0000000000516292

AUTHOR

José García-martínez

Heat shock response in yeast involver changes in both transcription rates and mRNA stabilities

We have analyzed the heat stress response in the yeast Saccharomyces cerevisiae by determining mRNA levels and transcription rates for the whole transcriptome after a shift from 25uC to 37uC. Using an established mathematical algorithm, theoretical mRNA decay rates have also been calculated from the experimental data. We have verified the mathematical predictions for selected genes by determining their mRNA decay rates at different times during heat stress response using the regulatable tetO promoter. This study indicates that the yeast response to heat shock is not only due to changes in transcription rates, but also to changes in the mRNA stabilities. mRNA stability is affected in 62% of …

research product

Rpb1 foot mutations demonstrate a major role of Rpb4 in mRNA stability during stress situations in yeast.

The RPB1 mutants in the foot region of RNA polymerase II affect the assembly of the complex by altering the correct association of both the Rpb6 and the Rpb4/7 dimer. Assembly defects alter both transcriptional activity as well as the amount of enzyme associated with genes. Here, we show that the global transcriptional analysis of foot mutants reveals the activation of an environmental stress response (ESR), which occurs at a permissive temperature under optimal growth conditions. Our data indicate that the ESR that occurs in foot mutants depends mostly on a global post-transcriptional regulation mechanism which, in turn, depends on Rpb4-mRNA imprinting. Under optimal growth conditions, we …

research product

A genome-wide transcriptional study reveals that iron deficiency inhibits the yeast TORC1 pathway

Iron is an essential micronutrient that participates as a cofactor in a broad range of metabolic processes including mitochondrial respiration, DNA replication, protein translation and lipid biosynthesis. Adaptation to iron deficiency requires the global reorganization of cellular metabolism directed to optimize iron utilization. The budding yeast Saccharomyces cerevisiae has been widely used to characterize the responses of eukaryotic microorganisms to iron depletion. In this report, we used a genomic approach to investigate the contribution of transcription rates to the modulation of mRNA levels during adaptation of yeast cells to iron starvation. We reveal that a decrease in the activity…

research product

Growth rate controls mRNA turnover in steady and non-steady states.

Gene expression has been investigated in relation with growth rate in the yeast Saccharomyces cerevisiae, following different experimental strategies. The expression of some specific gene functional categories increases or decreases with growth rate. Our recently published results have unveiled that these changes in mRNA concentration with growth depend on the relative alteration of mRNA synthesis and decay, and that, in addition to this gene-specific transcriptomic signature of growth, global mRNA turnover increases with growth rate. We discuss here these results in relation with other previous and concurrent publications, and we add new evidence which indicates that growth rate controls m…

research product

Functional Genomics in Wine Yeast: DNA Arrays and Next Generation Sequencing

Since their very beginning, DNA array and next-generation sequencing technologies have been used with Saccharomyces cerevisiae cells. In the last 7 years, an increasing number of studies have focused on the study of wine strains and winemaking. The uncovering of the genomic features of these strains and expression profiles under the different stressful conditions that they have to deal with have contributed significantly to the knowledge of how this amazing microorganism can convert grape must into a drink that has enormously influenced mankind for 7000 years.This review presents a synopsis of DNA array and next-generation sequencing (NGS) technologies and focus mainly in their use in study…

research product

MOESM2 of The SAGA/TREX-2 subunit Sus1 binds widely to transcribed genes and affects mRNA turnover globally

Additional file 2: Fig. S2. Gene set enrichment analysis (GSEA) for the highest ChIP-exo reads. The genes were ranked according to the number of mapped reads and searched for GO terms enriched at the top of the list in comparison with the rest of the list using GSEA. The resulting list of over-represented GO terms was reduced and visualized with the ReviGO web server ( http://revigo.irb.hr/ ). a) Binding at 25 °C. Left: Results at the Biological Process GO; right: Results at the Cellular Component GO. b) Binding at 37 °C, results are given for the Biological Process GO. The Cellular Component GO gave no results. The size of the circle for each GO term is proportional to the number of genes …

research product

The distribution of active RNA polymerase II along the transcribed region is gene-specific and controlled by elongation factors.

