0000000000399533
AUTHOR
Julia Vallejo
Magnetic coupling and spin topology in linear oxalato-bridged tetranuclear chromium(III)–copper(II) complexes with aromatic diimine ligands
Abstract A novel heterotetranuclear chromium(III)–copper(II) complex of formula {[CrIII(bpy)(ox)2]2CuII2(bpy)2(ox)}·6H2O (1) has been synthesized by the ligand exchange reaction between Ph4P[CrIII(bpy)(ox)2]·H2O and [CuII(bpy)2(NO3)]NO3·MeOH in methanol (bpy = 2,2′-bipyridine; ox2− = oxalate dianion). The X-ray crystal structure of 1 consists of neutral oxalato-bridged CrIII2Cu2II zigzag entities which are formed by the monodentate coordination of two [CrIII(bpy)(ox)2]− mononuclear anionic units through one of its two oxalato groups toward a [CuII2(bpy)2(ox)]2+ dinuclear cationic moiety featuring relatively long axial bonds at the square pyramidal CuII ions. Variable temperature (2.0–300 K)…
Cytosine Nucleobase Ligand: A Suitable Choice for Modulating Magnetic Anisotropy in Tetrahedrally Coordinated Mononuclear CoII Compounds
A family of tetrahedral mononuclear CoII complexes with the cytosine nucleobase ligand is used as the playground for an in-depth study of the effects that the nature of the ligand, as well as their noninnocent distortions on the Co(II) environment, may have on the slow magnetic relaxation effects. Hence, those compounds with greater distortion from the ideal tetrahedral geometry showed a larger-magnitude axial magnetic anisotropy (D) together with a high rhombicity factor (E/D), and thus, slow magnetic relaxation effects also appear. In turn, the more symmetric compound possesses a much smaller value of the D parameter and, consequently, lacks single-ion magnet behavior.
Single-Ion Magnetic Behavior in CoII-CoIII Mixed-Valence Dinuclear and Pseudodinuclear Complexes
Two CoII–CoIII mixed-valence complexes of molecularformulas [Co2(H2L)2(H2O)2][Co2(H2L)2(H2O)(m-phth)]·8(H2O) {1;H2L2–= 2-[(2-hydroxy-3-methoxybenzylidene)amino]-2-(hydroxymethyl)propane-1,3-diolato, m-phth = 1,3-benzene-dicarboxylate} and [Co4(H2L)4(H2O)2(ppda)]·2(dmf)·3.2(H2O) {2;ppda = 1,4-phenylenediacrylate; dmf = N,N-dimethyl-formamide} were synthesized and characterized by single-crys-tal X-ray diffraction and magnetic studies at low temperature.The structural determination reveals that 1 is composed of di-nuclear ion pairs, namely, a cationic [Co2(H2L)2(H2O)2]+(1+) andan anionic [Co2(H2L)2(H2O)(m-phth)]–(1–) unit. In each of these ions, the CoIIand CoIIIcenters present distorted octa…
Ferromagnetic coupling through the oxalate bridge in heterobimetallic Cr(III)–M(II) (M = Mn and Co) assemblies
Abstract Two novel compounds, {[Cr(pyim)(ox)2]2Mn}n·2nCH3OH (1) and {[Cr(pyim)(ox)2]2Co(H2O)2}·7.5H2O (2) [pyim = 2-(2′-pyridyl)imidazole and H2ox = oxalic acid], were synthesized by using the mononuclear chromium(III) complex PPh4[Cr(pyim)(ox)2]·H2O (PPh4+ = tetraphenylphosphonium) as metalloligand towards the fully solvated manganese(II) (1) and cobalt(II) (2) ions as perchlorate salts. The structure of 1 consists of neutral double chains, with diamond-shaped units sharing the manganese(II) ions with the two other corners being occupied by the chromium(III) ions. The two metal centres in 1 are connected by bis-bidentate oxalate groups, each [CrIII(pyim)(ox)2]− unit being bound to two mang…
Coligand Effects on the Field-Induced Double Slow Magnetic Relaxation in Six-Coordinate Cobalt(II) Single-Ion Magnets (SIMs) with Positive Magnetic Anisotropy.
