0000000000182643

AUTHOR

Olli Tarvainen

Plasma diagnostic tools for ECR ion sources : What can we learn from these experiments for the next generation sources

International audience; The order-of-magnitude performance leaps of ECR ion sources over the past decades result from improvements to the magnetic plasma confinement, increases in the microwave heating frequency, and techniques to stabilize the plasma at high densities. Parallel to the technical development of the ion sources themselves, significant effort has been directed into the development of their plasma diagnostic tools. We review the recent results of Electron Cyclotron Resonance Ion Source (ECRIS) plasma diagnostics highlighting a number of selected examples of plasma density, electron energy distribution, and ion confinement time measurements, obtained mostly with the second-gener…

research product

Transverse distribution of beam current oscillations of a 14 GHz electron cyclotron resonance ion source

The temporal stability of oxygen ion beams has been studied with the 14 GHz A-ECR at JYFL (University of Jyvaskyla, Department of Physics). A sector Faraday cup was employed to measure the distribution of the beam current oscillations across the beam profile. The spatial and temporal characteristics of two different oscillation “modes” often observed with the JYFL 14 GHz ECRIS are discussed. It was observed that the low frequency oscillations below 200 Hz are distributed almost uniformly. In the high frequency oscillation “mode,” with frequencies >300 Hz at the core of the beam, carrying most of the current, oscillates with smaller amplitude than the peripheral parts of the beam. The result…

research product

Inner shell ionization of argon in ECRIS plasma

Abstract The volumetric K α emission rate of argon emitted from the electron cyclotron resonance (ECR) heated plasmas of the JYFL (University of Jyvaskyla, Department of Physics) 14 GHz ECR ion source (ECRIS) and the 14.5 GHz Grenoble Test Source (GTS) at iThemba Laboratory for Accelerator Based Sciences have been measured to gain an understanding of the influence of the ion source tune parameters on the absolute inner shell ionization rate. It was observed that the behaviour of the ionization rate and the extracted ion beam currents react differently, depending the parametric sweep performed. The neutral gas pressure and incident microwave power was found to have the strongest influence on…

research product

Diagnostics of a charge breeder electron cyclotron resonance ion source helium plasma with the injection ofNa231+ions

This work describes the utilization of an injected 23Na1+ ion beam as a diagnostics of the helium plasma of a charge breeder electron cyclotron resonance ion source. The obtained data allows estimating the upper limit for the ion-ion collision mean-free path of the incident sodium ions, the lower limit of ion-ion collision frequencies for all charge states of the sodium ions and the lower limit of the helium plasma density. The ion-ion collision frequencies of high charge state ions are shown to be at least on the order of 1–10 MHz and the plasma density is estimated to be on the order of 1011  cm−3 or higher. The experimental results are compared to simulations of the 23Na1+ capture into t…

research product

Effect of the gas mixing technique on the production efficiency of ion beams extracted from an electron cyclotron resonance ion source

In this work the effect of gas mixing on the production efficiency of ion beams extracted from an ECR ion source has been studied with the JYFL 6.4 GHz electron cyclotron resonance ion source (ECRIS). It was found that the gas mixing affects strongly the confinement of ions in the plasma of the ECRIS. The information obtained can be used to minimize the consumption of expensive materials or isotopes and to reduce contamination of the plasma chamber. It was observed that the carbon contamination, which is built up when the MIVOC method is used could be decreased with the aid of the gas mixing technique. The best mixing gas for this purpose was found to be oxygen.

research product

Photoelectron Emission from Metal Surfaces Induced by Radiation Emitted by a 14 GHz Electron Cyclotron Resonance Ion Source

Photoelectron emission measurements have been performed using a room-temperature 14 GHz ECR ion source. It is shown that the photoelectron emission from Al, Cu, and stainless steel (SAE 304) surfaces, which are common plasma chamber materials, is predominantly caused by radiation emitted from plasma with energies between 8 eV and 1 keV. Characteristic X-ray emission and bremsstrahlung from plasma have a negligible contribution to the photoelectron emission. It is estimated from the measured data that the maximum conceivable photoelectron flux from plasma chamber walls is on the order of 10% of the estimated total electron losses from the plasma. peerReviewed

research product

Limitations of electron cyclotron resonance ion source performances set by kinetic plasma instabilities.

Electron cyclotron resonance ion source (ECRIS) plasmas are prone to kinetic instabilities due to anisotropy of the electron energy distribution function stemming from the resonant nature of the electron heating process. Electron cyclotron plasma instabilities are related to non-linear interaction between plasma waves and energetic electrons resulting to strong microwave emission and a burst of energetic electrons escaping the plasma, and explain the periodic oscillations of the extracted beam currents observed in several laboratories. It is demonstrated with a minimum-B 14 GHz ECRIS operating on helium, oxygen, and argon plasmas that kinetic instabilities restrict the parameter space avail…

research product

Charge breeding at GANIL: Improvements, results, and comparison with the other facilities

International audience; The 1+/n+ method, based on an ECRIS charge breeder (CB) originally developed at the LPSC laboratory, is now implemented at GANIL for the production of Radioactive Ion Beams (RIBs). Prior to its installation in the middle of the low energy beam line of the SPIRAL1 facility, the 1+/n+ system CB has been modified based on the experiments performed on the CARIBU Facility at Argone National Laboratory. Later, it has been tested at the 1+/n+ LPSC test bench to validate its operation performances. Charge breeding efficiencies as well as charge breeding times have been measured for noble gases and alkali elements. The commissioning phase started at GANIL in the second half-y…

research product

The relationship between visible light emission and species fraction of the hydrogen ion beams extracted from 2.45 GHz microwave discharge.

The relationship between Balmer-α and Fulcher-band emissions with extracted H + , H + 2 , and H + 3 ions is demonstrated for a 2.45 GHz microwave discharge. Ion mass spectra and optical measurements of Balmer-α and Fulcher-band emissions have been obtained with a Wien Filter having an optical viewport on the plasma chamber axis. The beam of approximately 1 mA is analyzed for different plasma conditions simultaneously with the measurement of light emissions both with temporal resolution. The use of visible light emissions as a valuable diagnostic tool for monitoring the species fraction of the extracted beams is proposed. peerReviewed

research product

Production of hydrogen negative ions in an ECR volume source: balance between vibrational excitation and ionization

International audience; The operation of an ECR-driven (2.45 GHz) hydrogen negative ion source is studied. Electron densities and temperatures are investigated with electrostatic probes and negative ion densities are measured with laser photodetachment. Vacuum ultraviolet irradiance measurements are focused on molecular transitions to the ground state while high-resolution visible emission spectroscopy is used to study the transitions between excited states for both molecules and atoms. The standalone operation of the source is found to be more efficient in higher pressures (12 mTorr) where negative ion densities are as high as 4×109 cm−3. Further investigation on the operation of the sou…

research product

Radiofrequency and 2.45 GHz electron cyclotron resonance H− volume production ion sources

The volume production of negative hydrogen ions (H-) in plasma ion sources is based on dissociative electron attachment (DEA)to rovibrationally excited hydrogen molecules(H2), which is a two-step process requiring both, hot electrons for ionization, and vibrational excitation of the H2 and cold electrons for the H- formation through DEA. Traditionally H- ion sources relying on the volume production have been tandem-type arc discharge sources equipped with biased filament cathodes sustaining the plasma by thermionic electron emission and with a magnetic filter separating the main discharge from the H- formation volume. The main motivation to develop ion sources based on radiofrequency (RF) o…

research product

Experimental evidence on microwave induced electron losses from ECRIS plasma

The balance between warm and hot (>1 keV) electron density and their losses from the magnetic confinement system of an Electron Cyclotron Resonance Ion Source (ECRIS) plasma is considered to be one of the main factors determining the rate of the high charge state ion production. One of the key loss channels for heated electrons is thought to be induced by the injected microwaves. While this loss mechanism, referred to as rf-induced pitch angle scattering, has been studied theoretically and with computational tools, direct experimental evidence of its significance in minimum-B ECRIS plasmas remains limited. In this work, experimental evidence of microwave induced electron losses in the axial…

research product

Ion source and low energy beam transport prototyping for a single-ended heavy ion ToF-ERDA facility

We present the status of the ion source and low energy beam transport prototyping activities for a heavy ion time-of-flight elastic recoil detection analysis (ToF-ERDA) equipment, designed to accelerate a flux of 1–10 particle nano-Ampere of 40Ar6-12+ ions to 3–6 MeV energy for depth profiling of light elements. The prototype injector consists of a novel permanent magnet electron cyclotron resonance ion source CUBE-ECRIS with a minimum-B quadrupole field topology, and a 90° permanent magnet dipole with adjustable field strength for charge state selection. We report experimentally measured argon beam currents as a function of the applied microwave power and ion source potential to demonstrat…

research product

Periodic Beam Current Oscillations Driven by Electron Cyclotron Instabilities in ECRIS Plasmas

Experimental observation of cyclotron instabilities in electron cyclotron resonance ion source plasma operated in cwmode is reported. The instabilities are associated with strong microwave emission and a burst of energetic electrons escaping the plasma, and explain the periodic oscillations of the extracted beam currents. The instabilities are shown to restrict the parameter space available for the optimization of high charge state ion currents. nonPeerReviewed

research product

Experimental activities with the LPSC charge breeder in the European context

WEOBMH01; International audience; One of the Work Packages of the "Enhanced Multi-Ionization of short-Lived Isotopes at EURISOL"NuPNET project focuses on the ECR charge breeding.The LPSC charge breeder is used for experimental studiesin order to better understand the fundamental processesinvolved in the 1+ beam capture by a 14 GHz ECRplasma. Some improvements, like symmetrisation of themagnetic field at the injection side and higher pumpingspeed, have been carried out on the PHOENIX chargebreeder. The impact of these modifications on theefficiencies and charge breeding times are presented. Inthe same time, the new LPSC 1+ source developmentsperformed in order to ease the efficiency measurem…

research product

Experimental evidence on photo-assisted O− ion production from Al2O3 cathode in cesium sputter negative ion source

