity at grain boundaries and as cavities within grains, which facilitates brittleness. Photoluminescence spectra for these ceramics besides a narrow exitonic band contain a broad "green" luminescence band attributed to defect states. The second ceramics sintered from the tetrapod-like powder has lowe…

research product

Shear banding mechanism of plastic deformation in LiF irradiated with swift heavy ions

The effect of ion irradiation on the behavior of plastic deformation at micro- and nanoindentation on (001) face of LiF has been investigated. The irradiation was performed using heavy ions (U, Au, Ti and S) with energy in the range from 3 MeV to 2 GeV at fluences up to 5x1013 ions/cm2. In non-irradiated LiF, the indentation produces dislocation gliding on the {110} planes along the and directions. At high fluence irradiation, the resource of the dislocation slip along the preferable directions becomes exhausted due to immobilization of dislocations by radiation defects and their aggregates. The present study demonstrates the change of the mechanism of plastic deformation from homogenous di…

research product

Depth profiles of aggregate centers and nanodefects in LiF crystals irradiated with 34 MeV 84Kr, 56 MeV 40Ar and 12 MeV 12C ions

I. Manika, J. Maniks and R. Zabels acknowledge the national project IMIS2. A. Dauletbekova, A. Akilbekov, M. Zdorovets and A. Seitbayev acknowledge the GF AP05134257of Ministry of Education and Science the Republic of Kazakhstan.

research product

Formation of dislocations and hardening of LiF under high-dose irradiation with 5–21 MeV 12C ions

R. Zabels, I. Manika, J. Maniks, and R.Grants acknowledge the national project IMIS2, and A. Dauletbekova, M. Baizhumanov, and M. Zdorovets the Ministry of Education and Science of the Republic of Kazakhstan for the financial support.

research product

MeV-energy Xe ion-induced damage in LiF: The contribution of electronic and nuclear stopping mechanisms

The contribution of electronic and nuclear damage mechanisms in the modification of structure and micromechanical properties of LiF crystals irradiated with 52, 224, and 450 MeV Xe ions at fluences 1010–1014 ions cm−2 has been studied. The ion-induced formation of dislocations and hardening in LiF at fluences above 1010 ions cm−2 has been observed. The depth profiles of nanoindentation show a joint contribution of electronic excitation and nuclear (impact) mechanisms to the ion-induced hardening. The electronic excitation mechanism dominates in the major part of the ion range while the impact mechanism prevails in a narrow zone at the end of the ion range. The efficiency of hardening produc…

research product

Modification of LiF structure by irradiation with swift heavy ions under oblique incidence

The structural modifications of LiF irradiated with swift heavy ions under oblique angles have been investigated using AFM, SEM, chemical etching, nanoindentation and optical absorption spectroscopy. LiF crystals were irradiated under incidence angles of 30 and 70 degrees with 2.2 GeV Au (fluence 57?l011 ions-cm2) and 150 MeV Kr ions (fluence 1012?1014 ions?cm?2). Structural study on sample cross-sections shows that two damage regions ? (1) nanostructured zone and (2) dislocation ? rich zone, which are typical for irradiations at normal incidence, appear also in samples irradiated under oblique angles. However in the latter case a more complex structure is formed that leads to stronger ion-…

research product

Metal nanodumbbells for nanomanipulations and tribological experiments

Nanomanipulation experiments were carried out on nanodumbbells (NDs) to study their kinetic behavior and tribological properties. Ag, Au and Cu NDs were produced by laser-induced melting of corresponding nanowires (NWs). NDs were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Manipulation experiments were performed first with atomic force microscope (AFM) at ambient conditions, and then inside SEM at high vacuum conditions. Different regimes of motion were observed. In-plane and out-of-substrate-plane rotation were identified as the most preferred motion types of NDs.

research product

Deformation behavior of nanostructured ZnO films on glass

Abstract Nanostructured ZnO films on glass substrate were studied by nanoindentation, scanning electron and atomic force microscopy. The films were obtained by a straightforward mechanoactivated oxidation method. The morphology of the obtained films was grained with a grain size in the range 50–100 nm and the thickness was approximately 2 μm. A detailed deformation behavior of ZnO films, critical parameters and indentation induced plastic deformation mechanisms were determined in correlation to bulk ZnO, Si single crystal and commercial ZnO films. In comparison to a single crystal ZnO, nanostructured films exhibit increased hardness (9 GPa); however, the Young's modulus is decreased (120 GP…

research product

The Role of Diffusion Accommodation and Phase Boundary Wetting in the Deformation Behaviour of Ultrafine Grained Sn-Pb Eutectic