Two mononuclear cobalt(II) compounds of formula [Co(dmphen)2(OOCPh)]ClO4·1/2H2O·1/2CH3OH (1) and [Co(dmbipy)2(OOCPh)]ClO4 (2) (dmphen = 2,9-dimethyl-1,10-phenanthroline, dmbipy = 6,6'-dimethyl-2,2'-bipyridine and HOOCPh = benzoic acid) are prepared and magnetostructurally investigated. Each cobalt(II) ion is six-coordinate with a distorted octahedral CoN4O2 environment. The complex cations are interlinked leading to supramolecular chains (1) and pairs (2) that grow along the crystallographic c-axis with racemic mixtures of (Δ,Λ)-Co units. FIRMS allowed us to directly measure the zero-field splitting between the two lowest Kramers doublets, which led to axial anisotropy values of 58.3 cm-1 ≤…
Cyanido‐Bearing Cobalt(II/III) Metalloligands – Synthesis, Crystal Structure, and Magnetic Properties
New examples of cyanido-bearing cobalt(III/II) complexes have been obtained by treatment of CoCl2·6H2O with bidentate nitrogen donors and potassium cyanide in a methanol/water mixture. Depending on the chelating ligand, the cobalt(III) complexes PPh4[Co(en)(CN)4] (1, en = ethylenediamine), PPh4[Co(ampy)(CN)4]·1.5H2O [2, ampy = 2-(aminomethyl)pyridine], and PPh4[Co(phen)(CN)4]·CH3OH·0.25H2O (3, phen = 1,10-phenanthroline) and the cobalt(II) complex PPh4[Co(dmphen)(CN)3]·3H2O (4, dmphen = 2,9-dimethyl-1,10-phenanthroline) were obtained. The complexes were characterized by single-crystal X-ray diffraction and variable-temperature magnetic measurements. They are all mononuclear species with six…
Homochiral self-assembly of biocoordination polymers: anion-triggered helicity and absolute configuration inversion† †Electronic supplementary information (ESI) available: Preparation and physical characterization data of 1P and 2M, additional structural description, UV-Vis and CD spectra (Fig. S1–S7), crystallographic refinement details for 1P and 2M (Table S1), selected bond distances and angles for 1P and 2M (Tables S2–S5), ESI(+)-MS and ESI(+)-MSMS spectra (Fig. S8–S11 and Schemes S1 and S2) and PXRD (Fig. S12). CCDC 1046609 and 1046610. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc01089f Click here for additional data file. Click here for additional data file.
The templating roles of ClO4 – and CF3SO3 – allow control and reversible inversion of the chirality of nucleotide-based copper(ii) helices. These results hold great potential for developing responsive materials.
Slow magnetic relaxation in a hydrogen-bonded 2D array of mononuclear dysprosium(III) oxamates.
The reaction of N-(2,6-dimethylphenyl)oxamic acid with dysprosium(III) ions in a controlled basic media afforded the first example of a mononuclear lanthanide oxamate complex exhibiting a field-induced slow magnetic relaxation behavior typical of single-ion magnets (SIMs). The hydrogen-bond-mediated self-assembly of this new bifunctional dysprosium(III) SIM in the solid state provides a unique example of 2D hydrogen-bonded polymer with a herringbone net topology.
Reversible solvatomagnetic switching in a single-ion magnet from an entatic state
We have developed a new strategy for the design and synthesis of multifunctional molecular materials showing reversible magnetic and optical switching.
Field-Induced Hysteresis and Quantum Tunneling of the Magnetization in a Mononuclear Manganese(III) Complex
International audience
Reversible Solvatomagnetic Switching in a Spongelike Manganese(II)-Copper(II) 3D Open Framework with a Pillared Square/Octagonal Layer Architecture
The concept of "molecular magnetic sponges" was introduced for the first time in 1999 by the creative imagination of the late Olivier Kahn. It refers to the exotic spongelike behavior of certain molecule-based materials that undergo a dramatic change of their magnetic properties upon reversible dehydration/rehydration processes. Here we report a unique example of a manganese(II)-copper(II) mixed-metal-organic framework of formula [Na(H(2)O)(4)](4)[Mn(4){Cu(2)(mpba)(2)(H(2)O)(4)}(3)]·56.5H(2)O (1) (mpba=N,N'-1,3-phenylenebis(oxamate)). Compound 1 possesses a 3D Mn(II)(4)Cu(II)(6) pillared layer structure with mixed square and octagonal pores of approximate dimensions 1.2×1.2 nm and 2.1×3.0 n…
Ferromagnetic coupling and magnetic anisotropy in oxalato-bridged trinuclear chromium(iii)-cobalt(ii) complexes with aromatic diimine ligands
Two novel heterotrinuclear chromium(III)-cobalt(II) complexes of formula {[Cr(III)(bpy)(ox)(2)](2)Co(II)(Me(2)bpy)}.2H(2)O (1) and {[Cr(III)(phen)(ox)(2)](2)Co(II)(Me(2)bpy)}.1.5H(2)O (2) [ox = oxalato, bpy = 2,2'-bipyridine, Me(2)bpy = 6,6'-dimethyl-2,2'-bipyridine, and phen = 1,10-phenanthroline] have been synthesized using the "complex-as-ligand/complex-as-metal" strategy. The X-ray crystal structure of 2 consists of neutral oxalato-bridged Cr(III)(2)Co(II) bent entities formed by the coordination of two anionic [Cr(III)(phen)(ox)(2)](-) complexes through one of their oxalato groups toward a cationic cis-[Co(II)(Me(2)bpy)](2+) complex. The three tris(chelated), six-coordinated metal atom…
Slow magnetic relaxation in carbonato-bridged dinuclear lanthanide(iii) complexes with 2,3-quinoxalinediolate ligands
The coordination chemistry of the 2,3-quinoxalinediolate ligand with different lanthanide(iii) ions in basic media in air affords a new family of carbonato-bridged M 2 III compounds (M = Pr, Gd and Dy), the Dy 2 III analogue exhibiting slow magnetic relaxation behaviour typical of single-molecule magnets. This journal is © 2012 The Royal Society of Chemistry.
