0000000000534584

AUTHOR

J. Naganoma

showing 131 related works from this author

Search for a Standard Model Higgs Boson inWH→ℓvbb¯inpp¯Collisions ats=1.96  TeV

2009

We present a search for a standard model Higgs boson produced in association with a W boson using 2.7 fb(-1) of integrated luminosity of pp collision data taken at square root s = 1.96 TeV. Limits on the Higgs boson production rate are obtained for masses between 100 and 150 GeV/c(2). Through the use of multivariate techniques, the analysis achieves an observed (expected) 95% confidence level upper limit of 5.6 (4.8) times the theoretically expected production cross section for a standard model Higgs boson with a mass of 115 GeV/c(2).

PhysicsParticle physicsLuminosity (scattering theory)010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyGeneral Physics and AstronomyElementary particle01 natural sciencesStandard ModelNuclear physics0103 physical sciencesHiggs bosonGrand Unified TheoryHigh Energy Physics::ExperimentLimit (mathematics)Quantum field theory010306 general physicsBosonPhysical Review Letters
researchProduct

Search for Standard Model Higgs Boson Production in Association with a W Boson at CDF

2012

We present a search for the standard model Higgs boson production in association with a W boson in proton-antiproton collisions (pp̅ →W±H→ℓνbb̅ ) at a center of mass energy of 1.96 TeV. The search employs data collected with the CDF II detector which correspond to an integrated luminosity of approximately 2.7  fb-1. We recorded this data with two kinds of triggers. The first kind required high-pT charged leptons and the second required both missing transverse energy and jets. The search selects events consistent with a signature of a single lepton (e±/μ±), missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with a secondary vertex tagging method and a…

QuarkNuclear and High Energy PhysicsParticle physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FOS: Physical sciencesddc:500.2Astronomy & Astrophysics;; Physics Particles & Fields01 natural sciencesStandard ModelHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)13.85.Rm 14.80.Bn0103 physical sciencesFilter technique[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsPhysicsLuminosity (scattering theory)Mass distribution010308 nuclear & particles physicsBranching fractionPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]High Energy Physics::PhenomenologyVertex (geometry)Higgs boson_Production (computer science)High Energy Physics::ExperimentCenter of massLepton
researchProduct

Combined Tevatron upper limit ongg→H→W+W−and constraints on the Higgs boson mass in fourth-generation fermion models

2010

We combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg -> H -> W+W- in p (p) over bar collisions at the Fermilab Tevatron Collider at root s = 1.96 TeV. With 4.8 fb(-1) of integrated luminosity analyzed at CDF and 5.4 fb(-1) at D0, the 95% confidence level upper limit on sigma(gg -> H) x B(H -> W+W-) is 1.75 pb at m(H) = 120 GeV, 0.38 pb at m(H) = 165 GeV, and 0.83 pb at m(H) = 200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% confidence level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.

PhysicsNuclear and High Energy PhysicsParticle physicsGauge boson010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyTevatronElementary particleFermion01 natural sciences7. Clean energyStandard ModelNuclear physics0103 physical sciencesHiggs bosonHigh Energy Physics::ExperimentFermilab010306 general physicsBosonPhysical Review D
researchProduct

Excess electronic recoil events in XENON1T

2020

We report results from searches for new physics with low-energy electronic recoil data recorded with the XENON1T detector. With an exposure of 0.65 t-y and an unprecedentedly low background rate of $76\pm2$ events/(t y keV) between 1 and 30 keV, the data enables sensitive searches for solar axions, an enhanced neutrino magnetic moment, and bosonic dark matter. An excess over known backgrounds is observed at low energies and most prominent between 2 and 3 keV. The solar axion model has a 3.4$\sigma$ significance, and a 3D 90% confidence surface is reported for axion couplings to electrons, photons, and nucleons. This surface is inscribed in the cuboid defined by $g_{ae}<3.8 \times 10^{-12}$,…

xenon: targetaxionssolar axionmagnetic momentdimension: 3neutrino: solarPhysics beyond the Standard ModelSolar neutrinodark matter: direct detection01 natural sciences7. Clean energyHigh Energy Physics - ExperimentDark matter direct detection axionHigh Energy Physics - Experiment (hep-ex)neutrinoXENONHigh Energy Physics - Phenomenology (hep-ph)background: lowRecoilelectron: recoil[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]beta-raysParticle Physics Experimentscoupling: (axion 2electron)multi-purpose particle detectornuclear instrumentationComputingMilieux_MISCELLANEOUSinstrumentationPhysicsxenon: liquidboson: dark matteraxion 2nucleontritiumnew physics: search forsemileptonic decayboson: vectortensionneutrino: magnetic momentHigh Energy Physics - Phenomenologyaxion 2photonlow backgroundbosonNeutrinoionizing radiationNucleonAstrophysics - Cosmology and Nongalactic AstrophysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)dark matter detectorelectronic recoilElectron captureXENON1T detectorDark matterlow-energy electronic recoil dataFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]dark matterNONuclear physicsPE2_2PE2_1tritium: semileptonic decay0103 physical sciencessolar axion modelsurface[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]axion: couplingPE2_4010306 general physicspseudoscalarAxiondark matter: vectordark matter XENON1T detector electronic recoilsolar neutrinodetectorDark Matter Axions Beta Decay Liquid Xenon TPC010308 nuclear & particles physicsaxion 2electroncoupling: (axion 2nucleon)dark matter: detectormodel: axionGran Sassometrology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]axionstellar constraintscoupling: (axion 2photon)High Energy Physics::Experimentparticle dark matterdirect detectionbeta decayaxion: solar[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]experimental results
researchProduct