In order to study the intragenic profiles of active transcription, we determined the relative levels of active RNA polymerase II present at the 3'- and 5'-ends of 261 yeast genes by run-on. The results obtained indicate that the 3'/5' run-on ratio varies among the genes studied by over 12 log(2) units. This ratio seems to be an intrinsic characteristic of each transcriptional unit and does not significantly correlate with gene length, G + C content or level of expression. The correlation between the 3'/5' RNA polymerase II ratios measured by run-on and those obtained by chromatin immunoprecipitation is poor, although the genes encoding ribosomal proteins present exceptionally low ratios in …

research product

MOESM4 of The SAGA/TREX-2 subunit Sus1 binds widely to transcribed genes and affects mRNA turnover globally

Additional file 4: Fig. S4. Gene set enrichment analysis (GSEA) analysis of HL ratios (sus1Δ/WT). Gene Ontology (GO) terms (filtered by means of ReviGO software, see Fig, S2) over-represented at the top and at the bottom of the ranked list of HL ratio values.

research product

MOESM5 of The SAGA/TREX-2 subunit Sus1 binds widely to transcribed genes and affects mRNA turnover globally

Additional file 5: Table S1. Is a table listing strain used in this study.

research product

MOESM1 of The SAGA/TREX-2 subunit Sus1 binds widely to transcribed genes and affects mRNA turnover globally

Additional file 1: Fig. S1. Sus1 occupancy at TFIID-dependent genes was monitored by ChIP analysis of Sus1-TAP in a wild-type strain (Sus1-TAP). As a control, the signal of an isogenic strain bearing no-tagged Sus1 was monitored (No-tag). The occupancy level was calculated as the signal ratio of IP samples in relation to the input signal and relative to an internal control. The resulting normalized ratios were plotted. Error bars represent the SD from at least three independent experiments. Differences in means were assessed by Student’s independent-samples t test. P values

research product

Genomic run-on evaluates transcription rates for all yeast genes and identifies gene regulatory mechanisms

Most studies of eukaryotic gene regulation have been done looking at mature mRNA levels. Nevertheless, the steady-state mRNA level is the result of two opposing factors: transcription rate (TR) and mRNA degradation. Both can be important points to regulate gene expression. Here we show a new method that combines the use of nylon macroarrays and in vivo radioactive labeling of nascent RNA to quantify TRs, mRNA levels, and mRNA stabilities for all the S. cerevisiae genes. We found that during the shift from glucose to galactose, most genes undergo drastic changes in TR and mRNA stability. However, changes in mRNA levels are less pronounced. Some genes, such as those encoding mitochondrial pro…

research product

The relative importance of transcription rate, cryptic transcription and mRNA stability on shaping stress responses in yeast

It has been recently stated that stress-responding genes in yeast are enriched in cryptic transcripts and that this is the cause of the differences observed between mRNA amount and RNA polymerase occupancy profiles. Other studies have shown that such differences are mainly due to modulation of mRNA stabilities. Here we analyze the relationship between the presence of cryptic transcripts in genes and their stress response profiles. Despite some of the stress-responding gene groups being indeed enriched in specific classes of cryptic transcripts, we found no statistically significant evidence that cryptic transcription is responsible for the differences observed between mRNA and transcription…

research product

Genetic differentiation in the striped dolphin Stenella coeruleoalba from European waters according to mitochondrial DNA (mtDNA) restriction analysis

We used mitochondrial DNA (mtDNA) restriction analysis to study genetic variation in 98 striped dolphins (Stenella coeruleoalba) stranded on coasts from different European countries and from animals caught by fisheries. A total of 63 different restriction sites was mapped after digestion of mtDNA with 15 restriction endonucleases that yielded a total of 27 haplotypes. No haplotype was shared between Mediterranean and Atlantic areas. All the analyses indicate the existence of two different populations with a very limited gene flow across the Strait of Gibraltar.

research product

Genomic-Wide Methods to Evaluate Transcription Rates in Yeast

Gene transcription is a dynamic process in which the desired amount of an mRNA is obtained by the equilibrium between its transcription (TR) and degradation (DR) rates. The control mechanism at the RNA polymerase level primarily causes changes in TR. Despite their importance, TRs have been rarely measured. In the yeast Saccharomyces cerevisiae, we have implemented two techniques to evaluate TRs: run-on and chromatin immunoprecipitation of RNA polymerase II. These techniques allow the discrimination of the relative importance of TR and DR in gene regulation for the first time in a eukaryote.