Syntheses, crystal structures and magnetic properties of five new manganese(ii) complexes: Influence of the conformation of different alkyl/aryl substituted malonate ligands on the crystal packing
et al.
Single ion magnet behaviour in a two-dimensional network of dicyanamide-bridged cobalt(II) ions
A novel two-dimensional coordination polymer of the formula [Co(dca)2(atz)2]n (1) resulted from assembling trans-bis(2-amino-1,3,5-triazine)cobalt(II) motifs by dicyanamide spacers. Variable-temperature dc and ac magnetic susceptibility measurements of 1 show that the high-spin cobalt(II) ions act as single ion magnets (SIMs).
Zinc(ii), cobalt(ii) and manganese(ii) networks with phosphoserine ligand: synthesis, crystal structures and magnetic and proton conductivity properties
A series of zinc(II), cobalt(II) and manganese(II) coordination networks with phosphoserine ligand (H3PSer) are synthesized and characterized. Whereas in compounds 1 and 2 with the general formula [M(HPser)]n [M = Zn (1) and Co (2)], the metal(II) ion presents a tetrahedral geometry, in [Co(HPSer)(H2O)2]n (3) and [Mn(HPSer)(H2O)]n (4), the metal(II) ions are in a distorted octahedral geometry. The 3D frameworks are formed by inorganic layers built up from MO4 or MO6 polyhedra and phosphate groups. These layers are linked by the carboxylate groups of the phosphoserine ligand. The presence of extended hydrogen bonding stabilizes the 3D network and favours the proton transfer leading to modera…
Synthesis, crystal structure and magnetic properties of a new [ZnII6DyIII6] dodecanuclear motif
Abstract A new dodecanuclear complex, [{(HL)(L)(dmf)ZnIIDyIII(dmf)(H2O)}6]·3dmf·4.2H2O has been assembled using a supramolecular compartmental ligand (H3L results from the condensation reaction of 3-formylsalicylic acid and hydroxylamine). The six DyIII ions describe an octahedron that is inscribed into the octahedron generated by the zinc(II) ions each DyIII ion from this motif behaving as a single ion magnet.
Field-Induced Slow Magnetic Relaxation in a Mononuclear Manganese(III)-Porphyrin Complex
We report on a novel manganese(III)-porphyrin complex with the formula [Mn(III) (TPP)(3,5-Me2 pyNO)2 ]ClO4 ⋅CH3 CN (2; 3,5-Me2 pyNO=3,5-dimethylpyridine N-oxide, H2 TPP=5,10,15,20-tetraphenylporphyrin), in which the Mn(III) ion is six-coordinate with two monodentate 3,5-Me2 pyNO molecules and a tetradentate TPP ligand to build a tetragonally elongated octahedral geometry. The environment in 2 is responsible for the large and negative axial zero-field splitting (D=-3.8 cm(-1) ), low rhombicity (E/|D|=0.04) of the high-spin Mn(III) ion, and, ultimately, for the observation of slow magnetic-relaxation effects (Ea =15.5 cm(-1) at H=1000 G) in this rare example of a manganese-based single-ion ma…
Theoretical Insights into the Ferromagnetic Coupling in Oxalato-Bridged Chromium(III)-Cobalt(II) and Chromium(III)-Manganese(II) Dinuclear Complexes with Aromatic Diimine Ligands
Two novel heterobimetallic complexes of formula [Cr(bpy)(ox)(2)Co(Me(2)phen)(H(2)O)(2)][Cr(bpy)(ox)(2)]·4H(2)O (1) and [Cr(phen)(ox)(2)Mn(phen)(H(2)O)(2)][Cr(phen)(ox)(2)]·H(2)O (2) (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and Me(2)phen = 2,9-dimethyl-1,10-phenanthroline) have been obtained through the "complex-as-ligand/complex-as-metal" strategy by using Ph(4)P[CrL(ox)(2)]·H(2)O (L = bpy and phen) and [ML'(H(2)O)(4)](NO(3))(2) (M = Co and Mn; L' = phen and Me(2)phen) as precursors. The X-ray crystal structures of 1 and 2 consist of bis(oxalato)chromate(III) mononuclear anions, [Cr(III)L(ox)(2)](-), and oxalato-bridged chromium(III)-cobalt(II) and chromium(III)-manganese(II) din…