The production of negative ions in cesium sputter ion sources is generally considered to be a pure surface process. It has been recently proposed that ion pair production could explain the higher-than-expected beam currents extracted from these ion sources, therefore opening the door for laser-assisted enhancement of the negative ion yield. We have tested this hypothesis by measuring the effect of various pulsed diode lasers on the O − beam current produced from Al 2O 3 cathode of a cesium sputter ion source. It is expected that the ion pair production of O − requires populating the 5d electronic states of neutral cesium, thus implying that the process should be provoked only with specific …

research product

Double einzel lens extraction for the JYFL 14 GHz ECR ion source designed with IBSimu

In order to improve the performance of the JYFL 14 GHz electron cyclotron resonance ion source (ECRIS) and initiate low energy beam transport (LEBT) upgrade at the University of Jyvaskyla, Department of Physics (JYFL) accelerator laboratory, a new ion beam extraction system has been designed and installed. The development of the new extraction was performed with the ion optical code IBSimu, making it the first ECRIS extraction designed with the code. The measured performance of the new extraction is in good agreement with the simulations. Compared to the old extraction the new system provides improved beam quality, i.e. lower transverse emittance values and improved structure of beam profil…

research product

Studying the double-frequency heating mode in ECRIS plasma using Kα diagnostics

Despite the success of double-heating frequency in enhancing high charge state production, the underlying physics remains poorly understood. By combining three different diagnostic techniques i.e. Kα emission, optical emission and the extracted charge state distribution, it is now possible to assess the proposed explanations for the effectiveness of double-frequency heating against the experimental results. These results seem to indicate that the increase of plasma density accounts largely for the favorable behavior of this operation mode compared to single-frequency mode. peerReviewed

research product

Experimental evidence of E × B plasma rotation in a 2.45 GHz hydrogen discharge

An experimental observation of a rotating plasma structure in a 2.45 GHz microwave-driven hydrogen discharge is reported. The rotation is presumably produced by E × B drift. The formation of the rotating plasma structure is sensitive to the strength of the off-resonance static magnetic field. The rotation frequency is on the order of 10 kHz and is affected by the neutral gas pressure and applied microwave power.

research product

Estimating ion confinement times from beam current transients in conventional and charge breeder ECRIS

International audience; Cumulative ion confinement times are probed by measuring decaying ion current transients in pulsed material injection mode. The method is applied in a charge breeder and conventional ECRIS yielding mutually corroborative results. The cumulative confinement time estimates vary from approximately 2 ms–60 ms with a clear dependence on the ion charge-to-mass ratio—higher charges having longer residence times. The long cumulative confinement times are proposed as a partial explanation to recently observed unexpectedly high ion temperatures. The results are relevant for rare ion beam (RIB) production as the confinement time and the lifetime of stable isotopes can be used f…

research product

Photo-enhanced O−, H− and Br− ion production in caesium sputter negative ion source : no evidence for resonant ion pair production

It has been proposed that the negative ion yield of a caesium sputter ion source could be enhanced by promoting neutral caesium atoms to electronically excited 7p states supporting resonant ion pair production. We have tested this hypothesis by illuminating the cathode of a caesium sputter ion source with an adjustable wavelength laser and measuring its effect on the extracted beam currents of O−, H− and Br− anions. The laser exposure causes the beam currents to increase but the effect is independent of the wavelength in the range of 440-460 nm, which leads us to conclude that there is no evidence for resonant ion pair production. The photon-induced beam current enhancement scales with the …

research product

Plasma instability in the afterglow of electron cyclotron resonance discharge sustained in a mirror trap

The work presented in this article is devoted to time-resolved diagnostics of non-linear effects observed during the afterglow plasma decay of a 14 GHz electron cyclotron resonance ion source operated in pulsed mode. Plasma instabilities that cause perturbations of the extracted ion current during the decay were observed and studied. It is shown that these perturbations are associated with precipitation of high energy electrons along the magnetic field lines and strong bursts of bremsstrahlung emission. The effect of ion source settings on the onset of the observed instabilities was investigated. Based on the experimental data and estimated plasma properties, it is assumed that the instabil…

research product

The effect of gas mixing and biased disc voltage on the preglow transient of electron cyclotron resonance ion source

The effect of gas mixing and biased disc voltage on the preglow of electron cyclotron resonance ion source plasma has been studied with the AECR-U type 14 GHz ion source. It was found that gas mixing has a significant effect on the preglow. The extracted transient beam currents and efficiency of the heavier species increase, while the currents and efficiency of the lighter species decrease when gas mixing is applied. The effect of the biased disc was found to be pronounced in continuous operation mode in comparison to preglow. The data provide information on the time scales of the plasma processes explaining the effects of gas mixing and biased disc. The results also have implications on pr…

research product

The role of radio frequency scattering in high-energy electron losses from minimum-B ECR ion source

Abstract The measurement of the axially lost electron energy distribution escaping from a minimum-B electron cyclotron resonance ion source in the range of 4–800 keV is reported. The experiments have revealed the existence of a hump at 150–300 keV energy, containing up to 15% of the lost electrons and carrying up to 30% of the measured energy losses. The mean energy of the hump is independent of the microwave power, frequency and neutral gas pressure but increases with the magnetic field strength, most importantly with the value of the minimum-B field. Experiments in pulsed operation mode have indicated the presence of the hump only when microwave power is applied, confirming that the origi…

research product

Ultra-fast intensified frame images from an electron cyclotron resonance hydrogen plasma at 2.45 GHz: some space distributions of visible and monochromatic emissions.

First results from an ultra-fast frame image acquisition diagnostic coupled to a 2.45 GHz microwave hydrogen discharge are presented. The plasma reactor has been modified to include a transparent doubled shielded quartz window allowing to viewing the full plasma volume. Pictures describing the breakdown process at 1μs exposure time have been obtained for integrated visible light signal, Balmer-alpha, Balmer-beta lines, and Fulcher-band. Several different plasma emission distributions are reported. The distribution depends on the magnetic field configuration, incident microwave power, and neutral gas pressure. peerReviewed

research product

Workshop on performance variations in H? ion sources 2012: PV H?12

This paper briefly summarizes a workshop held in Jyvaskyla the day after NIBS’12. The half-day workshop aimed at globally capturing the issue of performance variations in H− sources. There was a focus on production facilities and facilities that work under production-like conditions, because there are often high expectations to be met.

research product

Electron–cyclotron–resonance plasma heating with broadband microwave radiation: Anomalous effects

Abstract Affects of microwave bandwidth on the high-charge-states of ion beams extracted from a conventional minimum- B -geometry ECR ion source are first demonstrated. The high-charge-state intensities, produced with broadband microwave radiation are observed to be factors ⩾2 than those produced with narrow bandwidth microwave radiation at the same power level.

research product

Plasma heating power dissipation in low temperature hydrogen plasmas

A theoretical framework for power dissipation in low temperature plasmas in corona equilibrium is developed. The framework is based on fundamental conservation laws and reaction cross sections and is only weakly sensitive to plasma parameters, e.g., electron temperature and density. The theory is applied to low temperature atomic and molecular hydrogen laboratory plasmas for which the plasma heating power dissipation to photon emission, ionization, and chemical potential is calculated. The calculated photon emission is compared to recent experimental results.

research product

Recent improvements of the LPSC charge breeder

International audience; PSC has developed the PHOENIX electron cyclotron resonance Charge Breeder since 2000. The performances have been improved over time acting on the 1+ and N+ beam optics, the base vacuum and the 1+ beam injection. A new objective is to update the booster design to enhance high charge state production and 1+ N+ efficiencies, reduce the co-extracted background beam and improve the ion source tunability. The first step, consisting in increasing the peak magnetic field at injection from 1.2 T to 1.6 T was implemented and significant improvement in 1+N+ efficiencies are reported: 12.9% of 23Na8+, 24.2% of 40Ar8+, 13.3% of 132Xe26+ and 13% of 133Cs26+. The next steps of the …

research product

Gyrotron-driven high current ECR ion source for boron-neutron capture therapy neutron generator

Abstract Boron-neutron capture therapy (BNCT) is a perspective treatment method for radiation resistant tumors. Unfortunately its development is strongly held back by a several physical and medical problems. Neutron sources for BNCT currently are limited to nuclear reactors and accelerators. For wide spread of BNCT investigations more compact and cheap neutron source would be much more preferable. In present paper an approach for compact D–D neutron generator creation based on a high current ECR ion source is suggested. Results on dense proton beams production are presented. A possibility of ion beams formation with current density up to 600 mA/cm 2 is demonstrated. Estimations based on obt…

research product

Breakdown transient study of plasma distributions in a 2.45 GHz hydrogen discharge

Plasma distribution transients associated with the breakdown of a 2.45 GHz hydrogen discharge similar to high current microwave ion sources are studied by means of an ultra-fast frame image acquisition system in visible light range. Eight different plasma distributions have been studied by photographing the 2D projections of the discharge through a transparent plasma electrode. The temporal evolution of images in Balmer-alpha and Fulcher band wavelengths have been recorded associated to atomic and molecular excitation and ionization processes. Some unexpected plasma distributions transient behaviors during breakdown are reported.

research product

Photoelectron Emission from Metal Surfaces Induced by VUV-emission of Filament Driven Hydrogen Arc Discharge Plasma