research product

A new set of DNA macrochips for the yeast Saccharomyces cerevisiae: features and uses

The yeast Saccharomyces cerevisiae has been widely used for the implementation of DNA chip technologies. For this reason and due to the extensive use of this organism for basic and applied studies, yeast DNA chips are being used by many laboratories for expression or genomic analyses. While membrane arrays (macroarrays) offer several advantages, for many laboratories they are not affordable. Here we report that a cluster of four Spanish molecular-biology yeast laboratories, with relatively small budgets, have developed a complete set of probes for the genome of S. cerevisiae. These have been used to produce a new type of macroarray on a nylon surface. The macroarrays have been evaluated and…

research product

Chimeric Genomes of Natural Hybrids of Saccharomyces cerevisiae and Saccharomyces kudriavzevii

11 pages, 6 figures.-- PMID: 19251887 [PubMed].-- Printed version published Apr 2009.

research product

Fungemia due to Candida guilliermondii in a pediatric and adult population during a 12-year period.

Candida guilliermondii fungemia is usually described in adults with hematologic malignancies, but in children, only 2 episodes have been published. From 1995 to 2006, 7 episodes (5 in children) were detected in our hospital. Molecular typing excluded a common infection source. C. guilliermondii fungemia may occur in children with underlying conditions other than cancer.

research product

Regulon-Specific Control of Transcription Elongation across the Yeast Genome

Transcription elongation by RNA polymerase II was often considered an invariant non-regulated process. However, genome-wide studies have shown that transcriptional pausing during elongation is a frequent phenomenon in tightly-regulated metazoan genes. Using a combination of ChIP-on-chip and genomic run-on approaches, we found that the proportion of transcriptionally active RNA polymerase II (active versus total) present throughout the yeast genome is characteristic of some functional gene classes, like those related to ribosomes and mitochondria. This proportion also responds to regulatory stimuli mediated by protein kinase A and, in relation to cytosolic ribosomal-protein genes, it is medi…

research product

RNA-controlled nucleocytoplasmic shuttling of mRNA decay factors regulates mRNA synthesis and initiates a novel mRNA decay pathway

AbstractmRNA level is controlled by factors that mediate both mRNA synthesis and decay, including the exonuclease Xrn1 - a major mRNA synthesis and decay factor. Here we show that nucleocytoplasmic shuttling of Xrn1 and of some of its associated mRNA decay factors plays a key role in determining both mRNA synthesis and decay. Shuttling is regulated by RNA-controlled binding of the karyopherin Kap120 to two nuclear localization sequences (NLSs) in Xrn1. The decaying RNA binds and masks NLS1, establishing a link between mRNA decay and Xrn1 shuttling. Mutations in the two NLSs, which prevent Xrn1 import, compromise transcription and, unexpectedly, also the cytoplasmic decay of ∼50% of the cell…

research product

A genomic study of the inter-ORF distances in Saccharomyces cerevisiae.

The genome of eukaryotic microbes is usually quite compacted. The yeast Saccharomyces cerevisiae is one of the best-known examples. Open reading frames (ORFs) occupy about 75% of the total DNA sequence. The existence of other, non-protein coding genes and other genetic elements leaves very little space for gene promoters and terminators. We have performed an in silico study of inter-ORF distances that shows that there is a minimum distance between two adjacent ORFs that depends on the relative orientation between them. Our analyses suggest that different kinds of promoters and terminators exist with regard to their length and ability to overlap each other. The experimental testing of some p…

research product

MOESM7 of The SAGA/TREX-2 subunit Sus1 binds widely to transcribed genes and affects mRNA turnover globally

Additional file 7. ChIP-exo data analysis.

research product

MOESM3 of The SAGA/TREX-2 subunit Sus1 binds widely to transcribed genes and affects mRNA turnover globally

Additional file 3: Fig. S3. Gene set enrichment analysis (GSEA) of TR ratios (sus1Δ/WT). Gene Ontology (GO) terms (filtered by means of ReviGO software, see Fig, S2) over-represented at the top and at the bottom of the ranked list of TR ratio values.