Mechanical properties, microstructure of the Sn–38wt. %Pb eutectic and the development of deformation - induced diffusion processes on interphase boundaries (IB) were investigated. Experiments were carried out both in deformed and annealed states of eutectic using micro- and nanoindentation, SEM, AFM and optical microscopy techniques. It was found that the deformation of the annealed alloy is localized at the Pb/Sn interphase boundaries and occurs by grain boundary sliding (GBS) accompanied by sintering micropore processes under the action of the capillary forces on the Pb/Sn IB. During severe plastic deformation of Sn-Pb eutectic phase transition in the Sn grain boundary occurs. This defor…

research product

Nanostructuring and strengthening of LiF crystals by swift heavy ions: AFM, XRD and nanoindentation study

Abstract Modifications of the structure and micromechanical properties of LiF crystals under high-fluence irradiation (10 11 –10 13  ions cm −2 ) with swift C, Ti, Au and U ions of the specific energy of 11.1 MeV/u have been studied. In the case of heavy ions (U, Au), the AFM and SEM results reveal the bulk nanostructure consisting of columnar grains with nano-scale dimensions (50–100 nm). For lighter C ions the structure enriched with prismatic dislocation loops has been observed. High-resolution XRD reciprocal space maps for nano-structured LiF expose a mosaic-type structure with low-angle boundaries between grains.

research product

Synthesis of nanostructured amorphous carbon-copper composite films by plasma-enhanced chemical vapour deposition

Abstract Nanostructured amorphous carbon-copper composite films were formed by plasma-enhanced chemical vapour deposition. The formation was done on copper-silicon substrates at 25 °C, 300 °C, 520 °C, and 700 °C temperatures using an acetylene gas at 40–70 Pa pressure. The heating of the Cu Si substrate induced formation of Cu nanospheres with 50–500 nm size depending on the substrate temperature. The microstructure and composition of nanostructured carbon-copper composite films were investigated. The SEM views showed formation of amorphous carbon films with the randomly distributed nanostructures. The oxygen concentration in the composite films decreased with the increased heating temperat…

research product

Comparative Study on Micromechanical Properties of ZnO:Ga and ZnO:In Luminiscent Ceramics

The research has been supported by the Project ERANET RUS_ST#2017-051(Latvia) and #18-52-76002 (Russia). The Institute of Solid State Physics, University of Latvia as the Centre of Excellence has received funding from the European Union’s Horizon 2020 Framework, Program H2020-WIDESPREAD-01-2016-2017-Teaming Phase 2 under grant agreement No. 739508, project CAMART2.

research product

MeV–GeV ion induced dislocation loops in LiF crystals

Abstract Formation of prismatic dislocation loops and evolution of dislocation structure in LiF crystals irradiated with swift 238U and 36S ions of specific energy 11 MeV/u at fluences up to 1013 ions cm−2 has been investigated using chemical etching and AFM. It has been shown that prismatic dislocations are formed in the stage of track overlapping above threshold fluences Φ ≈ 109 U cm−2 and Φ ≈ 1010 S cm−2. The diameter of dislocation loops reaches 600–1000 nm for 238U ions and 200 nm for 36S ions. The dislocations created by 238U ions are arranged in rows along the direction of ion beam, whereas 36S ions create freely distributed dislocation loops each of them being oriented along the ion…

research product

Effect of in Doping on the ZnO Powders Morphology and Microstructure Evolution of ZnO:In Ceramics as a Material for Scintillators