Photoelectron emission measurements have been performed using a filament-driven multi-cusp arc discharge volume production H^- ion source (LIISA). It has been found that photoelectron currents obtained with Al, Cu, Mo, Ta and stainless steel (SAE 304) are on the same order of magnitude. The photoelectron currents depend linearly on the discharge power. It is shown experimentally that photoelectron emission is significant only in the short wavelength range of hydrogen spectrum due to the energy dependence of the quantum efficiency. It is estimated from the measured data that the maximum photoelectron flux from plasma chamber walls is on the order of 1 A per kW of discharge power.

research product

Effects of magnetic configuration on hot electrons in a minimum-B ECR plasma

International audience; To investigate the hot electron population and the appearance of kinetic instabilities in highly charged electron cyclotron resonance ion source (ECRIS), the axially emitted bremsstrahlung spectra and microwave bursts emitted from ECRIS plasma were synchronously measured on SECRAL-II (Superconducting ECR ion source with Advanced design in Lanzhou No. II) ion source with various magnetic field configurations. The experimental results show that when the ratio of the minimum field to the resonance field (i.e. Bmin/Becr ) is less than ~0.8, the bremsstrahlung spectral temperature Ts increases linearly with the Bmin/Becr –ratio when the injection, extraction and radial mi…

research product

Experimental investigation of the relation between H− negative ion density and Lyman-α emission intensity in a microwave discharge

International audience; A new mechanism for producing negative ions in low density and low power hydrogen plasmas was proposed recently. It refers to anion formation due to collisions between hydrogen atoms being in the first excited state. The proposed mechanism was indirectly supported by the quadratic relation observed between the extracted negative ion current and Lyman-α radiation of a filament-driven arc discharge, when borrowed data from the literature were combined. The present work provides experimental data comparing directly the absolute negative ion density and Lyman-α radiation in an ECR-driven hydrogen plasma source. The previously mentioned quadratic relation is not observed …

research product

High current proton beams production at Simple Mirror Ion Source 37

This paper presents the latest results of high current proton beam production at Simple Mirror Ion Source (SMIS) 37 facility at the Institute of Applied Physics (IAP RAS). In this experimental setup, the plasma is created and the electrons are heated by 37.5 GHz gyrotron radiation with power up to 100 kW in a simple mirror trap fulfilling the ECR condition. Latest experiments at SMIS 37 were performed using a single-aperture two-electrode extraction system. Proton beams with currents up to 450 mA at high voltages below 45 kV were obtained. The maximum beam current density was measured to be 600 mA/cm2. A possibility of further improvement through the development of an advanced extraction sy…

research product

The electron cyclotron resonance ion source with arc-shaped coils concept

The main limitation to further improve the performance of ECR ion sources is set by the magnet technology related to the multipole magnet field used for the closed minimum-B structure. The JYFL ion source group has sought different approaches to improve the strength of the minimum-B structure required for the production of highly charged ion beams. It was found out that such a configuration can be realized with arc shaped coils. The first prototype, electron cyclotron resonance ion source with arc-shaped coils (ARC-ECRIS), was constructed and tested at JYFL in 2006. It was confirmed that such an ion source can be used for the production of highly charged ion beams. Regardless of several cos…

research product

An Experimental Study of Waveguide Coupled Microwave Heating with Conventional Multicusp Negative Ion Source

Negative ion production with conventional multicusp plasma chambers utilizing 2.45 GHz microwave heating is demonstrated. The experimental results were obtained with the multicusp plasma chambers and extraction systems of the RFdriven RADIS ion source and the filament driven arc discharge ion source LIISA. A waveguide microwave coupling system, which is almost similar to the one used with the SILHI ion source, was used. The results demonstrate that at least one third of negative ion beam obtained with inductive RF-coupling (RADIS) or arc discharge (LIISA) can be achieved with 1 kW of 2.45 GHz microwave power in CW mode without any modification of the plasma chamber. The co-extracted electro…

research product

Electron heating with broadband microwave radiation: A new method for improving the performances of conventional B-minimum electron cyclotron resonance ion sources

Abstract The charge-state enhancing effects of broadband microwave radiation are demonstrated by comparing the charge-state distributions and intensities of Arq+ ion beams, extracted from a conventional B-minimum geometry, 6.4 GHz ECR ion source, when operated with traveling-wave-tube (TWT) amplified microwave signals generated, respectively, from a “white” noise generator (WNG, bandwidth: 200 MHz) and a conventional narrow-bandwidth local oscillator (LO, bandwidth: ∼1.5 MHz). Clear enhancement (factors > 2) is obtained for high-charge-state Ar ion beam intensities, produced with broadband radiation, over those obtained with narrow-bandwidth radiation at the same power level. The high-charg…

research product

The effect of magnetic field strength on the time evolution of high energy bremsstrahlung radiation created by an electron cyclotron resonance ion source

Abstract An electron cyclotron resonance (ECR) ion source is one of the most used ion source types for high charge state heavy ion production. In ECR plasma the electrons are heated by radio frequency microwaves in order to provide ionization of neutral gases. As a consequence, ECR heating also generates very high electron energies (up to MeV region) which can produce a vast amount of bremsstrahlung radiation causing problems with radiation shielding and heating superconducting cryostat of an ECR ion source. To gain information about the time evolution of the electron energies in ECR plasma radial bremsstrahlung measurements were performed. JYFL 14 GHz ECR ion source was operated in pulsed …

research product

Time resolved measurements of hydrogen ion energy distributions in a pulsed 2.45 GHz microwave plasma

A plasma diagnostic study of the Ion Energy Distribution Functions (IEDFs) of H+, H+2H2+, and H+3H3+ ions in a 2.45 GHz hydrogen plasma reactor called TIPS is presented. The measurements are conducted by using a Plasma Ion Mass Spectrometer with an energy sector and a quadrupole detector from HIDEN Analytical Limited in order to select an ion species and to measure its energy distribution. The reactor is operated in the pulsed mode at 100 Hz with a duty cycle of 10% (1 ms pulse width). The IEDFs of H+, H+2H2+, and H+3H3+ are obtained each 5 μs with 1 μs time resolution throughout the entire pulse. The temporal evolution of the plasma potential and ion temperature of H+ is derived from the d…

research product

Radiofrequency and 2.45 GHz electron cyclotron resonance H−volume production ion sources

The volume production of negative hydrogen ions () in plasma ion sources is based on dissociative electron attachment (DEA) to rovibrationally excited hydrogen molecules (H2), which is a two-step process requiring both, hot electrons for ionization, and vibrational excitation of the H2 and cold electrons for the formation through DEA. Traditionally ion sources relying on the volume production have been tandem-type arc discharge sources equipped with biased filament cathodes sustaining the plasma by thermionic electron emission and with a magnetic filter separating the main discharge from the formation volume. The main motivation to develop ion sources based on radiofrequency (RF) or electro…

research product

Status of new 18 GHz ECRIS HIISI

A new 18 GHz ECR ion source HIISI is under commissioning at the Accelerator Laboratory at the University of Jyvaskyla (JYFL). The main purpose of HIISI is to produce high-energy beam cocktails, e.g. Xe44+, for radiation effects testing of electronics with the K130 cyclotron. The initial commissioning results in 18+14 GHz operation with oxygen, argon and xenon are reported. The beam currents are compared to those produced by reference ion sources (JYFL 14 GHz ECRIS, GTS and SuSI). At the moment (October 2017) 560 µA of O6+ and 310 µA of Ar13+, for example, have been reached with HIISI at 2.3 kW total power.A new 18 GHz ECR ion source HIISI is under commissioning at the Accelerator Laboratory…

research product

Measurements of the energy distribution of electrons lost from the minimum B-field -- the effect of instabilities and two-frequency heating

Further progress in the development of ECR ion sources (ECRIS) requires deeper understanding of the underlying physics. One of the topics that remains obscure, though being crucial for the performance of the ECRIS, is the electron energy distribution (EED). A well-developed technique of measuring the EED of electrons escaping axially from the magnetically confined plasma of an ECRIS was used for the study of EED in unstable mode of plasma confinement, i.e. in the presence of kinetic instabilities. The experimental data were recorded for pulsed and CW discharges with a room-temperature 14 GHz ECRIS at the JYFL accelerator laboratory. The measurements were focused on observing differences bet…

research product

Hydrogen plasma induced photoelectron emission from low work function cesium covered metal surfaces

Experimental results of hydrogen plasma induced photoelectron emission from cesium covered metal surfaces under ion source relevant conditions are reported. The transient photoelectron current during the Cs deposition process is measured from Mo, Al, Cu, Ta, Y, Ni, and stainless steel (SAE 304) surfaces. The photoelectron emission is 2–3.5 times higher at optimal Cs layer thickness in comparison to the clean substrate material. Emission from the thick layer of Cs is found to be 60%–80% lower than the emission from clean substrates. peerReviewed

research product

First experiments on applying the gasdynamic ECR ion source for negative hydrogen ion production

This article has no abstract. peerReviewed

research product

Hybrid simulation of electron cyclotron resonance heating

Electron Cyclotron Resonance (ECR) heating is a fundamentally important aspect in understanding the physics of Electron Cyclotron Resonance Ion Sources (ECRIS). Absorption of the radio frequency (RF) microwave power by electron heating in the resonance zone depends on many parameters including frequency and electric field strength of the microwave, magnetic field structure and electron and ion density profiles. ECR absorption has been studied in the past by e.g. modelling electric field behaviour in the resonance zone and its near proximity. This paper introduces a new ECR heating code that implements damping of the microwave power in the vicinity of the resonance zone, utilizes electron de…

research product

Correlations between density distributions, optical spectra, and ion species in a hydrogen plasma (invited)