research product

Mitochondrial DNA variability of striped dolphins (Stenella coeruleoalba) in the Spanish Mediterranean waters

Frozen muscle samples from 44 striped dolphins stranded on the Spanish Mediterranean coasts from 1990 to 1993 have been studied by means of mitochondrial DNA (mtDNA) restriction site analysis. Thirty-five of these dolphins were affected by a die-off occurring during this time in the western Mediterranean Sea. The mtDNA from each dolphin was digested with 15 restriction endonucleases that recognized 61 different restriction sites. The specific location of these sites on the mitochondrial gene map allowed us to determine the distribution of variability along this molecule. From the restriction analysis, a total of 15 different composite patterns or haplotypes was obtained and their phylogenet…

research product

A method for genome-wide analysis of DNA helical tension by means of psoralen-DNA photobinding

The helical tension of chromosomal DNA is one of the epigenetic landmarks most difficult to examine experimentally. The occurrence of DNA crosslinks mediated by psoralen photobinding (PB) stands as the only suitable probe for assessing this problem. PB is affected by chromatin structure when is done to saturation; but it is mainly determined by DNA helical tension when it is done to very low hit conditions. Hence, we developed a method for genome-wide analysis of DNA helical tension based on PB. We adjusted in vitro PB conditions that discern DNA helical tension and applied them to Saccharomyces cerevisiae cells. We selected the in vivo cross-linked DNA sequences and identified them on DNA …

research product

Comparative Transcriptomic Analysis Reveals Similarities and Dissimilarities in Saccharomyces cerevisiae Wine Strains Response to Nitrogen Availability

Nitrogen levels in grape-juices are of major importance in winemaking ensuring adequate yeast growth and fermentation performance. Here we used a comparative transcriptome analysis to uncover wine yeasts responses to nitrogen availability during fermentation. Gene expression was assessed in three genetically and phenotypically divergent commercial wine strains (CEG, VL1 and QA23), under low (67 mg/L) and high nitrogen (670 mg/L) regimes, at three time points during fermentation (12 h, 24 h and 96 h). Two-way ANOVA analysis of each fermentation condition led to the identification of genes whose expression was dependent on strain, fermentation stage and on the interaction of both factors. The…

research product

MOESM6 of The SAGA/TREX-2 subunit Sus1 binds widely to transcribed genes and affects mRNA turnover globally

Additional file 6: Table S2. Is a table listing Primers for ChIP analysis and RT-qPCR.

research product

Genomic and Proteomic Analysis of Wine Yeasts

Publisher Summary Saccharomyces cerevisiae is the main microorganism involved in wine fermentation. It has been used as a model organism in molecular biology for many years and is the only wine yeast species for which abundant genomic and proteomic information is available. Most of the techniques currently used in functional genomics and proteomics were initially developed in this yeast. The fact that S. cerevisiae was the first microorganism to be widely used in the development of genome technology allowed other phylogenetically related yeasts to be analyzed subsequently in global sequencing projects, and the use of comparative genomics has since led to important conclusions regarding gene…

research product

Production of cecropin A in transgenic rice plants has an impact on host gene expression.

Summary Expression of the cecropin A gene in rice confers resistance to the rice blast fungus Magnaporthe oryzae. In this study, a polymerase chain reaction-based suppression subtractive hybridization approach was used to generate a cDNA macroarray from the elite japonica rice (Oryza sativa L.) cultivar ‘Senia’. Gene expression studies revealed that the expression of components of the protein secretory and vesicular transport machinery is co-ordinately activated at the pre-invasive stage of infection of rice by the blast fungus. Comparisons of gene expression between wild-type and cecropin A plants revealed the over-expression of genes involved in protection against oxidative stress in tran…

research product

Common gene expression strategies revealed by genome-wide analysis in yeast

A comprehensive analysis of six variables characterizing gene expression in yeast, including transcription and translation, mRNA and protein amounts, reveals a general tendency for levels of mRNA and protein to be harmonized, and for functionally related genes to have similar values for these variables.