Search for Pair Production of Supersymmetric Top Quarks in Dilepton Events frompp¯Collisions ats=1.96  TeV

2010

We present the results of a search for pair production of the supersymmetric partner of the top quark (the top squark (t) over tilde (1)) decaying to a b quark and a chargino (chi) over tilde (+/-)(1) with a subsequent (chi) over tilde (+/-)(1) decay into a neutralino (chi) over tilde (0)(1), lepton l, and neutrino nu Using a data sample corresponding to 2.7 fb(-1) of integrated luminosity of p (p) over bar collisions at root s = 1: 96 TeV collected by the CDF II detector, we reconstruct the mass of top squark candidate events and fit the observed mass spectrum to a combination of standard model processes and (t) over tilde (1)(t) over tilde (1). We find no evidence for (t) over tilde (1)(t…

QuarkPhysicsTop quarkParticle physics010308 nuclear & particles physicsBranching fractionHigh Energy Physics::PhenomenologyGeneral Physics and Astronomy01 natural sciencesBottom quarkStandard ModelNuclear physicsCharginoPair production0103 physical sciencesNeutralinoHigh Energy Physics::ExperimentComputer Science::Data Structures and Algorithms010306 general physicsPhysical Review Letters
researchProduct

Direct Measurement of theWProduction Charge Asymmetry inpp¯Collisions ats=1.96  TeV

2009

We wish to thank R.S. Thorne and W.J. Stirling for useful discussions on the theoretical predictions.We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science…

European community010308 nuclear & particles physicsScience and engineeringGeneral Physics and AstronomyLibrary scienceCharge (warfare)7. Clean energy01 natural sciencesBildungBasic researchPolitical science0103 physical sciencesChristian ministry010306 general physicsEngineering researchChinaPhysical Review Letters
researchProduct

Search for Technicolor Particles Produced in Association with a W Boson at CDF

2010

7 páginas, 3 figuras, 1 tabla.-- PACS numbers: 14.80.Tt, 12.60.Nz, 13.85.Rm.-- CDF Collaboration: et al.

DYNAMICSParticle physicsHadronTevatronGeneral Physics and AstronomyFOS: Physical sciencesElementary particleddc:500.27. Clean energy01 natural sciences114 Physical sciencesStandard ModelHigh Energy Physics - ExperimentNuclear physicsSYMMETRY-BREAKINGHigh Energy Physics - Experiment (hep-ex)13.85.Rm 14.80.Bn0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Invariant mass010306 general physicsPhysicsMuon010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologySYMMETRY-BREAKING; DYNAMICSHigh Energy Physics::ExperimentEnergy (signal processing)Lepton
researchProduct

Updated Search for the Flavor-Changing Neutral-Current Decay D^0 \to {\mu} + {\mu}-

2010

We report on a search for the flavor-changing neutral-current decay D0 \to {\mu}+ {\mu}- in pp collisions at \surd s = 1.96 TeV using 360 pb-1 of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron collider. A displaced vertex trigger selects long-lived D0 candidates in the {\mu}+ {\mu}-, {\pi}+{\pi}-, and K-{\pi}+ decay modes. We use the Cabibbo-favored D0 \to K-{\pi}+ channel to optimize the selection criteria in an unbiased manner, and the kinematically similar D0 \to{\pi}+ {\pi}- channel for normalization. We set an upper limit on the branching fraction (D0 --> {\mu}+ {\mu}-) < 2.1 E-7 (3.0 E-7) at the 90% (95%) confidence level.