An experimental study of plasma distributions in a 2.45 GHz hydrogen discharge operated at 100 Hz repetition rate is presented. Ultrafast photography, time integrated visible light emission spectra, time resolved Balmer-alpha emission, time resolved Fulcher Band emission, ion species mass spectra, and time resolved ion species fraction measurements have been implemented as diagnostic tools in a broad range of plasma conditions. Results of plasma distributions and optical emissions correlated with H + , H + 2 , and H + 3 ion currents by using a Wien filter system with optical observation capability are reported. The magnetic field distribution and strength is found as the most critical facto…

research product

The effect of microwave power on the Ar9+ and Ar13+ optical emission intensities and ion beam currents in ECRIS

The production of Ar9+ and Ar13+ ions in an ECRIS plasma and the efficiency of the ion beam extraction and transport of the resulting Ar9+ and Ar13+ ion beams have been studied with the JYFL 14 GHz ECRIS by using optical emission spectroscopy and measurement of the m/q analyzed beam currents. The relative changes in both the optical emission and the ion beam current in CW mode as function of microwave power and in amplitude modulation (AM) operation mode are reported. The results indicate a discrepancy between the parametric dependence of high charge state ion densities in the core plasma and their extracted beam currents. The observation implies that in CW mode the ion currents could be li…

research product

Photoelectron emission induced by low temperature hydrogen plasmas

Experimental results of low temperature hydrogen plasma induced photoelectron emission measurements comparing two different plasma heating methods are summarized. By exposing the samples to the vacuum ultraviolet radiation of a filament-driven multi-cusp arc discharge ion source and a 2.45 GHz microwave-driven ion source, it has been measured that the total photoelectron emission from various metal surfaces is on the order of 1 A per kW of plasma heating power, which can be increased by a factor of 2–3.5 with a thin layer of alkali metal. The possible effects of the photoelectrons on the plasma sheath structure are studied with a 1D collisionless model extended to include the contribution o…

research product

VUV diagnostic of electron impact processes in low temperature molecular hydrogen plasma

Novel methods for diagnostics of molecular hydrogen plasma processes, such as ionization, production of high vibrational levels, dissociation of molecules via excitation to singlet and triplet states and production of metastable states, are presented for molecular hydrogen plasmas in corona equilibrium. The methods are based on comparison of rate coefficients of plasma processes and optical emission spectroscopy of lowest singlet and triplet transitions, i.e. Lyman-band ($B^1\Sigma^+_u \rightarrow X^1\Sigma^+_g$) and molecular continuum ($a^3\Sigma^+_g \rightarrow b^3\Sigma^+_u$), of the hydrogen molecule in VUV wavelength range. Comparison of rate coefficients of spin-allowed and/or spin-f…

research product

Ionization efficiency studies with charge breeder and conventional electron cyclotron resonance ion source

Radioactive Ion Beams play an increasingly important role in several European research facility programs such as SPES, SPIRAL1 Upgrade, and SPIRAL2, but even more for those such as EURISOL. Although remarkable advances of ECRIS charge breeders (CBs) have been achieved, further studies are needed to gain insight on the physics of the charge breeding process. The fundamental plasma processes of charge breeders are studied in the frame of the European collaboration project, EMILIE, for optimizing the charge breeding. Important information on the charge breeding can be obtained by conducting similar experiments using the gas mixing and 2-frequency heating techniques with a conventional JYFL 14 …

research product

A new plasma potential measurement instrument for plasma ion sources

A very efficient and fast instrument to measure the plasma potential of ion sources has been developed at the Department of Physics, University of Jyvaskyla (JYFL). The operating principle of this novel instrument is to apply a decelerating voltage into a mesh located in the beamline of the ion source. The plasma potential is determined by measuring the current at the grounded electrode situated behind the mesh as a function of the voltage. In this article, we will introduce the instrument and the first results. In the experiments, the instrument was connected to the beamline of the JYFL 6.4 GHz electron cyclotron resonance ion source. The plasma potential was measured with different source…

research product

Nano-graphite cold cathodes for electric solar wind sail

The nanographite (NG) films consisting of tiny graphite crystallites (nanowalls) are produced by carbon condensation from methane–hydrogen gas mixture activated by a direct current discharge. High aspect ratio and structural features of the NG crystallites provides efficient field electron emission (FE). Applicability and performance of the NG films in an electron gun (E-gun) of a solar wind thruster system with an electric sail (E-sail) is tested. The long-term tests are demonstrated suitability of E-gun assembly with the NG cathodes for the real space missions. The results of the tests are analyzed and physical mechanisms of the cathode aging and practical methods for improvement performa…

research product

Cyclotron instability in the afterglow mode of minimum-B ECRIS.

It was shown recently that cyclotron instability in non-equilibrium plasma of a minimum-B electron cyclotron resonance ion source (ECRIS) causes perturbation of the extracted ion current and generation of strong bursts of bremsstrahlung emission, which limit the performance of the ion source. The present work is devoted to the dynamic regimes of plasma instability in ECRIS operated in pulsed mode. Instability develops in decaying plasma shortly after heating microwaves are switched off and manifests itself in the form of powerful pulses of electromagnetic emission associated with precipitation of high energy electrons. Time-resolved measurements of microwave emission bursts are presented. I…

research product

The effect of cavity tuning on oxygen beam currents of an A-ECR type 14 GHz electron cyclotron resonance ion source.

The efficiency of the microwave-plasma coupling plays a significant role in the production of highly charged ion beams with electron cyclotron resonance ion sources (ECRISs). The coupling properties are affected by the mechanical design of the ion source plasma chamber and microwave launching system, as well as damping of the microwave electric field by the plasma. Several experiments attempting to optimize the microwave-plasma coupling characteristics by fine-tuning the frequency of the injected microwaves have been conducted with varying degrees of success. The inherent difficulty in interpretation of the frequency tuning results is that the effects of microwave coupling system and the ca…

research product

Oscillations of ECR ion source beam current along the beam transport of the JYFL K-130 cyclotron

A versatile measurement system has been developed to study the temporal characteristics of ion beams in millisecond time scale. The system is composed of data acquisition hardware and LabVIEW based measurement and analysis program. The measurement system and ion beam current oscillation results measured with a 14 GHz AECR-U type ion source at University of Jyv"askyl"a, Department of Physics (JYFL), are presented. It is shown that the ion beams exhibit periodic current fluctuations at frequencies from 100 Hz to 1.5 kHz with amplitudes ranging from 1 to 65 percent of the average beam current. It is argued that these oscillations originate from the ion source plasma since their characteristics…

research product

The biased disc of an electron cyclotron resonance ion source as a probe of instability-induced electron and ion losses

International audience; Electron Cyclotron Resonance Ion Source (ECRIS) plasmas are prone to kinetic instabilities resulting in loss of electron and ion confinement. It is demonstrated that the biased disk of an ECRIS can be used as a probe to quantify such instability-induced electron and ion losses occurring in less than 10 µs. The qualitative interpretation of the data is supported by the measurement of the energy spread of the extracted ion beams implying a transient plasma potential >1.5 kV during the instability. A parametric study of the electron losses combined with electron tracking simulations allows for estimating the fraction of electrons expelled in each instability event to be…

research product

Studies of electron heating on a 6.4 GHz ECR ion source through measurement of diamagnetic current and plasma bremsstrahlung

Diamagnetic current and low energy (2–70 keV) x-ray bremsstrahlung measurements taken on a 6.4 GHz electron cyclotron resonance ion source (ECRIS) are presented as a function of microwave power, neutral gas pressure and magnetic field configuration. X-ray flux from confined electrons and plasma energy density depend logarithmically on microwave power. This result differs from previous studies performed on ECRISs that operate at higher microwave frequencies, in which the x-ray power increases in an essentially linear fashion with the microwave power. X-ray power and plasma energy density both saturate as the neutral pressure is increased beyond a certain value. The gradient of the magnetic f…

research product

The extraction of negative carbon ions from a volume cusp ion source

Acetylene and carbon dioxide gases are used in a filament-powered volume-cusp ion source to produce negative carbon ions for the purpose of carbon implantation for gettering applications. The beam was extracted to an energy of 25 keV and the composition was analyzed with a spectrometer system consisting of a 90° dipole magnet and a pair of slits. It is found that acetylene produces mostly C−2 ions (up to 92 µA), while carbon dioxide produces mostly O− with only trace amounts of C−. Maximum C−2 current was achieved with 400 W of arc power and, the beam current and composition were found to be highly dependent on the pressure in the source. The beam properties as a function of source settings…

research product

Plasma response to amplitude modulation of the microwave power on a 14 GHz electron cyclotron resonance ion source

This paper reports the effects of sinusoidal microwave power Amplitude Modulation (AM) on the performance of Electron Cyclotron Resonance (ECR) ion sources. The study was conducted on the 14 GHz ECR ion source ECR2 at the University of Jyväskylä. The klystron output was intentionally altered by a variable frequency sinusoidal amplitude modulation. The average microwave power 350 W was modulated between 530 W and 180 W from 0.011-25 kHz. The integrated x-ray energy, the mass analyzed beam current and the forward and reflected microwave power were measured. The energy integrated x-ray signal responded strongly with low frequency modulation and was no longer observable at approximately 2.2 kHz…

research product

A study of VUV emission and the extracted electron-ion ratio in hydrogen and deuterium plasmas of a filament-driven H−/D− ion source

Vacuum ultraviolet (VUV) emission diagnostics for studying differences of electron impact processes in hydrogen and deuterium plasmas are presented. The method is applied to study a filament driven multicusp arc discharge negative ion source by comparing the VUV-emission intensities of different emission bands and extracted currents of H−/D− ions and electrons. It was found that the ratio of coextracted electrons to extracted ions is four times higher for deuterium than for hydrogen. No significant differences of the VUV-spectra or volumetric rates of ionization, excitation, production of high vibrational states, and dissociation were found between the plasmas of the two isotopes. The volum…

research product

Dynamic regimes of cyclotron instability in the afterglow mode of minimum-B electron cyclotron resonance ion source plasma