A novel oxalate-based three-dimensional coordination polymer showing magnetic ordering and high proton conductivity
A novel three-dimensional (3D) coordination polymer with the formula (C3N2H5)4[MnCr2(ox)6]·5H2O (2), where ox = oxalate and C3N2H5 = imidazolium cation, is reported. Single crystal X-ray diffraction reveals that this porous coordination polymer adopts a chiral three-dimensional quartz-like architecture, with the guest imidazolium cations and water molecules being hosted in its pores. This novel multifunctional material exhibits both a ferromagnetic ordering at TC = 3.0 K, related to the host MnCr2 network, and high proton conductivity [1.86 × 10−3 S cm−1 at 295 K and 88% relative humidity (RH)] due to the presence of the acidic imidazolium cations and free water molecules. The similarity of…
Two Polymorphic Forms of a Six-Coordinate Mononuclear Cobalt(II) Complex with Easy-Plane Anisotropy: Structural Features, Theoretical Calculations, and Field-Induced Slow Relaxation of the Magnetization.
A mononuclear cobalt(II) complex [Co(3,5-dnb)2(py)2(H2O)2] {3,5-Hdnb = 3,5-dinitrobenzoic acid; py = pyridine} was isolated in two polymorphs, in space groups C2/c (1) and P21/c (2). Single-crystal X-ray diffraction analyses reveal that 1 and 2 are not isostructural in spite of having equal formulas and ligand connectivity. In both structures, the Co(II) centers adopt octahedral {CoN2O4} geometries filled by pairs of mutually trans terminal 3,5-dnb, py, and water ligands. However, the structures of 1 and 2 disclose distinct packing patterns driven by strong intermolecular O-H···O hydrogen bonds, leading to their 0D→2D (1) or 0D→1D (2) extension. The resulting two-dimensional layers and one-…
Solution and solid state studies with the bis-oxalato building block [Cr(pyim)(C2O4)2]− [pyim = 2-(2′-pyridyl)imidazole]
The preparation, X-ray structure, and variable temperature magnetic study of the new compound {Ba(H2O)3/2[Cr(pyim)(C2O4)2]2}n·9/2nH2O (1) [pyim = 2-(2′-pyridyl)imidazole and C2O42− = dianion of oxalic acid], together with the potentiometric and spectrophotometric studies of the protonation/deprotonation equilibria of the pyim ligand and the ternary complex [Cr(pyim)(C2O4)2]−, are reported herein. The crystal structure of 1 consists of neutral chains, with diamond-shaped units sharing barium(II), with the two other corners occupied by chromium(III). The two metal centers are connected through bis(bidentate) oxalate. Very weak antiferromagnetic interactions between the chromium(III) ions occu…
Guest-dependent single-ion magnet behaviour in a cobalt(ii) metal-organic framework.
Single-ion magnets (SIMs) are the smallest possible magnetic devices for potential applications in quantum computing and high-density information storage. Both, their addressing in surfaces and their organization in metal-organic frameworks (MOFs) are thus current challenges in molecular chemistry. Here we report a two-dimensional 2D MOF with a square grid topology built from cobalt(ii) SIMs as nodes and long rod-like aromatic bipyridine ligands as linkers, and exhibiting large square channels capable to host a large number of different guest molecules. The organization of the cobalt(ii) nodes in the square layers improves the magnetic properties by minimizing the intermolecular interaction…
Solid-state dinuclear-to-trinuclear conversion in an oxalato-bridged chromium(III)-cobalt(II) complex as a new route toward single-molecule magnets.