PhysicsNuclear and High Energy PhysicsAntiparticleMuonMeson010308 nuclear & particles physicsBranching fractionFlavor-changing neutral currentHadron01 natural sciencesHigh Energy Physics - Experiment3. Good healthNuclear physicsCrystallographyParticle decayTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical sciences12.15.Mm 13.20.Fc 14.40.Lb[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]High Energy Physics::Experiment010306 general physicsDimensionless quantity
researchProduct

Search for Charged Higgs Bosons in Decays of Top Quarks inpp¯Collisions ats=1.96  TeV

2009

We report on the first direct search for charged Higgs bosons in decays of top quarks in p{bar p} collisions at {radical}s = 1.96 TeV. The search uses a data sample corresponding to an integrated luminosity of 2.2 fb{sup -1} collected by the CDF II detector at Fermilab, and looks for a resonance in the invariant mass distribution of two jets in the lepton+jets sample of t{bar t} candidates. We observe no evidence of charged Higgs bosons in top quark decays. Hence, 95% upper limits on the top quark decay branching ratio are placed at {Beta}(t {yields} H{sup +}b) < 0.1 to 0.3 for charged Higgs boson masses of 60 to 150 GeV/c{sup 2}, assuming {Beta}(H{sup +} {yields} c{bar s}) = 1.0. The upper…

QuarkPhysicsTop quarkParticle physics010308 nuclear & particles physicsBranching fractionHigh Energy Physics::PhenomenologyGeneral Physics and AstronomyElementary particle01 natural sciences7. Clean energyStandard ModelNuclear physics0103 physical sciencesHiggs bosonHigh Energy Physics::Experiment010306 general physicsLeptonBosonPhysical Review Letters
researchProduct

Direct Bound on the Total Decay Width of the Top Quark inpp¯Collisions ats=1.96  TeV

2009

We present the first direct experimental bound on the total decay width of the top quark, Gamma(t), using 955 pb(-1) of the Tevatron's p (p) over bar collisions recorded by the Collider Detector at Fermilab. We identify 253 top-antitop pair candidate events. The distribution of reconstructed top quark mass from these events is fitted to templates representing different values of the top quark width. Using a confidence interval based on likelihood-ratio ordering, we extract an upper limit at 95% C.L. of Gamma(t) < 13.1 GeV for an assumed top quark mass of 175 GeV/c(2).

PhysicsTop quarkParticle physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyTevatronGeneral Physics and Astronomy01 natural sciencesComputer Science::Computers and SocietyLower limitNuclear physicsParticle decayNonlinear Sciences::Exactly Solvable and Integrable Systems0103 physical sciencesPhysics::Atomic and Molecular ClustersHigh Energy Physics::Experiment010306 general physicsCollider Detector at FermilabBar (unit)Physical Review Letters
researchProduct

Search for new physics inlepton+photon+Xevents with929  pb−1ofpp¯collisions ats=1.96  TeV

2007

The authors present results of a search for anomalous production of events containing a charged lepton ({ell}, either e or {mu}) and a photon ({gamma}), both with high transverse momentum, accompanied by additional signatures, X, including missing transverse energy (E{sub T}) and additional leptons and photons. We use the same kinematic selection criteria as in a previous CDF search, but with a substantially larger data set, 305 pb{sup -1}, a p{bar p} collision energy of 1.96 TeV, and the upgraded CDF II detector. We find 42 {ell}{gamma}E{sub T} events versus a standard model expectation of 37.3 {+-} 5.4 events. The level of excess observed in Run I, 16 events with an expectation of 7.6 {+-…

PhysicsNuclear and High Energy PhysicsParticle physicsPhoton010308 nuclear & particles physicsPhysics beyond the Standard ModelGeneral Physics and AstronomySigma01 natural sciencesStandard ModelNuclear physicsMomentumAngular correlation0103 physical sciencesTransverse momentumProduction (computer science)High Energy Physics::Experiment010306 general physicsEvent (particle physics)Energy (signal processing)Bar (unit)LeptonPhysical Review D
researchProduct

Intrinsic backgrounds from Rn and Kr in the XENON100 experiment

2018

In this paper, we describe the XENON100 data analyses used to assess the target-intrinsic background sources radon ([InlineMediaObject not available: see fulltext.]), thoron ([InlineMediaObject not available: see fulltext.]) and krypton ([InlineMediaObject not available: see fulltext.]). We detail the event selections of high-energy alpha particles and decay-specific delayed coincidences. We derive distributions of the individual radionuclides inside the detector and quantify their abundances during the main three science runs of the experiment over a period of ∼4years, from January 2010 to January 2014. We compare our results to external measurements of radon emanation and krypton concentr…

data analysis methodPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)WIMPFOS: Physical scienceschemistry.chemical_elementlcsh:AstrophysicsRadonSciences de l'ingénieur01 natural sciencesIonNuclear physicsradon: nuclideXENONlcsh:QB460-4660103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Engineering (miscellaneous)nuclidebackground: radioactivitybackground: suppressionkryptonPhysicsRadionuclidePhysique010308 nuclear & particles physicsKryptonInstrumentation and Detectors (physics.ins-det)Alpha particleAstronomieDark Matter direct search experimentrespiratory tract diseasesRadon DaughtersBackgroundchemistrylcsh:QC770-798TPCAstrophysics - Instrumentation and Methods for Astrophysics
researchProduct