The paper is concerned with the dynamic regimes of cyclotron instabilities in non-equilibrium plasma of a minimum-B electron cyclotron resonance ion source operated in pulsed mode. The instability appears in decaying ion source plasma shortly (1–10 ms) after switching off the microwave radiation of the klystron, and manifests itself in the form of powerful pulses of electromagnetic emission associated with precipitation of high-energy electrons along the magnetic field lines. Recently it was shown that this plasma instability causes perturbations of the extracted ion current, which limits the performance of the ion source and generates strong bursts of bremsstrahlung emission. In this artic…

research product

The effect of plasma electrode collar structure on the performance of the JYFL 14GHz electron cyclotron resonance ion source

Abstract The influence of a so-called collar structure on the performance of the JYFL 14 GHz electron cyclotron resonance ion source (ECRIS) has been studied experimentally at the Department of Physics, University of Jyvaskyla (JYFL). The collar is a cylindrical structure extruding inwards from the plasma electrode. The collar length was varied between 5 and 60 mm. For some ion species a moderate performance improvement was achieved in terms of extracted beam current and transverse emittance up to 30 mm collar length. Longer collars resulted in a substantial performance decrease. Different collar materials, i.e. nonmagnetic stainless steel, aluminum and Al 2 O 3 , and a wide range of ion sp…

research product

Microwave emission from ECR plasmas under conditions of two-frequency heating induced by kinetic instabilities

Multiple frequency heating is one of the most effective techniques to improve the performances of ECR ion sources. It has been demonstrated that the appearance of the periodic ion beam current oscillations in ECRIS at high heating power and low magnetic field gradient is associated with kinetic plasma instabilities. Recently it was proven that one of the main features of multiple frequency heating is connected with stabilizing effect, namely the suppression of electron cyclotron instability in ECRIS plasmas. Due to this kind of stabilization it is possible to run the ion source in stable mode using higher total microwave power and thus to obtain better ion beam parameters. Unfortunately, ev…

research product

Optimizing charge breeding techniques for ISOL facilities in Europe: conclusions from the EMILIE project

ThuM07; International audience; The present paper summarizes the results obtained from the past few years in the framework ofthe Enhanced Multi-Ionization of short-Lived Isotopes for Eurisol (EMILIE) project. The EMILIEproject aims at improving the charge breeding techniques with both Electron Cyclotron ResonanceIon Sources (ECRIS) and Electron Beam Ion Sources (EBISs) for European Radioactive Ion Beam(RIB) facilities. Within EMILIE, an original technique for debunching the beam from EBIS chargebreeders is being developed, for making an optimal use of the capabilities of CW post-acceleratorsof the future facilities. Such a debunching technique should eventually resolve duty cycle andtime st…

research product

Beam current oscillations driven by cyclotron instabilities in a minimum-Belectron cyclotron resonance ion source plasma

Experimental observation of cyclotron instabilities in a minimum-B confined electron cyclotron resonance ion source plasma is reported. The instabilities are associated with strong microwave emission and a burst of energetic electrons escaping the plasma, and explain the periodic ms-scale oscillation of the extracted beam currents. Such non-linear effects are detrimental for the confinement of highly charged ions due to plasma perturbations at shorter periodic intervals in comparison with their production time. It is shown that the repetition rate of the periodic instabilities in oxygen plasmas increases with increasing magnetic field strength and microwave power and decreases with increasi…

research product

Measurement of the energy distribution of electrons escaping minimum-B ECR plasmas

The measurement of the electron energy distribution (EED) of electrons escaping axially from a minimum-B electron cyclotron resonance ion source (ECRIS) is reported. The experimental data were recorded with a room-temperature 14 GHz ECRIS at the JYFL accelerator laboratory. The electrons escaping through the extraction mirror of the ion source were detected with a secondary electron amplifier placed downstream from a dipole magnet serving as an electron spectrometer with 500 eV resolution. It was discovered that the EED in the range of 5–250 keV is strongly non-Maxwellian and exhibits several local maxima below 20 keV energy. It was observed that the most influential ion source operating pa…

research product

Limitation of the ECRIS performance by kinetic plasma instabilities (invited).

Electron cyclotron resonance ion source (ECRIS) plasmas are prone to kinetic instabilities due to anisotropic electron velocity distribution. The instabilities are associated with strong microwave emission and periodic bursts of energetic electrons escaping the magnetic confinement. The instabilities explain the periodic ms-scale oscillation of the extracted beam current observed with several high performance ECRISs and restrict the parameter space available for the optimization of extracted beam currents of highly charged ions. Experiments with the JYFL 14 GHz ECRIS have demonstrated that due to the instabilities the optimum Bmin-field is less than 0.8BECR, which is the value suggested by …

research product

Spectroscopic study of ion temperature in minimum-B ECRIS plasma

Experimentally determined ion temperatures of different charge states and elements in minimum-B confined electron cyclotron resonance ion source (ECRIS) plasma are reported. It is demonstrated with optical emission spectroscopy, complemented by the energy spread measurements of the extracted ion beams, that the ion temperature in the JYFL 14 GHz ECRIS is 5–28 eV depending on the plasma species and charge state. The reported ion temperatures are an order of magnitude higher than previously deduced from indirect diagnostics and used in simulations, but agree with those reported for a quadrupole mirror fusion experiment. The diagnostics setup and data interpretation are discussed in detail to …

research product

Microwave emission related to cyclotron instabilities in a minimum-Belectron cyclotron resonance ion source plasma

Electron cyclotron resonance ion sources (ECRIS) have been essential in the research and applications of nuclear physics over the past 40 years. They are extensively used in a wide range of large-scale accelerator facilities for the production of highly charged heavy ion beams of stable and radioactive elements. ECRISs are susceptible to kinetic instabilities due to resonance heating mechanism leading to anisotropic electron velocity distribution function. Instabilities of cyclotron type are a proven cause of frequently observed periodic bursts of 'hot' electrons and bremsstrahlung, accompanied with emission of microwave radiation and followed by considerable drop of multiply charged ions c…

research product

Control of electron-cyclotron instability driven by strong ECRH in open magnetic trap

We discuss the laboratory experiment on a controlled transition from the generation of periodic bursts of electromagnetic radiation into the continuous-wave regime of a cyclotron maser formed in a magnetically confined non-equilibrium plasma (Shalashov A. G. et al. , Phys. Rev. Lett. , 114 (2018) 205001). The kinetic cyclotron instability of the extraordinary wave of a weakly inhomogeneous magnetized plasma is driven by the anisotropic electron population resulting from electron cyclotron plasma heating in a MHD-stable minimum-B open magnetic trap. In the present communication we focus on a theoretical model that explains the existing data and motivates further experiments.

research product

Status of new 18 GHz ECRIS HIISI

A new 18 GHz ECR ion source HIISI is under commissioning at the Accelerator Laboratory at the University of Jyväskylä (JYFL). The main purpose of HIISI is to produce high-energy beam cocktails, e.g. Xe44+, for radiation effects testing of electronics with the K130 cyclotron. The initial commissioning results in 18+14 GHz operation with oxygen, argon and xenon are reported. The beam currents are compared to those produced by reference ion sources (JYFL 14 GHz ECRIS, GTS and SuSI). At the moment (October 2017) 560 µA of O6+ and 310 µA of Ar13+, for example, have been reached with HIISI at 2.3 kW total power. peerReviewed

research product

Efficiency investigation of a negative hydrogen ion beam production with the use of the gasdynamic ECR plasma source

Abstract Negative hydrogen ion sources are of great demand in modern physics as injectors into accelerators and drivers for neutral beam injectors for fusion devices. It has been shown earlier that the use of the gasdynamic ECR discharge provides the opportunity to extract up to 80 mA/cm2 of negative ion current density. We studied experimentally the volumetric negative hydrogen ion production and vacuum ultraviolet emission in a gasdynamic ECR discharge. The high-density plasma was sustained by the pulsed 37 GHz / 100 kW gyrotron radiation in a magnetic configuration consisting of two consecutive simple mirror traps. The future prospects of the volumetric H− source based on the gasdynamic …

research product

Design of a 10 GHz minimum-B quadrupole permanent magnet electron cyclotron resonance ion source

This paper presents a simulation study of a permanent magnet electron cyclotron resonance ion source (ECRIS) with a minimum-B quadrupole magnetic field topology. The magnetic field is made to conform to conventional ECRIS with $B_\textrm{min}/B_\textrm{ECR}$ of 0.67 and a last closed magnetic isosurface of 1.86$B_\textrm{ECR}$ at 10 GHz. The distribution of magnetic field gradients parallel to the field, affecting the electron heating efficiency, cover a range from 0 to 13 T/m, being similar to conventional ECRIS. Therefore it is expected that the novel ion source produces warm electrons and high charge state ions in significant number. Single electron tracking simulations are used to estim…

research product

Application and development of ion-source technology for radiation-effects testing of electronics

Abstract Studies of heavy-ion induced single event effect (SEE) on space electronics are necessary to verify the operation of the components in the harsh radiation environment. These studies are conducted by using high-energy heavy-ion beams to simulate the radiation effects in space. The ion beams are accelerated as so-called ion cocktails, containing several ion beam species with similar mass-to-charge ratio, covering a wide range of linear energy transfer (LET) values also present in space. The use of cocktails enables fast switching between beam species during testing. Production of these high-energy ion cocktails poses challenging requirements to the ion sources because in most laborat…

research product

Injected 1+ ion beam as a diagnostics tool of charge breeder ECR ion source plasmas