Transparent ZnO ceramics are of interest for use as material for high-efficiency fast scintillators. Doping ZnO ceramics in order to improve complex of their properties is a promising direction. In the present research, the role of indium in the ZnO nanopowders surface interactions and in the change of microstructures and photoluminescence (PL) characteristics of sintered cera-mics is considered. Undoped and 0.13 wt% In doped ZnO ceramics are obtained by hot pressing sintering. It has been found that indium leads to the transition of initially faceted ZnO particles to rounded, contributing to good sintering with formation of diffusion active grain boundaries (GBs). Unlike ZnO ceramics, ZnO:…

research product

Properties of ZnO coatings obtained by mechanoactivated oxidation

In this work a new method based on the mechanoactivated oxidation has been applied for obtaining thin nanostructured transparent ZnO coatings on glass. Zn has been transferred onto a glass substrate at room temperature using a quickly rotating steel wire brush. Afterwards by subsequent annealing it is modified into a transparent ZnO coating. The temperature range in which formation of the needle-like (whiskers) structure and transition to the fine-grained structure occurs has been determined. The interrelation between physical properties and the change of microstructure of the ZnO coatings has been shown.

research product

Structure, micromechanical and magnetic properties of polycarbonate nanocomposites

The current study evaluates the applicability of polycarbonate (PC) for development of magnetic polymer nanocomposites with CoFe2O4 nanofiller, the amount of which was changed from 0 to 5 wt. %. Ethylene-vinyl acetate elastomer in the amount of 10 wt. % was added as toughener. Upon introduction of the magnetic filler a magnetic hysteresis loop was observed: at 5 wt.% of CoFe2O4 saturation magnetization of the nanocomposite was 2,2 emu/g, remanent magnetization was 0,8 emu/g and coercivity is 1200 G. Nanoindentation tests showed that nanofiller-reinforced samples maintain reasonable plasticity characterized by work of plastic indentation, while their modulus and hardness were improved by up …

research product

Depth profiles of damage creation and hardening in MgO irradiated with GeV heavy ions

This work has been performed within the framework of the EUROfusion Enabling Research project: ENR-MFE19.ISSP-UL-02 “Advanced experimental and theoretical analysis of defect evolution and structural disordering in optical and dielectric materials for fusion applications”. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

research product

Mechanical properties of aluminum, zirconium, hafnium and tantalum oxides and their nanolaminates grown by atomic layer deposition

ABSTRACT The mechanical properties of two different metal oxide nanolaminates comprised of Ta 2 O 5 and Al 2 O 3 , HfO 2 or ZrO 2 , grown on soda–lime glass substrate by atomic layer deposition, were investigated. Ta 2 O 5 and Al 2 O 3 layers were amorphous, whereas ZrO 2 and HfO 2 possessed crystalline structure. Thickness of single oxide layers was varied between 2.5 and 15 nm. The total thickness of the laminate structures was in the range of 160–170 nm. The hardness values of single layer oxides on glass ranged from 6.7 GPa (Ta 2 O 5 ) to 9.5 GPa (Al 2 O 3 ). Corresponding elastic moduli were 96 GPa and 101 GPa. The hardnesses of laminates were in the range of 6.8–7.8 GPa and elastic mo…

research product

Atomic layer deposition of aluminum oxide on modified steel substrates

Abstract Al 2 O 3 thin films were grown by atomic layer deposition to thicknesses ranging from 10 to 90 nm on flexible steel substrates at 300 °C using Al(CH 3 ) 3 and H 2 O as precursors. The films grown to thicknesses 9–90 nm covered the rough steel surfaces uniformly, allowing reliable evaluation of their dielectric permittivity and electrical current densities with appreciable contact yield. Mechanical behavior of the coatings was evaluated by nanoindentation. The maximum hardness values of the Al 2 O 3 films on steel reached 12 GPa and the elastic modulus exceeded 280 GPa.

research product

Luminescence of F2 and F3 + centres in LiF crystals irradiated with 12 MeV 12C ions

Dependences of the nanohardness and photoluminescence of F 2 and F 3 + centers on the depth in LiF crystals irradiated with 12 MeV 12 C ions to fluences 10 10 -10 15 ions/cm 2 were studied using laser scanning confocal microscopy, luminescent spectroscopy, and the nanoindentation method. The nanohardness measurements showed a significant hardening effect at the end of the ion run with the dominant contribution of defects formed by the mechanism of elastic collisions. The observed attenuation of the luminescence intensity at high fluences is associated with the intense nucleation of dislocations as traps for aggregate color centers.

research product