research product

Cell volume homeostatically controls the rDNA repeat copy number and rRNA synthesis rate in yeast

AbstractThe adjustment of transcription and translation rates to variable needs is of utmost importance for the fitness and survival of living cells. We have previously shown that the global transcription rate for RNA polymerase II is regulated differently in cells presenting symmetrical or asymmetrical cell division. The budding yeast Saccharomyces cerevisiae adopts a particular strategy to avoid that the smaller daughter cells increase their total mRNA concentration with every generation. The global mRNA synthesis rate lowers with a growing cell volume, but global mRNA stability increases. In this paper, we address what the solution is to the same theoretical problem for the RNA polymeras…

research product

Asymmetric cell division requires specific mechanisms for adjusting global transcription

Most cells divide symmetrically into two approximately identical cells. There are many examples, however, of asymmetric cell division that can generate sibling cell size differences. Whereas physical asymmetric division mechanisms and cell fate consequences have been investigated, the specific problem caused by asymmetric division at the transcription level has not yet been addressed. In symmetrically dividing cells the nascent transcription rate increases in parallel to cell volume to compensate it by keeping the actualmRNA synthesis rate constant. This cannot apply to the yeast Saccharomyces cerevisiae, where this mechanism would provoke a neverending increasing mRNA synthesis rate in sma…

research product

The Sas3p and Gcn5p histone acetyltransferases are recruited to similar genes.

A macroarray platform was used to identify binding sites of yeast histone acetyltransferase catalytic subunits and to correlate their positions with acetylation of lysine 14 of histone H3, revealing that Sas3p and Gcn5p are recruited to similar sets of intensely transcribed genes.

research product

Saccharomyces cerevisiae Glutaredoxin 5-deficient Cells Subjected to Continuous Oxidizing Conditions Are Affected in the Expression of Specific Sets of Genes

The Saccharomyces cerevisiae GRX5 gene codes for a mitochondrial glutaredoxin involved in the synthesis of iron/sulfur clusters. Its absence prevents respiratory growth and causes the accumulation of iron inside cells and constitutive oxidation of proteins. Null ⌬grx5 mu- tants were used as an example of continuously oxidized cells, as opposed to situations in which oxidative stress is instantaneously caused by addition of external oxi- dants. Whole transcriptome analysis was carried out in the mutant cells. The set of genes whose expression was affected by the absence of Grx5 does not significantly overlap with the set of genes affected in respiratory petite mutants. Many Aft1-dependent ge…

research product

A Trans-Omics Comparison Reveals Common Gene Expression Strategies in Four Model Organisms and Exposes Similarities and Differences between Them.

AbstractThe ultimate goal of gene regulation should focus on the protein level. However, as mRNA is an obligate intermediary, and because the amounts of mRNAs and proteins are controlled by their synthesis and degradation rates, the cellular amount of a given protein can be attained following different strategies. By studying omics datasets for six expression variables (mRNA and protein amounts, plus their synthesis and decay rates), we previously demonstrated the existence of common expression strategies (CES) for functionally-related genes in the yeastSaccharomyces cerevisiae. Here we extend that study to two other eukaryotes: the distantly related yeastSchizosaccharomyces pombeand cultur…

research product

The total mRNA concentration buffering system in yeast is global rather than gene-specific

Gene expression in eukaryotes does not follow a linear process from transcription to translation and mRNA degradation. Instead it follows a circular process in which cytoplasmic mRNA decay crosstalks with nuclear transcription. In many instances, this crosstalk contributes to buffer mRNA at a roughly constant concentration. Whether the mRNA buffering concept operates on the total mRNA concentration or at the gene-specific level, and if the mechanism to do so is a global or a specific one, remain unknown. Here we assessed changes in mRNA concentrations and their synthesis rates along the transcriptome of aneuploid strains of the yeast Saccharomyces cerevisiae. We also assessed mRNA concentra…

research product

CYGD: the Comprehensive Yeast Genome Database.