International audience; Charge breeder electron cyclotron resonance ion sources (CB-ECRIS) are used as 1+  →n+  charge multiplication devices of post-accelerated radioactive ion beams. The charge breeding process involves thermalization of the injected 1+  ions with the plasma ions in ion–ion collisions, subsequent ionization by electron impact and extraction of the n+  ions. Charge breeding experiments of 85Rb and 133Cs ion beams with the 14.5 GHz PHOENIX CB-ECRIS operating with oxygen gas demonstrate the plasma diagnostics capabilities of the 1+  injection method. Two populations can be distinguished in the m/q-spectrum of the extracted ion beams, the low (1+  and 2+) charge states repres…

research product

Kinetic instabilities in pulsed operation mode of a 14 GHz electron cyclotron resonance ion source

The occurrence of kinetic plasma instabilities is studied in pulsed operation mode of a 14 GHz Aelectron cyclotron resonance type electron cyclotron resonance ion source. It is shown that the temporal delay between the plasma breakdown and the appearance of the instabilities is on the order of 10- 100 ms. The most important parameters affecting the delay are magnetic field strength and neutral gas pressure. It is demonstrated that kinetic instabilities limit the high charge state ion beam production in the unstable operating regime. peerReviewed

research product

Power efficiency improvements with the radio frequency H− ion source

CW 13.56 MHz radio frequency-driven H− ion source is under development at the University of Jyväskylä for replacing an existing filament-driven ion source at the MCC30/15 cyclotron. Previously, production of 1 mA H− beam, which is the target intensity of the ion source, has been reported at 3 kW of RF power. The original ion source front plate with an adjustable electromagnet based filter field has been replaced with a new front plate with permanent magnet filter field. The new structure is more open and enables a higher flux of ro-vibrationally excited molecules towards the plasma electrode and provides a better control of the potential near the extraction due to a stronger separation of t…

research product

Controlled turbulence regime of electron cyclotron resonance ion source for improved multicharged ion performance

Fundamental studies of excitation and non-linear evolution of kinetic instabilities of strongly nonequlibrium hot plasmas confined in open magnetic traps suggest new opportunities for fine-tuning of conventional electron cyclotron resonance (ECR) ion sources. These devices are widely used for the production of particle beams of high charge state ions. Operating the ion source in controlled turbulence regime allows increasing the absorbed power density and therefore the volumetric plasma energy content in the dense part of the discharge surrounded by the ECR surface, which leads to enhanced beam currents of high charge state ions. We report experiments at the ECR ion source at the JYFL accel…

research product

VUV emission spectroscopy combined with H- density measurements in the ion source Prometheus I

“Prometheus I” is a volume H− negative ion source, driven by a network of dipolar electron cyclotron resonance (ECR; 2.45 GHz) modules. The vacuum-ultraviolet (VUV) emission spectrum of low-temperature hydrogen plasmas may be related to molecular and atomic processes involved directly or indirectly in the production of negative ions. In this work, VUV spectroscopy has been performed in the above source, Prometheus I, both in the ECR zones and the bulk (far from ECR zones and surfaces) plasma. The acquired VUV spectra are correlated with the negative ion densities, as measured by means of laser photodetachment, and the possible mechanisms of negative ion production are considered. The well-e…

research product

Powerful neutron generators based on high current ECR ion sources with gyrotron plasma heating

This article has no abstract. peerReviewed

research product

Studies of electron cyclotron resonance ion source plasma physics

research product

Ion source research and development at University of Jyväskylä: Studies of different plasma processes and towards the higher beam intensities

MonPS16; International audience; The long-term operation of high charge state electron cyclotron resonance ion sources fed withhigh microwave power has caused damage to the plasma chamber wall in several laboratories.Porosity, or a small hole, can be progressively created in the wall on a year time scale, which cancause a water leak from the cooling system into the plasma chamber vacuum. A burnout of theVENUS chamber is investigated. Information on the hole formation and on the necessary localhot electron power density is presented. Next, the hot electron flux to the wall is studied bymeans of simulations. First, the results of a simple model assuming that electrons are fullymagnetized and …

research product

Diagnostics of a charge breeder electron cyclotron resonance ion source helium plasma with the injection of 23 Na 1+ ions

This work describes the utilization of an injected 23Na1þ ion beam as a diagnostics of the helium plasma of a charge breeder electron cyclotron resonance ion source. The obtained data allows estimating the upper limit for the ion-ion collision mean-free path of the incident sodium ions, the lower limit of ion-ion collision frequencies for all charge states of the sodium ions and the lower limit of the helium plasma density. The ion-ion collision frequencies of high charge state ions are shown to be at least on the order of 1–10 MHz and the plasma density is estimated to be on the order of 1011 cm−3 or higher. The experimental results are compared to simulations of the 23Na1þ capture into th…

research product

Power efficiency improvements with the radio frequency H− ion source

CW 13.56 MHz radio frequency-driven H(-) ion source is under development at the University of Jyväskylä for replacing an existing filament-driven ion source at the MCC30/15 cyclotron. Previously, production of 1 mA H(-) beam, which is the target intensity of the ion source, has been reported at 3 kW of RF power. The original ion source front plate with an adjustable electromagnet based filter field has been replaced with a new front plate with permanent magnet filter field. The new structure is more open and enables a higher flux of ro-vibrationally excited molecules towards the plasma electrode and provides a better control of the potential near the extraction due to a stronger separation …

research product

Effect of double frequency heating on the lead afterglow beam currents of an electron cyclotron resonance ion source

International audience; The effect of double frequency heating on the performance of the CERN GTS-LHC 14.5 GHz ElectronCyclotron Resonance (ECR) ion source in afterglow mode is reported. The source of the secondary microwave frequency was operated both in pulsed and continuous wave (CW) modes within the range of 12–18 GHz. The results demonstrate that the addition of the secondary frequency can significantly impact the extracted beam currents and the temporal stability of the beam during the afterglow discharge. For example, up to a factor of 2.6 increase was achieved for 208Pb35+ and a factor of 3.1 for 208Pb37+ compared to single frequency afterglow currents. It is shown that these effect…

research product

The electron cyclotron resonance ion source with arc-shaped coils concept

The main limitation to further improve the performance of ECR ion sources is set by the magnet technology related to the multipole magnet field used for the closed minimum-B structure. The JYFL ion source group has sought different approaches to improve the strength of the minimum-B structure required for the production of highly charged ion beams. It was found out that such a configuration can be realized with arc shaped coils. The first prototype, electron cyclotron resonance ion source with arc-shaped coils (ARC-ECRIS), was constructed and tested at JYFL in 2006. It was confirmed that such an ion source can be used for the production of highly charged ion beams. Regardless of several cos…

research product

Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating

BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beam…

research product

Plasma distributions observed in a 2.45 GHz hydrogen discharge

The existence of various spatial distributions of hydrogen plasma in a pulsed 2.45 GHz microwave discharge is demonstrated. The data has been obtained through optical emission diagnostics utilizing an ultra-fast CCD camera system with multi-channel plate (MCP) intensifiers, and a wavelength-filtered photodiode recording temporal light emission signals of hydrogen atoms and molecules. It has been observed that the magnetic field topology and strength are determining the transitions between different plasma patterns and spectral saturation times while neutral gas pressure and microwave power show a weaker influence on the profiles but affect the emitted light intensity.

research product

Recent progress on the superconducting ion source VENUS.

The 28 GHz Ion Source VENUS (versatile ECR for nuclear science) is back in operation after the superconducting sextupole leads were repaired and a fourth cryocooler was added. VENUS serves as an R&D device to explore the limits of electron cyclotron resonance source performance at 28 GHz with its 10 kW gryotron and optimum magnetic fields and as an ion source to increase the capabilities of the 88-Inch Cyclotron both for nuclear physics research and applications. The development and testing of ovens and sputtering techniques cover a wide range of applications. Recent experiments on bismuth demonstrated stable operation at 300 eμA of Bi31+, which is in the intensity range of interest for hig…

research product

The effect of plasma instabilities on the background impurities in charge breeder ECRIS

International audience; Experimental observations of plasma instabilities in the 14.5 GHz PHOENIX charge breeder ECRIS are summarized. It has been found that the injection of 133Cs+ or 85Rb+ into oxygen discharge of the CB-ECRIS can trigger electron cyclotron instabilities, which results to sputtering of the surfaces exposed to the plasma, followed by up to an order of magnitude increase of impurity currents in the extracted n+ charge state distribution. The transition from stable to unstable plasma regime is caused by gradual accumulation and ionization of Cs/Rb altering the discharge parameters in 10 - 100 ms time scale, not by a prompt interaction between the incident ion beam and the EC…

research product

High Current Proton and Deuteron Beams for Accelerators and Neutron Generators

This paper presents the latest results of high current proton and deuteron beam production at SMIS 37 facility at the Institute of Applied Physics (IAP RAS). In this experimental setup the plasma is created and the electrons are heated by 37.5 GHz gyrotron radiation with power up to 100 kW in a simple mirror trap fulfilling the ECR condition. High microwave power and frequency allow sustaining higher density hydrogen plasma (ne up to 2·1013 cm-3) in comparison to conventional ECRIS’s or microwave sources. The low ion temperature, on the order of a few eV, is beneficial to produce proton beams with low emittance. Latest experiments at SMIS 37 were performed using a single-aperture two-electr…

research product

New progress of high current gasdynamic ion source (invited).