Search for High-Masse+e−Resonances inpp¯Collisions ats=1.96  TeV

2009

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities…

Physics010308 nuclear & particles physicsScience and engineeringGeneral Physics and AstronomyLibrary science01 natural sciencesBildungNuclear physicsBasic research0103 physical sciencesHigh massChristian ministry010306 general physicsChinaPhysical Review Letters
researchProduct

First Axion Results from the XENON100 Experiment

2014

We present the first results of searches for axions and axion-like-particles with the XENON100 experiment. The axion-electron coupling constant, $g_{Ae}$, has been tested by exploiting the axio-electric effect in liquid xenon. A profile likelihood analysis of 224.6 live days $\times$ 34 kg exposure has shown no evidence for a signal. By rejecting $g_{Ae}$, larger than $7.7 \times 10^{-12}$ (90% CL) in the solar axion search, we set the best limit to date on this coupling. In the frame of the DFSZ and KSVZ models, we exclude QCD axions heavier than 0.3 eV/c$^2$ and 80 eV/c$^2$, respectively. For axion-like-particles, under the assumption that they constitute the whole abundance of dark matte…

Nuclear and High Energy PhysicsParticle physicsAstrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)astro-ph.GADark matterchemistry.chemical_elementFOS: Physical sciencesAstrophysics01 natural sciencesCosmologydark matterXenonHigh Energy Physics - Phenomenology (hep-ph)Assioni0103 physical sciences010306 general physicsAxionLiquid XenonCouplingCoupling constantQuantum chromodynamicsPhysics010308 nuclear & particles physicshep-phAstrophysics - Astrophysics of GalaxiesGalaxyHigh Energy Physics - Phenomenologychemistry[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Astrophysics of Galaxies (astro-ph.GA)astro-ph.COAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Results from a calibration of XENON100 using a source of dissolved radon-220

2017

A Rn 220 source is deployed on the XENON100 dark matter detector in order to address the challenges in calibration of tonne-scale liquid noble element detectors. We show that the Pb 212 beta emission can be used for low-energy electronic recoil calibration in searches for dark matter. The isotope spreads throughout the entire active region of the detector, and its activity naturally decays below background level within a week after the source is closed. We find no increase in the activity of the troublesome Rn 222 background after calibration. Alpha emitters are also distributed throughout the detector and facilitate calibration of its response to Rn 222 . Using the delayed coincidence of R…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsDark matterFOS: Physical scienceschemistry.chemical_elementRadon01 natural sciencesCoincidenceNuclear physicsRecoilOpticsXenonXENON DARK MATTER WIMPS CALIBRATION RADON0103 physical sciencesCalibration[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsPhysics010308 nuclear & particles physicsbusiness.industryDetectorAstrophysics::Instrumentation and Methods for AstrophysicsOrder (ring theory)Instrumentation and Detectors (physics.ins-det)chemistryHigh Energy Physics::Experimentbusiness
researchProduct

Search forWWandWZResonances Decaying to Electron, MissingET, and Two Jets inpp¯Collisions ats=1.96  TeV.

2009

We present a search for WW and WZ production in final states that contain a charged lepton (electron or muon) and at least two jets, produced in {radical}(s)=1.96 TeV pp collisions at the Fermilab Tevatron, using data corresponding to 1.2 fb{sup -1} of integrated luminosity collected with the CDF II detector. Diboson production in this decay channel has yet to be observed at hadron colliders due to the large single W plus jets background. An artificial neural network has been developed to increase signal sensitivity, as compared with an event selection based on conventional cuts. We set a 95% confidence level upper limit of {sigma}{sub WW}xBR(W{yields}l{nu}{sub l},W{yields}jets)+{sigma}{sub…

PhysicsNuclear and High Energy PhysicsParticle physicsGauge bosonMuon010308 nuclear & particles physicsHadronHigh Energy Physics::PhenomenologyTevatronGeneral Physics and AstronomyElementary particleCoupling (probability)01 natural sciencesStandard ModelNuclear physicsMassless particleParticle decay0103 physical sciencesProduction (computer science)High Energy Physics::ExperimentSensitivity (control systems)010306 general physicsLeptonBosonPhysical Review Letters
researchProduct

Production ofψ(2S)mesons inpp¯collisions at 1.96 TeV

2009

We have measured the differential cross section for the inclusive production of $\ensuremath{\psi}(2\mathrm{S})$ mesons decaying to ${\ensuremath{\mu}}^{+}{\ensuremath{\mu}}^{\ensuremath{-}}$ that were produced in prompt or $B$-decay processes from $p\overline{p}$ collisions at 1.96 TeV. These measurements have been made using a data set from an integrated luminosity of $1.1\text{ }\text{ }{\mathrm{fb}}^{\ensuremath{-}1}$ collected by the CDF II detector at Fermilab. For events with transverse momentum ${p}_{T}(\ensuremath{\psi}(2\mathrm{S}))g2\text{ }\text{ }\mathrm{GeV}/c$ and rapidity $|y(\ensuremath{\psi}(2\mathrm{S}))|l0.6$ we measure the integrated inclusive cross section $\ensuremath…