The comprehensive resource is available under http://mips.gsf.de/genre/proj/yeast/.; International audience; The Comprehensive Yeast Genome Database (CYGD) compiles a comprehensive data resource for information on the cellular functions of the yeast Saccharomyces cerevisiae and related species, chosen as the best understood model organism for eukaryotes. The database serves as a common resource generated by a European consortium, going beyond the provision of sequence information and functional annotations on individual genes and proteins. In addition, it provides information on the physical and functional interactions among proteins as well as other genetic elements. These cellular network…

research product

A feedback mechanism controls rDNA copy number evolution in yeast independently of natural selection.

Ribosomal DNA (rDNA) is the genetic loci that encodes rRNA in eukaryotes. It is typically arranged as tandem repeats that vary in copy number within the same species. We have recently shown that rDNA repeats copy number in the yeast Saccharomyces cerevisiae is controlled by cell volume via a feedback circuit that senses cell volume by means of the concentration of the free upstream activator factor (UAF). The UAF strongly binds the rDNA gene promoter, but is also able to repress SIR2 deacetylase gene transcription that, in turn, represses rDNA amplification. In this way, the cells with a smaller DNA copy number than what is optimal evolve to increase that copy number until they reach a numb…

research product

The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons

We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within th…

research product

Comprehensive transcriptional analysis of the oxidative response in yeast

The oxidative stress response in Saccharomyces cerevisiae has been analyzed by parallel determination of mRNA levels and transcription rates for the entire genome. A mathematical algorithm has been adapted for a dynamic situation such as the response to stress, to calculate theoretical mRNA decay rates from the experimental data. Yeast genes have been grouped into 25 clusters according to mRNA level and transcription rate kinetics, and average mRNA decay rates have been calculated for each cluster. In most of the genes, changes in one or both experimentally determined parameters occur during the stress response. 24% of the genes are transcriptionally induced without an increase inmRNAlevels…

research product

Transcriptional Response of Saccharomyces cerevisiae to Different Nitrogen Concentrations during Alcoholic Fermentation▿ †

Gene expression profiles of a wine strain of Saccharomyces cerevisiae PYCC4072 were monitored during alcoholic fermentations with three different nitrogen supplies: (i) control fermentation (with enough nitrogen to complete sugar fermentation), (ii) nitrogen-limiting fermentation, and (iii) the addition of nitrogen to the nitrogen-limiting fermentation (refed fermentation). Approximately 70% of the yeast transcriptome was altered in at least one of the fermentation stages studied, revealing the continuous adjustment of yeast cells to stressful conditions. Nitrogen concentration had a decisive effect on gene expression during fermentation. The largest changes in transcription profiles were o…

research product

Saccharomyces cerevisiae signature genes for predicting nitrogen deficiency during alcoholic fermentation

Genome-wide analysis of the wine yeast strain Saccharomyces cerevisiae PYCC4072 identified 36 genes highly expressed under conditions of low or absent nitrogen in comparison with a nitrogen-replete condition. Reverse transcription-PCR analysis for four of these transcripts with this strain and its validation with another wine yeast strain underlines the usefulness of these signature genes for predicting nitrogen deficiency and therefore the diagnosis of wine stuck/sluggish fermentations.

research product

DNA chips for yeast biotechnology. The case of wine yeasts.

The yeast Saccharomyces cerevisiae is one of the most popular model organisms. It was the first eukaryote whose genome was sequenced. Since then many functional analysis projects have tried to find the function of many genes and to understand its metabolism in a holistic way. Apart from basic science this microorganism is of great interest in several biotechnology processes, such as winemaking. Only global studies of the cell as a whole can help us to understand many of the technical problems facing winemaking. DNA chip technology is one of the most promising tools for the analysis of cell physiology. Yeast has been the model organism for the development of this technique. Many of the studi…

research product

The SAGA/TREX‑2 subunit Sus1 binds widely to transcribed genes and affects mRNA turnover globally

Abstract Background Eukaryotic transcription is regulated through two complexes, the general transcription factor IID (TFIID) and the coactivator Spt–Ada–Gcn5 acetyltransferase (SAGA). Recent findings confirm that both TFIID and SAGA contribute to the synthesis of nearly all transcripts and are recruited genome-wide in yeast. However, how this broad recruitment confers selectivity under specific conditions remains an open question. Results Here we find that the SAGA/TREX-2 subunit Sus1 associates with upstream regulatory regions of many yeast genes and that heat shock drastically changes Sus1 binding. While Sus1 binding to TFIID-dominated genes is not affected by temperature, its recruitmen…

research product

Mitochondrial DNA haplotype frequencies in natural and experimental populations of Drosophila subobscura.