A novel bis(oxalato)chromium(III) salt of a ferromagnetically coupled, oxalato-bridged dinuclear chromium(III)-cobalt(II) complex of formula [CrL(ox)(2)CoL'(H(2)O)(2)][CrL(ox)(2)]·4H(2)O (1) has been self-assembled in solution using different aromatic α,α'-diimines as blocking ligands, such as 2,2'-bipyridine (L = bpy) and 2,9-dimethyl-1,10-phenanthroline (L' = Me(2)phen). Thermal dehydration of 1 leads to an intriguing solid-state reaction between the S = 3/2 Cr(III) anions and the S = 3 Cr(III)Co(II) cations to give a ferromagnetically coupled, oxalato-bridged trinuclear chromium(III)-cobalt(II) complex of formula {[CrL(ox)(2)](2)CoL'} (2). Complex 2 possesses a moderately anisotropic S =…
Molecular magnetism, quo vadis? A historical perspective from a coordination chemist viewpoint☆
Abstract Molecular magnetism has travelled a long way from the pioneering studies on electron exchange and double exchange or spin crossover and valence tautomerism in small oligonuclear complexes, from mono- to di- and tetranuclear species, to the current investigations about magnetic anisotropy and spin dynamics or quantum coherence of simple mono- or large polynuclear complexes, behaving as switchable bistable molecular nanomagnets for potential applications in information data storage and processing. In this review, we focus on the origin and development of the research in the field of molecular magnetism from a coordination chemistry viewpoint, which dates back to the establishment of …
Single-ion magnet behaviour in mononuclear and two-dimensional dicyanamide-containing cobalt(ii) complexes.
Three cobalt(II) complexes of formulae [Co(dca)2(bim)4] (1), [Co(dca)2(bim)2]n (2) and [Co(dca)2(bmim)2]n (3) [dca = dicyanamide, bim = 1-benzylimidazole and bmim = 1-benzyl-2-methylimidazole] were prepared and structurally analyzed by single-crystal X-ray crystallography. Compound 1 is a mononuclear species where the cobalt(II) ion is six-coordinate with four bim molecules in the equatorial positions [Co–Nbim = 2.1546(15) and 2.1489(15) A] and two trans-positioned dca ligands [Co–Ndca = 2.1575(18) A] in the axial sites of a somewhat distorted octahedral surrounding. The structures of 2 and 3 consist of two-dimensional grids of cobalt(II) ions where each metal atom is linked to the other fo…
Field-Induced Slow Magnetic Relaxation in a Six-Coordinate Mononuclear Cobalt(II) Complex with a Positive Anisotropy
International audience; The novel mononuclear Co(II) complex cis-[Co-II(dmphen)(2)(NCS)(2)]center dot 0.25EtOH (1) (dmphen = 2,9-dimethyl-1,10-phenanthroline) features a highly rhombically distorted octahedral environment that is responsible for the strong positive axial and rhombic magnetic anisotropy of the high-spin Co-II ion (D = +98 cm(-1) and E = +8.4 cm(-1)). Slow magnetic relaxation effects were observed for 1 in the presence of a dc magnetic field, constituting the first example of field-induced single-molecule magnet behavior in a mononuclear six-coordinate Co(II) complex with a transverse anisotropy energy barrier.
Two-Dimensional Coordination Polymers Constructed Using, Simultaneously, Linear and Angular Spacers and Cobalt(II) Nodes. New Examples of Networks of Single-Ion Magnets
Two novel bidimensional coordination polymers, [Co(azbbpy)(4,4'-bipy)0.5(DMF)(NCS)2]·MeOH (1) and [Co(azbbpy)(bpe)0.5(DMF)(NCS)2]·0.25H2O (2), resulted from the assembling of cobalt(II) ions by 1,3-bis(4-pyridyl)azulene, using either 4,4'-bipyridyl or 1,2-bis(4-pyridyl)ethylene as neutral spacers. The cobalt(II) nodes in 1 and 2 act as single-ion magnets (SIMs).
Homochiral self-assembly of biocoordination polymers: anion-triggered helicity and absolute configuration inversion
The different natures of the weakly coordinating anions – triflate or perchlorate – in the Cu2+-mediated self-assembly of cytidine monophosphate nucleotide play a fundamental role in the homochiral resolution process, yielding one-dimensional copper(II) coordination polymers of opposite helicity that can be easily inverted, in a reversible way, by changing the nature of the anion as revealed by circular dichroism experiments both in solution and in the solid state.