Scattering cross-sectionPhysicsNuclear and High Energy PhysicsParticle physicsMeson010308 nuclear & particles physics0103 physical sciencesTransverse momentumHigh Energy Physics::ExperimentProduction (computer science)Rapidity010306 general physics01 natural sciencesPhysical Review D
researchProduct

Study of the associated production of photons andb-quark jets inpp¯collisions ats=1.96  TeV

2010

The cross section for photon production in association with at least one jet containing a b quark has been measured in proton antiproton collisions at {radical}(s)=1.96 TeV. The data sample used corresponds to an integrated luminosity of 340 pb{sup -1} collected with the CDF II detector. Both the differential cross section as a function of photon transverse energy E{sub T}{sup {gamma}}and the total cross section are measured and compared to a next-to-leading order prediction for the process.

PhysicsNuclear and High Energy PhysicsParticle physicsLuminosity (scattering theory)Proton010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaOrder (ring theory)Elementary particleJet (particle physics)01 natural sciencesBottom quarkNuclear physicsAntiproton0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsEnergy (signal processing)Physical Review D
researchProduct

Online 222 Rn removal by cryogenic distillation in the XENON100 experiment

2017

We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant 222 Rn background originating from radon emanation. After inserting an auxiliary 222 Rn emanation source in the gas loop, we determined a radon reduction factor of R&gt;27 (95% C.L.) for the distillation column by monitoring the 222 Rn activity concentration inside the XENON100 detector.

XenonPhysics and Astronomy (miscellaneous)WimpDirect SearchDark MatterTPCEngineering (miscellaneous)European Physical Journal C
researchProduct

Search for single top quark production inpp¯collisions ats=1.96  TeVin the missing transverse energy plus jets topology

2010

We report a search for single top quark production with the CDF II detector using 2.1 fb{sup -1} of integrated luminosity of pp collisions at {radical}(s)=1.96 TeV. The data selected consist of events characterized by large energy imbalance in the transverse plane and hadronic jets, and no identified electrons and muons, so the sample is enriched in W{yields}{tau}{nu} decays. In order to suppress backgrounds, additional kinematic and topological requirements are imposed through a neural network, and at least one of the jets must be identified as a b quark jet. We measure an excess of signal-like events in agreement with the standard model prediction, but inconsistent with a model without si…

PhysicsQuarkNuclear and High Energy PhysicsTop quarkParticle physics010308 nuclear & particles physicsHadronOrder (ring theory)Topology01 natural sciencesBottom quarkStandard ModelNuclear physics0103 physical sciencesGrand Unified TheoryHigh Energy Physics::ExperimentProduction (computer science)010306 general physicsPhysical Review D
researchProduct

Measurement of theb-hadron production cross section using decays toμ−D0Xfinal states inpp¯collisions ats=1.96  TeV

2009

We report a measurement of the production cross section for b hadrons in p{bar p} collisions at {radical}s = 1.96 TeV. Using a data sample derived from an integrated luminosity 83 pb{sup -1} collected with the upgraded Collider Detector (CDF II) at the Fermilab Tevatron, we analyze b hadrons, H{sub b}, partially reconstructed in the semileptonic decay mode H{sub b} {yields} {mu}{sup -} D{sup 0} X. Our measurement of the inclusive production cross section for b hadrons with transverse momentum p{sub T} > 9 GeV/c and rapidity |y| < 0.6 is {sigma} = 1.30 {micro}b {+-} 0.05 {micro}b(stat) {+-} 0.14 {micro}b(syst) {+-} 0.07 {micro}b({Beta}), where the uncertainties are statistical, systematic, a…

Semileptonic decayPhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsBranching fractionHadronTevatronSigma01 natural sciences7. Clean energyNuclear physics0103 physical sciencesTransverse momentumHigh Energy Physics::ExperimentRapidityFermilab010306 general physicsPhysical Review D
researchProduct

Search forR-Parity Violating Decays of Sneutrinos toeμ,μτ, andeτPairs inpp¯Collisions ats=1.96  TeV

2010

7 paginas, 2 figuras, 3 tablas.-- PACS numbers: 14.80.Ly, 12.60.Jv, 13.85.Qk, 14.60.St.--CDF Collaboration: et al.