The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller’s ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 1013 cm−3 ) …

research product

Ion beam development for the needs of the JYFL nuclear physics programme

The increased requirements towards the use of higher ion beam intensities motivated us to initiate the project to improve the overall transmission of the K130 cyclotron facility. With the facility the transport efficiency decreases rapidly as a function of total beam intensity extracted from the JYFL ECR ion sources. According to statistics, the total transmission efficiency is of the order of 10% for low beam intensities (I(total)or =0.7 mA) and only about 2% for high beam intensities (I(total)1.5 mA). Requirements towards the use of new metal ion beams for the nuclear physics experiments have also increased. The miniature oven used for the production of metal ion beams at the JYFL is not …

research product

The α and γ plasma modes in plasma-enhanced atomic layer deposition with O2-N2 capacitive discharges

Two distinguishable plasma modes in the O2–N2 radio frequency capacitively coupled plasma (CCP) used in remote plasma-enhanced atomic layer deposition (PEALD) were observed. Optical emission spectroscopy and spectra interpretation with rate coefficient analysis of the relevant processes were used to connect the detected modes to the α and γ modes of the CCP discharge. To investigate the effect of the plasma modes on the PEALD film growth, ZnO and TiO2 films were deposited using both modes and compared to the films deposited using direct plasma. The growth rate, thickness uniformity, elemental composition, and crystallinity of the films were found to correlate with the deposition mode. In re…

research product

Observation of Poincaré-Andronov-Hopf Bifurcation in Cyclotron Maser Emission from a Magnetic Plasma Trap

We report the first experimental evidence of a controlled transition from the generation of periodic bursts of electromagnetic radiation into the continuous-wave regime of a cyclotron maser formed in magnetically confined nonequilibrium plasma. The kinetic cyclotron instability of the extraordinary wave of weakly inhomogeneous magnetized plasma is driven by the anisotropic electron population resulting from electron cyclotron plasma heating in a MHD-stable minimum-B open magnetic trap. peerReviewed

research product

Observation of Poincaré-Andronov-Hopf Bifurcation in Cyclotron Maser Emission from a Magnetic Plasma Trap.

We report the first experimental evidence of a controlled transition from the generation of periodic bursts of electromagnetic radiation into the continuous-wave regime of a cyclotron maser formed in magnetically confined nonequilibrium plasma. The kinetic cyclotron instability of the extraordinary wave of weakly inhomogeneous magnetized plasma is driven by the anisotropic electron population resulting from electron cyclotron plasma heating in a MHD-stable minimum-$B$ open magnetic trap.

research product

Effects of magnetic configuration on hot electrons in a minimum-B ECR plasma

To investigate the hot electron population and the appearance of kinetic instabilities in highly charged electron cyclotron resonance ion source (ECRIS), the axially emitted bremsstrahlung spectra and microwave bursts emitted from ECRIS plasma were synchronously measured on SECRAL-II (Superconducting ECR ion source with Advanced design in Lanzhou No. II) ion source with various magnetic field configurations. The experimental results show that when the ratio of the minimum field to the resonance field (i.e. Bmin/Becr) is less than ~0.8, the bremsstrahlung spectral temperature Ts increases linearly with the Bmin/Becr–ratio when the injection, extraction and radial mirror fields are kept const…

research product

Method for estimating charge breeder ECR ion source plasma parameters with short pulse 1+ injection of metal ions

Abstract A new method for determining plasma parameters from beam current transients resulting from short pulse 1+ injection of metal ions into a charge breeder electron cyclotron resonance ion source has been developed. The proposed method relies on few assumptions, and yields local values for the ionisation times 1 / n e σ v q → q + 1 inz , charge exchange times 1 / n 0 σ v q → q − 1 cx , the ion confinement times τ q , as well as estimates for the minimum plasma energy contents n e E e and the plasma triple products n e E e τ q . The method is based on fitting the current balance equation on the extracted beam currents of high charge state ions, and using the fitting coefficients to dete…

research product

Dynamic regimes of cyclotron instability in the afterglow mode of minimum-Belectron cyclotron resonance ion source plasma

The paper is concerned with the dynamic regimes of cyclotron instabilities in non-equilibrium plasma of a minimum-B electron cyclotron resonance ion source operated in pulsed mode. The instability appears in decaying ion source plasma shortly (1–10 ms) after switching off the microwave radiation of the klystron, and manifests itself in the form of powerful pulses of electromagnetic emission associated with precipitation of high-energy electrons along the magnetic field lines. Recently it was shown that this plasma instability causes perturbations of the extracted ion current, which limits the performance of the ion source and generates strong bursts of bremsstrahlung emission. In this artic…

research product

Gasdynamic ECR ion source for negative ion production

H− ion sources are needed in various areas of accelerator technology, such as beam injection into cyclotrons and storage rings and as a part of neutral beam injectors for plasma heating in experimental facilities studying thermonuclear fusion. It was recently demonstrated that gasdynamic ion source based on ECR discharge in a simple mirror trap is very efficient for proton beam production [1]. Here we use the gasdynamic plasma source as the first stage driver of volumetric negative ion production through dissociative electron attachment (DEA) [2]. Experiments were performed with a pulsed 37 GHz / up to 100 kW gyrotron radiation in a dual-trap magnetic system, which consists of two identical…

research product

3D-simulation studies of the modified magnetic multipole structure for an electron cyclotron resonance ion source

Experiments have shown that efficient operation of an electron cyclotron resonance ion source requires that the magnetic field fulfills the so-called scaling laws. In most cases the requirements for the radial magnetic field, i.e. the strength of the magnetic multipole are the most difficult to satisfy. This is due to the fact that the multipole is usually produced from permanent magnets, which makes a value of 1.3 T feasible. One possible solution to increase the multipole field is the so-called Modified MultiPole Structure (JYFL-MMPS). This new idea makes it possible to increase the magnetic field at the places where the plasma flux is in contact with the plasma chamber wall. In this arti…

research product

High yield neutron generator based on a high-current gasdynamic electron cyclotron resonance ion source

In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm2 are demonstrated. Neutron yield from D2O and TiD2 targets was measured in case of its bombardment by pulsed 300 mA Dþ beam with 45 keV energy. Neutron yield density at target surface of 109 s 1 cm2 was detected with a system of two 3 He proportional counters. Estimations based on obtained experimental results show that neutron yield from a high quality TiD2 target bombarded by Dþ beam demonstrated in present work accele…

research product

Electron cyclotron resonance ion sources – physics, technology and future challenges

This article has no abstract. peerReviewed

research product

E-sail test payload of the ESTCube-1 nanosatellite

The scientific mission of ESTCube-1, launched in May 2013, is to measure the electric solar wind sail (E-sail) force in orbit. The experiment is planned to push forward the development of the E-sail, a propulsion method recently invented at the Finnish Meteorological Institute. The E-sail is based on extracting momentum from the solar wind plasma flow by using long thin electrically charged tethers. ESTCube-1 is equipped with one such tether, together with hardware capable of deploying and charging it. At the orbital altitude of ESTCube-1 (660–680 km) there is no solar wind present. Instead, ESTCube-1 shall observe the interaction between the charged tether and the ionospheric plasma. The E…

research product

Plasma instabilities of a charge breeder ECRIS

International audience; Experimental observation of plasma instabilities in a charge breeder electron cyclotron resonance ion source (CB-ECRIS) is reported. It is demonstrated that the injection of 133Cs+ or 85Rb+ ion beam into the oxygen discharge of the CB-ECRIS can trigger electron cyclotron instabilities, which restricts the parameter space available for the optimization of the charge breeding efficiency. It is concluded that the transition from a stable to unstable plasma regime is caused by gradual accumulation and ionization of Cs/Rb and simultaneous change of the discharge parameters in 10–100 ms time scale, not by a prompt interaction between the incident ion beam and the ECRIS pla…

research product

Status of new developments in the field of high-current gasdynamic ECR ion sources at the IAP RAS

The experimental and theoretical research carried out in the past at the Institute of Applied Physics (IAP RAS) resulted in development of a new type of electron cyclotron resonance ion source (ECRIS) – the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller’s classical ECRIS confinement i.e. the quasi-gasdynamic one similar to that in fusion mirror traps . Such ion source type has demonstrated good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z=4-5 for argon) and especially high efficiency for low emittance hydrogen and deuterium beam formation (500 emA current, cur…

research product

High current proton source based on ECR discharge sustained by 37.5 GHz gyrotron radiation

Formation of hydrogen ion beams with high intensity and low transverse emittance is one of the key challenges in accelerator technology. Present work is devoted to experimental investigation of proton beam production from dense plasma (Ne > 1013 cm−3) of an ECR discharge sustained by 37.5 GHz, 100 kW gyrotron radiation at SMIS 37 facility at IAP RAS. The anticipated advantages of the SMIS 37 gasdynamic ion source over the current state-of-the-art proton source technology based on 2.45 GHz hydrogen discharges are described. Experimental result obtained with different extraction configurations i.e. single- and multi-aperture systems are presented. It was demonstrated that ultra bright proton …

research product

IBSIMU: a three-dimensional simulation software for charged particle optics.