CCDC 1914220: Experimental Crystal Structure Determination
Related Article: Julia Vallejo, Marta Viciano-Chumillas, Francisco Lloret, Miguel Julve, Isabel Castro, J. Krzystek, Mykhaylo Ozerov, Donatella Armentano, Giovanni De Munno, Joan Cano|2019|Inorg.Chem.|58|15726|doi:10.1021/acs.inorgchem.9b01719
CCDC 1415919: Experimental Crystal Structure Determination
Related Article: Julia Vallejo, Francisco R. Fortea-Pérez, Emilio Pardo, Samia Benmansour, Isabel Castro, J. Krzystek, Donatella Armentano, Joan Cano|2016|Chemical Science|7|2286|doi:10.1039/C5SC04461H
CCDC 1555659: Experimental Crystal Structure Determination
Related Article: Marta Mon, Julia Vallejo, Jorge Pasán, Oscar Fabelo, Cyrille Train, Michel Verdaguer, Shin-ichi Ohkoshi, Hiroko Tokoro, Kosuke Nakagawa, Emilio Pardo|2017|Dalton Trans.|46|15130|doi:10.1039/C7DT03415F
CCDC 1415917: Experimental Crystal Structure Determination
Related Article: Julia Vallejo, Francisco R. Fortea-Pérez, Emilio Pardo, Samia Benmansour, Isabel Castro, J. Krzystek, Donatella Armentano, Joan Cano|2016|Chemical Science|7|2286|doi:10.1039/C5SC04461H
CCDC 1524200: Experimental Crystal Structure Determination
Related Article: Francisco R. Fortea-Pérez, Julia Vallejo, Jorge Pasán, Catalina Ruiz-Pérez, Joan Cano, Francesc Lloret, Miguel Julve|2018|Comptes Rendus Chimie|22|452|doi:10.1016/j.crci.2018.10.007
CCDC 989258: Experimental Crystal Structure Determination
Related Article: Maria-Gabriela Alexandru, Diana Visinescu, Nadia Marino, Giovanni De Munno, Julia Vallejo, Francesc Lloret, Miguel Julve|2014|Eur.J.Inorg.Chem.||4564|doi:10.1002/ejic.201402190
CCDC 940301: Experimental Crystal Structure Determination
Related Article: Alina S. Dinca, Julia Vallejo, Sergiu Shova, Francesc Lloret, Miguel Julve and Marius Andruh|2013|Polyhedron|65|238|doi:10.1016/j.poly.2013.08.049
CCDC 1474778: Experimental Crystal Structure Determination
Related Article: Rosaria Bruno, Julia Vallejo, Nadia Marino, Giovanni De Munno, J. Krzystek, Joan Cano, Emilio Pardo, and Donatella Armentano|2017|Inorg.Chem.|56|1857|doi:10.1021/acs.inorgchem.6b02448
CCDC 989260: Experimental Crystal Structure Determination
Related Article: Maria-Gabriela Alexandru, Diana Visinescu, Nadia Marino, Giovanni De Munno, Julia Vallejo, Francesc Lloret, Miguel Julve|2014|Eur.J.Inorg.Chem.||4564|doi:10.1002/ejic.201402190
CCDC 1432272: Experimental Crystal Structure Determination
Related Article: Anna Świtlicka-Olszewska, Joanna Palion-Gazda, Tomasz Klemens, Barbara Machura, Julia Vallejo, Joan Cano, Francesc Lloret, Miguel Julve|2016|Dalton Trans.|45|10181|doi:10.1039/C6DT01160H
CCDC 937587: Experimental Crystal Structure Determination
Related Article: Mariadel Déniz, Irene Hernández-Rodríguez, Jorge Pasán, Oscar Fabelo, Laura Cañadillas-Delgado, Julia Vallejo, Miguel Julve, Francesc Lloret, Catalina Ruiz-Pérez|2014|CrystEngComm|16|2766|doi:10.1039/C3CE42086H
CCDC 937589: Experimental Crystal Structure Determination
Related Article: Mariadel Déniz, Irene Hernández-Rodríguez, Jorge Pasán, Oscar Fabelo, Laura Cañadillas-Delgado, Julia Vallejo, Miguel Julve, Francesc Lloret, Catalina Ruiz-Pérez|2014|CrystEngComm|16|2766|doi:10.1039/C3CE42086H
CCDC 946980: Experimental Crystal Structure Determination
Related Article: Francisco R. Fortea-Pérez, Julia Vallejo, Mario Inclán, Mariadel Déniz, Jorge Pasán, Enrique García-España and Miguel Julve|2013|J.Coord.Chem.|66|3349|doi:10.1080/00958972.2013.837460
CCDC 1415920: Experimental Crystal Structure Determination
Related Article: Julia Vallejo, Francisco R. Fortea-Pérez, Emilio Pardo, Samia Benmansour, Isabel Castro, J. Krzystek, Donatella Armentano, Joan Cano|2016|Chemical Science|7|2286|doi:10.1039/C5SC04461H