Abstract The evolution of Drosophila subobscura mitochondrial DNA has been studied in experimental populations, founded with flies from a natural population from Esporles (Majorca, Balearic Islands, Spain). This population, like other European ones, is characterized by the presence of two very common (>96%) mitochondrial haplotypes (called I and II) and rare and endemic haplotypes that appear at very low frequencies. There is no statistical evidence of positive Darwinian selection acting on the mitochondrial DNA variants according to Tajima's neutrality test. Two experimental populations, with one replicate each, were established with flies having a heterogeneous nuclear genetic back…

research product

Genomic response programs of Candida albicans following protoplasting and regeneration

Transcription profiling of Candida albicans cells responding to the elimination of the wall (protoplasts) and posterior regeneration was explored. DNA microarrays were used to measure changes in the expression of 6039 genes, and the upregulated genes during regeneration at 28 degrees C were assigned to fourteen categories. A total of 407 genes were upregulated during the process, of which 144 reached a maximum after 1 h. MKC1, a gene encoding a member of the regulatory pathway involved in cell wall integrity was overexpressed. Time-dependent expression divided the genes into 40 clusters. Clusters 1-19 were highly expressed initially (time 0) and downregulated following incubation, whereas t…

research product

The exonuclease Xrn1 activates transcription and translation of mRNAs encoding membrane proteins

The highly conserved 5’–3’ exonuclease Xrn1 regulates gene expression in eukaryotes by coupling nuclear DNA transcription to cytosolic mRNA decay. By integrating transcriptome-wide analyses of translation with biochemical and functional studies, we demonstrate an unanticipated regulatory role of Xrn1 in protein synthesis. Xrn1 promotes translation of a specific group of transcripts encoding membrane proteins. Xrn1-dependence for translation is linked to poor structural RNA contexts for translation initiation, is mediated by interactions with components of the translation initiation machinery and correlates with an Xrn1-dependence for mRNA localization at the endoplasmic reticulum, the trans…

research product

Cell volume homeostatically controls the rDNA repeat copy number and rRNA synthesis rate in yeast

[Abstract] The adjustment of transcription and translation rates to the changing needs of cells is of utmost importance for their fitness and survival. We have previously shown that the global transcription rate for RNA polymerase II in budding yeast Saccharomyces cerevisiae is regulated in relation to cell volume. Total mRNA concentration is constant with cell volume since global RNApol II-dependent nascent transcription rate (nTR) also keeps constant but mRNA stability increases with cell size. In this paper, we focus on the case of rRNA and RNA polymerase I. Contrarily to that found for RNA pol II, we detected that RNA polymerase I nTR increases proportionally to genome copies and cell s…

research product

Recruitment of Xrn1 to stress-induced genes allows efficient transcription by controlling RNA polymerase II backtracking

A new paradigm has emerged proposing that the crosstalk between nuclear transcription and cytoplasmic mRNA stability keeps robust mRNA levels in cells under steady-state conditions. A key piece in this crosstalk is the highly conserved 5′–3′ RNA exonuclease Xrn1, which degrades most cytoplasmic mRNAs but also associates with nuclear chromatin to activate transcription by not well-understood mechanisms. Here, we investigated the role of Xrn1 in the transcriptional response of Saccharomyces cerevisiae cells to osmotic stress. We show that a lack of Xrn1 results in much lower transcriptional induction of the upregulated genes but in similar high levels of their transcripts because of parallel …

research product

Growth rate controls mRNA turnover in steady and non-steady states

Gene expression has been investigated in relation with growth rate in the yeast Saccharomyces cerevisiae, following different experimental strategies. The expression of some specific gene functional categories increases or decreases with growth rate. Our recently published results have unveiled that these changes in mRNA concentration with growth depend on the relative alteration of mRNA synthesis and decay, and that, in addition to this gene-specific transcriptomic signature of growth, global mRNA turnover increases with growth rate. We discuss here these results in relation with other previous and concurrent publications, and we add new evidence which indicates that growth rate controls m…

research product