A general-purpose three-dimensional (3D) simulation code IBSIMU for charged particle optics with space charge is under development at JYFL. The code was originally developed for designing a slit-beam plasma extraction and nanosecond scale chopping for pulsed neutron generator, but has been developed further and has been used for many applications. The code features a nonlinear FDM Poisson's equation solver based on fast stabilized biconjugate gradient method with ILU0 preconditioner for solving electrostatic fields. A generally accepted nonlinear plasma model is used for plasma extraction. Magnetic fields can be imported to the simulations from other programs. The particle trajectories are …

research product

Broadband microwave emission spectrum associated with kinetic instabilities in minimum-B ECR plasmas

Plasmas of electron cyclotron resonance ion sources (ECRISs) are prone to kinetic instabilities due to the resonant heating mechanism resulting in anisotropic electron velocity distribution. Frequently observed periodic oscillations of extracted ion beam current in the case of high plasma heating power and/or strong magnetic field have been proven to be caused by cyclotrontype instabilities leading to a notable reduction and temporal variation of highly charged ion production. Thus, investigations of such instabilities and techniques for their suppression have become important topics in ECRIS research. The microwave emission caused by the instabilities contains information on the electron e…

research product

A new 18 GHz room temperature electron cyclotron resonance ion source for highly charged ion beams

An innovative 18 GHz HIISI (Heavy Ion Ion Source Injector) room temperature Electron Cyclotron Resonance (ECR) ion source (ECRIS) has been designed and constructed at the Department of Physics, University of Jyväskylä (JYFL), for the nuclear physics program of the JYFL Accelerator Laboratory. The primary objective of HIISI is to increase the intensities of medium charge states (M/Q ≅ 5) by a factor of 10 in comparison with the JYFL 14 GHz ECRIS and to increase the maximum usable xenon charge state from 35+ to 44+ to serve the space electronics irradiation testing program. HIISI is equipped with a refrigerated permanent magnet hexapole and a noncylindrical plasma chamber to achieve very stro…

research product

VUV irradiance measurement of a 2.45 GHz microwave-driven hydrogen discharge

Absolute values of VUV-emission of a 2.45 GHz microwave-driven hydrogen discharge are reported. The measurements were performed with a robust and straightforward method based on a photodiode and optical filters. It was found that the volumetric photon emission rate in the VUV-range (80-250 nm) is $10^{16}$-$10^{17}$ 1/cm$^3$s, which corresponds to approximately 8% dissipation of injected microwave power by VUV photon emission. The volumetric emission of characteristic emission bands was utilized to diagnostics of molecular plasma processes including volumetric rates of ionization, dissociation and excitation to high vibrational levels and metastable states. The estimated reaction rates impl…

research product

Experimental study of hydrogen plasma breakdown in a 2.45 GHz microwave discharge

Temporal evolution of microwave-plasma coupling, vacuum ultraviolet (VUV) light emission and plasma electron temperature and density is reported for a 2.45GHz microwave hydrogen discharge pulsed at 50Hz. Directional couplers, a VUV spectrometer and a Langmuir probe are used for the diagnostics of the plasma breakdown. A 5‐10 µs transient peak of light emission exceeding the steady-state intensity by a factor of 3.3 is observed in coincidence with an abrupt drop in the microwave electric field. Observed light emission intensities combined with cross section data indicate that the electron temperature during the breakdown transient exceeds the steady-state value of 4‐6eV by a factor 3, which …

research product

Simulation of H- ion source extraction systems for the Spallation Neutron Source with Ion Beam Simulator.

A three-dimensional ion optical code IBSimu, which is being developed at the University of Jyväskylä, features positive and negative ion plasma extraction models and self-consistent space charge calculation. The code has been utilized for modeling the existing extraction system of the H(-) ion source of the Spallation Neutron Source. Simulation results are in good agreement with experimental data. A high-current extraction system with downstream electron dumping at intermediate energy has been designed. According to the simulations it provides lower emittance compared to the baseline system at H(-) currents exceeding 40 mA. A magnetic low energy beam transport section consisting of two sole…

research product

First experiments with gasdynamic ion source in CW mode.

A new type of ECR ion source—a gasdynamic ECR ion source—has been recently developed at the Institute of Applied Physics. The main advantages of such device are extremely high ion beam current with a current density up to 600–700 emA/cm2 in combination with low emittance, i.e., normalized RMS emittance below 0.1 π mm mrad. Previous investigations were carried out in pulsed operation with 37.5 or 75 GHz gyrotron radiation with power up to 100 kW at SMIS 37 experimental facility. The present work demonstrates the first experience of operating the gasdynamic ECR ion source in CW mode. A test bench of SMIS 24 facility has been developed at IAP RAS. 24 GHz radiation of CW gyrotron was used for p…

research product

Investigation into the gas mixing effect in ECRIS plasma using Kα and optical diagnostics

Mixing a lighter gas species into the plasma of an ECRIS is known to enhance high charge state production of the heavier gas species. With this investigation, Kα diagnostics, optical emission spectroscopy and the measured charge state distribution of the extracted beam were combined to shed more light on the physics governing this phenomenon. Kα diagnostics data from two ion sources, the JYFL 14 GHz ECRIS and the GTS at iThemba LABS, are presented to gain confidence on the observed trends. The results seem to favor ion cooling as the most likely mechanism responsible for the favorable influence of the gas mixing.Mixing a lighter gas species into the plasma of an ECRIS is known to enhance hi…

research product

Photoelectron emission experiments with ECR-driven multi-dipolar negative ion plasma source

Photoelectron emission measurements have been performed using a 2.45 GHz ECR-driven multi-dipolar plasma source in a low pressure hydrogen discharge. Photoelectron currents induced by light emitted from ECR zone and H− production region are measured from Al, Cu, Mo, Ta, and stainless steel (SAE 304) surfaces as a function of microwave power and neutral hydrogen pressure. The total photoelectron current from the plasma chamber wall is estimated to reach values up to 1 A for 900 W of injected microwave power. It is concluded that the volumetric photon emission rate in wavelength range relevant for photoelectron emission is a few times higher in arc discharge. peerReviewed

research product

Prospects for advanced electron cyclotron resonance and electron beam ion source charge breeding methods for EURISOL

International audience; As the most ambitious concept of isotope separation on line (ISOL) facility, EURISOL aims at producing unprecedented intensities of post-accelerated radioactive isotopes. Charge breeding, which transforms the charge state of radioactive beams from 1+ to an n+ charge state prior to postacceleration, is a key technology which has to overcome the following challenges: high charge states for high energies, efficiency, rapidity and purity. On the roadmap to EURISOL, a dedicated R&D is being undertaken to push forward the frontiers of the present state-of-the-art techniques which use either electron cyclotron resonance or electron beam ion sources. We describe here the gui…

research product

Study of Gasdynamic Electron Cyclotron Resonance Plasma Vacuum Ultraviolet Emission to Optimize Negative Hydrogen Ion Production Efficiency

Negative hydrogen ion sources are used as injectors into accelerators and drive the neutral beam heating in ITER. Certain processes in low-temperature hydrogen plasmas are accompanied by the emission of vacuum ultraviolet (VUV) emission. Studying the VUV radiation therefore provides volumetric rates of plasma-chemical processes and plasma parameters. In the past we have used gasdynamic ECR discharge for volumetric negative ion production and investigated the dependencies between the extracted H$^-$ current density and various ion source parameters. It was shown that it is possible to reach up to 80 mA/cm$^2$ of negative ion current density with a two electrode extraction. We report experime…

research product

Photo-assisted O− and Al− production with a cesium sputter ion source

It has been recently proposed that the production of negative ions with cesium sputter ion sources could be enhanced by laser-assisted resonant ion pair production. We have tested this hypothesis by measuring the effect of pulsed diode lasers at various wavelengths on the O− and Al− beam current produced from Al2O3 cathode of a cesium sputter ion source. The experimental results provide evidence for the existence of a wavelength-dependent photo-assisted enhancement of negative ion currents but cast doubt on its alleged resonant nature as the effect is observed for both O− and Al− ions at laser energies above a certain threshold. The beam current transients observed during the laser pulses s…

research product

Spectroscopic method to study low charge state ion and cold electron population in ECRIS plasma

The results of optical emission spectroscopy experiments probing the cold electron population of a 14 GHz Electron Cyclotron Resonance Ion Source (ECRIS) are reported. The study has been conducted with a high resolution spectrometer and data acquisition setup developed specifically for the diagnostics of weak emission line characteristic to ECRIS plasmas. The optical emission lines of low charge state ions and neutral atoms of neon have been measured and analyzed with the line-ratio method. The aforementioned electron population temperature of the cold electron population (Te < 100 eV) is determined for Maxwell-Boltzmann and Druyvesteyn energy distributions to demonstrate the applicability …

research product

ECRIS plasma spectroscopy with a high resolution spectrometer

Electron Cyclotron Resonance Ion Source (ECRIS) plasmas contain high-energy electrons and highly charged ions implying that only noninvasive methods such as optical emission spectroscopy are reliable in their characterization. A high-resolution spectrometer (10 pm FWHM at 632 nm) enabling the detection of weak emission lines has been developed at University of Jyväskylä, Department of Physics (JYFL) for this purpose. Diagnostics results probing the densities of ions, neutral atoms, and the temperature of the cold electron population in the JYFL 14 GHz ECRIS are described. For example, it has been observed that the cold electron temperature drops from 40 eV to 20 eV when the extraction volta…

research product

Charge breeding time investigations of electron cyclotron resonance charge breeders

To qualify electron cyclotron resonance charge breeders, the method that is traditionally used to evaluate the charge breeding time consists in generating a rising edge of the injected beam current and measuring the time in which the extracted multicharged ion beam reaches 90% of its final current. It is demonstrated in the present paper that charge breeding times can be more accurately measured by injecting short pulses of 1 + ions and recording the time resolved responses of N + ions. This method is used to probe the effect of the 1 + ion accumulation in the plasma known to disturb the buffer gas plasma equilibrium and is a step further in understanding the large discrepancies reported in…

research product

Studies of plasma breakdown and electron heating on a 14 GHz ECR ion source through measurement of plasma bremsstrahlung

Temporal evolution of plasma bremsstrahlung emitted by a 14?GHz electron cyclotron resonance ion source (ECRIS) operated in pulsed mode is presented in the energy range 1.5?400?keV with 100??s resolution. Such a high temporal resolution together with this energy range has never been measured before with an ECRIS. Data are presented as a function of microwave power, neutral gas pressure, magnetic field configuration and seed electron density. The saturation time of the bremsstrahlung count rate is almost independent of the photon energy up to 100?keV and exhibits similar characteristics with the neutral gas balance. The average photon energy during the plasma breakdown is significantly highe…

research product