CCDC 1063253: Experimental Crystal Structure Determination
Related Article: Alejandro Pascual-Álvarez, Julia Vallejo, Emilio Pardo, Miguel Julve, Francesc Lloret, J. Krzystek, Donatella Armentano, Wolfgang Wernsdorfer, Joan Cano|2015|Chem.-Eur.J.|21|17299|doi:10.1002/chem.201502637
CCDC 989261: Experimental Crystal Structure Determination
Related Article: Maria-Gabriela Alexandru, Diana Visinescu, Nadia Marino, Giovanni De Munno, Julia Vallejo, Francesc Lloret, Miguel Julve|2014|Eur.J.Inorg.Chem.||4564|doi:10.1002/ejic.201402190
CCDC 937590: Experimental Crystal Structure Determination
Related Article: Mariadel Déniz, Irene Hernández-Rodríguez, Jorge Pasán, Oscar Fabelo, Laura Cañadillas-Delgado, Julia Vallejo, Miguel Julve, Francesc Lloret, Catalina Ruiz-Pérez|2014|CrystEngComm|16|2766|doi:10.1039/C3CE42086H
CCDC 1046609: Experimental Crystal Structure Determination
Related Article: Nadia Marino, Donatella Armentano, Emilio Pardo, Julia Vallejo, Francesco Neve, Leonardo Di Donna, Giovanni De Munno|2015|Chemical Science|6|4300|doi:10.1039/C5SC01089F
CCDC 953476: Experimental Crystal Structure Determination
Related Article: Julia Vallejo, Alejandro Pascual-Alvarez, Joan Cano, Isabel Castro, Miguel Julve, Francesc Lloret, J. Krzystek, Giovanni De Munno, Donatella Armentano, Wolfgang Wernsdorfer, Rafael Ruiz-García, Emilio Pardo|2013|Angew.Chem.,Int.Ed.|52|14075|doi:10.1002/anie.201308047
CCDC 1029369: Experimental Crystal Structure Determination
Related Article: Adrian E. Ion, Simona Nica, Augustin M. Madalan, Sergiu Shova, Julia Vallejo, Miguel Julve, Francesc Lloret, Marius Andruh|2015|Inorg.Chem.|54|16|doi:10.1021/ic5025197
CCDC 1415918: Experimental Crystal Structure Determination
Related Article: Julia Vallejo, Francisco R. Fortea-Pérez, Emilio Pardo, Samia Benmansour, Isabel Castro, J. Krzystek, Donatella Armentano, Joan Cano|2016|Chemical Science|7|2286|doi:10.1039/C5SC04461H
CCDC 1415921: Experimental Crystal Structure Determination
Related Article: Julia Vallejo, Francisco R. Fortea-Pérez, Emilio Pardo, Samia Benmansour, Isabel Castro, J. Krzystek, Donatella Armentano, Joan Cano|2016|Chemical Science|7|2286|doi:10.1039/C5SC04461H
CCDC 1029370: Experimental Crystal Structure Determination
Related Article: Adrian E. Ion, Simona Nica, Augustin M. Madalan, Sergiu Shova, Julia Vallejo, Miguel Julve, Francesc Lloret, Marius Andruh|2015|Inorg.Chem.|54|16|doi:10.1021/ic5025197
CCDC 937591: Experimental Crystal Structure Determination
Related Article: Mariadel Déniz, Irene Hernández-Rodríguez, Jorge Pasán, Oscar Fabelo, Laura Cañadillas-Delgado, Julia Vallejo, Miguel Julve, Francesc Lloret, Catalina Ruiz-Pérez|2014|CrystEngComm|16|2766|doi:10.1039/C3CE42086H
CCDC 1474777: Experimental Crystal Structure Determination
Related Article: Rosaria Bruno, Julia Vallejo, Nadia Marino, Giovanni De Munno, J. Krzystek, Joan Cano, Emilio Pardo, and Donatella Armentano|2017|Inorg.Chem.|56|1857|doi:10.1021/acs.inorgchem.6b02448
CCDC 1518364: Experimental Crystal Structure Determination
Related Article: Soumen Manna, Apurba Bhunia, Soumen Mistri, Julia Vallejo, Ennio Zangrando, Horst Puschmann, Joan Cano, Subal Chandra Manna|2017|Eur.J.Inorg.Chem.||2585|doi:10.1002/ejic.201700046
CCDC 1415915: Experimental Crystal Structure Determination
Related Article: Julia Vallejo, Francisco R. Fortea-Pérez, Emilio Pardo, Samia Benmansour, Isabel Castro, J. Krzystek, Donatella Armentano, Joan Cano|2016|Chemical Science|7|2286|doi:10.1039/C5SC04461H
CCDC 937588: Experimental Crystal Structure Determination