PhysicsParticle physics010308 nuclear & particles physicsQuark modelGeneral Physics and AstronomyElementary particle01 natural sciencesStandard ModelNuclear physicsParticle decayR-parity0103 physical sciencesGrand Unified TheoryNeutrino010306 general physicsLeptonPhysical Review Letters
researchProduct

Measurement of the fraction oftt¯production via gluon-gluon fusion inpp¯collisions ats=1.96  TeV

2009

We present a measurement of the ratio of the tt production cross section via gluon-gluon fusion to the total tt production cross section in pp collisions at √s=1.96  TeV at the Tevatron. Using a data sample with an integrated luminosity of 955  pb-1 recorded by the CDF II detector at Fermilab, we select events based on the tt decay to lepton+jets. Using an artificial neural network technique we discriminate between tt events produced via qq annihilation and gg fusion, and find Gf=σ(gg→tt )/σ(pp →tt )<0.33 at the 68% confidence level. This result is combined with a previous measurement to obtain the most stringent measurement of this quantity by CDF to date, Gf=0.07-0.07+0.15.

PhysicsNuclear and High Energy PhysicsTop quarkParticle physicsAnnihilationLuminosity (scattering theory)010308 nuclear & particles physicsTevatron01 natural sciencesGluonNuclear physicsParticle decay0103 physical sciencesFermilab010306 general physicsLeptonPhysical Review D
researchProduct

Search for Supersymmetry inpp¯Collisions ats=1.96  TeVUsing the Trilepton Signature for Chargino-Neutralino Production

2008

We use the three lepton and missing energy trilepton signature to search for chargino-neutralino production with 2.0 fb(-1) of integrated luminosity collected by the CDF II experiment at the Tevatron p (p) over bar collider. We expect an excess of approximately 11 supersymmetric events for a choice of parameters of the mSUGRA model, but our observation of 7 events is consistent with the standard model expectation of 6.4 events. We constrain the mSUGRA model of supersymmetry and rule out chargino masses up to 145 GeV/c(2) for a specific choice of parameters.

PhysicsParticle physicsMissing energyLuminosity (scattering theory)010308 nuclear & particles physicsSupergravityHigh Energy Physics::PhenomenologyTevatronGeneral Physics and AstronomySupersymmetry01 natural sciencesStandard ModelNuclear physicsChargino0103 physical sciencesNeutralinoHigh Energy Physics::Experiment010306 general physicsPhysical Review Letters
researchProduct

Search for the Associated Production of the Standard-Model Higgs Boson in the All-Hadronic Channel

2009

We report on a search for the standard-model Higgs boson in pp collisions at s=1.96 TeV using an integrated luminosity of 2.0 fb(-1). We look for production of the Higgs boson decaying to a pair of bottom quarks in association with a vector boson V (W or Z) decaying to quarks, resulting in a four-jet final state. Two of the jets are required to have secondary vertices consistent with B-hadron decays. We set the first 95% confidence level upper limit on the VH production cross section with V(-> qq/qq('))H(-> bb) decay for Higgs boson masses of 100-150 GeV/c(2) using data from run II at the Fermilab Tevatron. For m(H)=120 GeV/c(2), we exclude cross sections larger than 38 times the standard-m…

QuarkParticle physicsStandardsFinal stateFermilab TevatronHiggs bosonTevatronFOS: Physical sciencesGeneral Physics and AstronomyElementary particleddc:500.201 natural sciences114 Physical sciencesStandard ModelVector bosonHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Particle decayTellurium compounds0103 physical sciencesJetsB-hadron decaysHigh energy physics010306 general physicsBosonsBosonStandard-model Higgs bosonsPhysicsIntegrated luminosityHIGGS BOSONModel predictionCross section010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologyConfidence levelsUpper limits3. Good healthVector bosonProduction cross sectionBottom quarksSecondary verticesHiggs bosonCDFHigh Energy Physics::Experiment
researchProduct

Physics reach of the XENON1T dark matter experiment.

2016

The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in $1$ tonne fiducial volume and ($1$, $12$) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is $(1.80 \pm 0.15) \cdot 10^{-4}$ ($\rm{kg} \cdot day \cdot keV)^{-1}$, mainly due to the decay of $^{222}\rm{Rn}$ daughters inside the xenon target. The nu…

dark matter simulationsPhysics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics::Instrumentation and Detectorsdark matter experimentFOS: Physical scienceschemistry.chemical_elementCosmic ray7. Clean energy01 natural sciencesdark matter simulationNuclear physicsRecoilXenonIonization0103 physical sciencesNeutronNuclear Experiment010306 general physicsPhysicsMuon010308 nuclear & particles physicsdark matter experimentsAstronomy and AstrophysicsInstrumentation and Detectors (physics.ins-det)dark matter experiments; dark matter simulationschemistryNeutrinoNucleonAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

Evidence for a Particle Produced in Association with Weak Bosons and Decaying to a Bottom-Antibottom Quark Pair in Higgs Boson Searches at the Tevatr…

2012

Aaltonen, T. et al.