Related Article: Mariadel Déniz, Irene Hernández-Rodríguez, Jorge Pasán, Oscar Fabelo, Laura Cañadillas-Delgado, Julia Vallejo, Miguel Julve, Francesc Lloret, Catalina Ruiz-Pérez|2014|CrystEngComm|16|2766|doi:10.1039/C3CE42086H
CCDC 1432273: Experimental Crystal Structure Determination
Related Article: Anna Świtlicka-Olszewska, Joanna Palion-Gazda, Tomasz Klemens, Barbara Machura, Julia Vallejo, Joan Cano, Francesc Lloret, Miguel Julve|2016|Dalton Trans.|45|10181|doi:10.1039/C6DT01160H
CCDC 1914219: Experimental Crystal Structure Determination
Related Article: Julia Vallejo, Marta Viciano-Chumillas, Francisco Lloret, Miguel Julve, Isabel Castro, J. Krzystek, Mykhaylo Ozerov, Donatella Armentano, Giovanni De Munno, Joan Cano|2019|Inorg.Chem.|58|15726|doi:10.1021/acs.inorgchem.9b01719
CCDC 989259: Experimental Crystal Structure Determination
Related Article: Maria-Gabriela Alexandru, Diana Visinescu, Nadia Marino, Giovanni De Munno, Julia Vallejo, Francesc Lloret, Miguel Julve|2014|Eur.J.Inorg.Chem.||4564|doi:10.1002/ejic.201402190
CCDC 1415916: Experimental Crystal Structure Determination
Related Article: Julia Vallejo, Francisco R. Fortea-Pérez, Emilio Pardo, Samia Benmansour, Isabel Castro, J. Krzystek, Donatella Armentano, Joan Cano|2016|Chemical Science|7|2286|doi:10.1039/C5SC04461H
CCDC 1477729: Experimental Crystal Structure Determination
Related Article: Subhadip Roy, Itziar Oyarzabal, Julia Vallejo, Joan Cano, Enrique Colacio, Antonio Bauza, Antonio Frontera, Alexander M. Kirillov, Michael G. B. Drew, and Subrata Das|2016|Inorg.Chem.|55|8502|doi:10.1021/acs.inorgchem.6b01087
CCDC 1555658: Experimental Crystal Structure Determination
Related Article: Marta Mon, Julia Vallejo, Jorge Pasán, Oscar Fabelo, Cyrille Train, Michel Verdaguer, Shin-ichi Ohkoshi, Hiroko Tokoro, Kosuke Nakagawa, Emilio Pardo|2017|Dalton Trans.|46|15130|doi:10.1039/C7DT03415F
CCDC 1518365: Experimental Crystal Structure Determination
Related Article: Soumen Manna, Apurba Bhunia, Soumen Mistri, Julia Vallejo, Ennio Zangrando, Horst Puschmann, Joan Cano, Subal Chandra Manna|2017|Eur.J.Inorg.Chem.||2585|doi:10.1002/ejic.201700046
CCDC 1477730: Experimental Crystal Structure Determination
Related Article: Subhadip Roy, Itziar Oyarzabal, Julia Vallejo, Joan Cano, Enrique Colacio, Antonio Bauza, Antonio Frontera, Alexander M. Kirillov, Michael G. B. Drew, and Subrata Das|2016|Inorg.Chem.|55|8502|doi:10.1021/acs.inorgchem.6b01087
CCDC 921556: Experimental Crystal Structure Determination
Related Article: Francisco R. Fortea-Pérez, Julia Vallejo, Miguel Julve, Francesc Lloret, Giovanni De Munno, Donatella Armentano, and Emilio Pardo|2013|Inorg.Chem.|52|4777|doi:10.1021/ic4005517
CCDC 1432274: Experimental Crystal Structure Determination
Related Article: Anna Świtlicka-Olszewska, Joanna Palion-Gazda, Tomasz Klemens, Barbara Machura, Julia Vallejo, Joan Cano, Francesc Lloret, Miguel Julve|2016|Dalton Trans.|45|10181|doi:10.1039/C6DT01160H
CCDC 1524199: Experimental Crystal Structure Determination
Related Article: Francisco R. Fortea-Pérez, Julia Vallejo, Jorge Pasán, Catalina Ruiz-Pérez, Joan Cano, Francesc Lloret, Miguel Julve|2018|Comptes Rendus Chimie|22|452|doi:10.1016/j.crci.2018.10.007
CCDC 1046610: Experimental Crystal Structure Determination
Related Article: Nadia Marino, Donatella Armentano, Emilio Pardo, Julia Vallejo, Francesco Neve, Leonardo Di Donna, Giovanni De Munno|2015|Chemical Science|6|4300|doi:10.1039/C5SC01089F
CCDC 993408: Experimental Crystal Structure Determination
Related Article: Anna Świtlicka-Olszewska, Joanna Palion-Gazda, Tomasz Klemens, Barbara Machura, Julia Vallejo, Joan Cano, Francesc Lloret, Miguel Julve|2016|Dalton Trans.|45|10181|doi:10.1039/C6DT01160H