FERMILAB TEVATRON COLLIDERTop quarkParticle physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Higgs-Boson decaysSTANDARD MODEL; PARTON DISTRIBUTIONS; SYMMETRIES; proton antiproton collisions; FERMILAB TEVATRON COLLIDER; Standard Model Higgs boson; HIGGS-BOSON production; Higgs-Boson decaysSTANDARD MODELGeneral Physics and AstronomyFOS: Physical sciencesElementary particleStandard Model Higgs boson7. Clean energy01 natural sciencesVector bosonStandard ModelHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsTEVATRONBosonStandard-model Higgs bosonsPhysicsHIGGS-BOSON productionHIGGS BOSON010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]High Energy Physics::PhenomenologyScalar bosonW and Z bosonsPARTON DISTRIBUTIONSExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGHiggs bosonSYMMETRIESproton antiproton collisionsCDFLimits on production of particlesHigh Energy Physics::Experiment
researchProduct

Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment

2014

XENON is a direct detection dark matter project, consisting of a time projection chamber (TPC) that uses xenon in double phase as a sensitive detection medium. XENON100, located at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, is one of the most sensitive experiments of its field. During the operation of XENON100, the design and construction of the next generation detector (of ton-scale mass) of the XENON project, XENON1T, is taking place. XENON1T is being installed at LNGS as well. It has the goal to reduce the background by two orders of magnitude compared to XENON100, aiming at a sensitivity of $2 \cdot 10^{-47} \mathrm{cm}^{\mathrm{2}}$ for a WIMP mass of 50 GeV/c$^{2}$. With…

axionsPhysics - Instrumentation and Detectors[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Cherenkov and transition radiationCherenkov detectorPhysics::Instrumentation and DetectorsDark matterDetector modelling and simulations I (interaction of radiation with matterchemistry.chemical_elementFOS: Physical sciences01 natural scienceslaw.inventionNuclear physicsXenonWIMPlawCherenkov and transition radiation Detector modelling and simulations Cherenkov detectors Dark Matter detectorsetc.)0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentationInstrumentation and Methods for Astrophysics (astro-ph.IM)Dark Matter detectors (WIMPsMathematical PhysicsCherenkov radiationetc)PhysicsMuonTime projection chamber010308 nuclear & particles physicsCherenkov detectorsDetectorAstrophysics::Instrumentation and Methods for Astrophysicsinteraction of photons with matterInstrumentation and Detectors (physics.ins-det)Cherenkov and transition radiation; Cherenkov detectors; Dark Matter detectors (WIMPs axions etc.); Detector modelling and simulations I (interaction of radiation with matter; interaction of hadrons with matter etc); interaction of photons with matter[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]interaction of hadrons with matterchemistryHigh Energy Physics::ExperimentAstrophysics - Instrumentation and Methods for AstrophysicsJOURNAL OF INSTRUMENTATION
researchProduct

Combination of Tevatron searches for the standard model Higgs boson in the W+W- decay mode.

2010

11 páginas, 4 figuras, 1 tabla.-- CDF Collaboration: et al.

Particle physicsAstrophysics::High Energy Astrophysical PhenomenaTevatronFOS: Physical sciencesGeneral Physics and AstronomyElementary particleddc:500.2.PARTON DISTRIBUTIONS; HADRON COLLIDERS; QCD; NNLO7. Clean energy01 natural sciences114 Physical sciencesHigh Energy Physics - ExperimentStandard ModelNuclear physicsHigh Energy Physics - Experiment (hep-ex)Particle decay0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Grand Unified TheoryHADRON COLLIDERSFermilabTEVATRONNuclear Experiment010306 general physicsBosonPhysicsHIGGS BOSON010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologyQCD3. Good healthPARTON DISTRIBUTIONSHiggs bosonCDFPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentNNLOAnti-p p: interaction | Higgs particle: search for | gluon gluon: fusion | intermediate boson: fusion | quark antiquark: annihilation | Higgs particle: decay | Higgs particle --> W+ W- | W: pair production | W: leptonic decay | dilepton: final state | jet: multiplicity | cross section: upper limit | mass dependence | Higgs particle: mass | background | DZERO | CDF | Batavia TEVATRON Coll | anti-p p --> Higgs particle anything | anti-p p --> Higgs particle anything intermediate boson anything | anti-p p --> Higgs particle anything quark antiquark anything | 1960 GeV-cmsPhysical review letters
researchProduct

Constraining the spin-dependent WIMP-nucleon cross sections with XENON1T

2019

We report the first experimental results on spin-dependent elastic weakly interacting massive particle (WIMP) nucleon scattering from the XENON1T dark matter search experiment. The analysis uses the full ton year exposure of XENON1T to constrain the spin-dependent proton-only and neutron-only cases. No significant signal excess is observed, and a profile likelihood ratio analysis is used to set exclusion limits on the WIMP-nucleon interactions. This includes the most stringent constraint to date on the WIMP-neutron cross section, with a minimum of 6.3 × 10−42 cm2 at 30 GeV/c2 and 90% confidence level. The results are compared with those from collider searches and used to exclude new paramet…

WIMP nucleon: interactionWIMP nucleon: scatteringParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)IsoscalarDark matterNuclear TheoryMassive particleGeneral Physics and AstronomyFOS: Physical sciencesParameter spacedark matter: direct detectionGravitation and Astrophysicsspin: dependence01 natural scienceslaw.inventionHigh Energy Physics - Phenomenology (hep-ph)WIMPlawisoscalar0103 physical sciencesS046DM1mediation010306 general physicsColliderPseudovectorPhysicsS030DN2S030DN1S030DP3S030DN3S030DP2S030DP1WIMP nucleon: cross sectionaxial-vectorHigh Energy Physics - PhenomenologyWIMPs Spin Dependent Cross Sections Neutron Cross Sections Likelihood methoddark matter: scattering[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentNucleon[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic Astrophysicsexperimental results
researchProduct

Search for a Heavy Toplike Quark inpp¯Collisions ats=1.96  TeV

2011

We present the results of a search for pair production of a heavy toplike (t') quark decaying to Wq final states using data corresponding to an integrated luminosity of 5.6 fb(-1) collected by the CDF II detector in pp collisions at √s=1.96 TeV. We perform parallel searches for t'→Wb and t'→Wq (where q is a generic down-type quark) in events containing a lepton and four or more jets. By performing a fit to the two-dimensional distribution of total transverse energy versus reconstructed t' quark mass, we set upper limits on the t't' production cross section and exclude a standard model fourth-generation t' quark decaying to Wb (Wq) with mass below 358 (340) GeV/c(2) at 95% C.L.

PhysicsQuarkParticle physicsLuminosity (scattering theory)010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyGeneral Physics and AstronomyElementary particleKinetic energy01 natural sciencesStandard ModelNuclear physicsPair production0103 physical sciencesGrand Unified TheoryHigh Energy Physics::Experiment010306 general physicsLeptonPhysical Review Letters
researchProduct

Measurement of theWW+WZProduction Cross Section Using thelepton+jetsFinal State at CDF II

2010

We report two complementary measurements of the diboson (WW + WZ) cross section in the final state consisting of an electron or muon, missing transverse energy, and jets, performed using p{bar p} collision data at {radical}s = 1.96 TeV collected by the Collider Detector at Fermilab. The first method uses the dijet invariant mass distribution while the second method uses more of the kinematic information in the event through matrix-element calculations of the signal and background processes and has a higher sensitivity. The result from the second method has a signal significance of 5.4{sigma} and is the first observation of WW + WZ production using this signature. Combining the results from …

PhysicsParticle physicsMuon010308 nuclear & particles physicsGeneral Physics and AstronomyElementary particle01 natural sciences7. Clean energyStandard ModelNuclear physics0103 physical sciencesHigh Energy Physics::ExperimentProduction (computer science)Invariant mass010306 general physicsCollider Detector at FermilabEnergy (signal processing)LeptonPhysical Review Letters
researchProduct

Measurement of the top quark mass using the invariant mass of lepton pairs in soft muon b-tagged events

2009

We present the first measurement of the mass of the top quark in a sample of t (t) over bar -> l (nu) over barb (b) over barq (q) over bar events (where l = e, mu) selected by identifying jets containing a muon candidate from the semileptonic decay of heavy-flavor hadrons (soft muon b tagging). The p (p) over bar collision data used correspond to an integrated luminosity of 2 fb(-1) and were collected by the CDF II detector at the Fermilab Tevatron Collider. The measurement is based on a novel technique exploiting the invariant mass of a subset of the decay particles, specifically the lepton from the W boson of the t -> Wb decay and the muon from a semileptonic b decay. We fit template hist…

Semileptonic decayNuclear and High Energy PhysicsTop quarkParticle physicsTevatronFOS: Physical sciencesddc:500.2TOP QUARK01 natural sciences7. Clean energyHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesInvariant mass010306 general physicsPhysicsMuonMass distribution010308 nuclear & particles physicsPhysicsHigh Energy Physics::Phenomenologyb-taggingCDFHigh Energy Physics::ExperimentSOFT MUON TAGGINGLepton
researchProduct

Measurement of Inclusive Jet Cross Sections inZ/γ*(→e+e−)+jetsProduction inpp¯Collisions ats=1.96   TeV

2008

Inclusive jet cross sections in Z/{gamma}* events, with Z/{gamma}* decaying into an electron-positron pair, are measured as a function of jet transverse momentum and jet multiplicity in p{bar p} collisions at {radical}s - 1.96 TeV with the upgraded Collider Detector at Fermilab in Run II, based on an integrated luminosity of 1.7 fb{sup -1}. The measurements cover the rapidity region |y{sup jet}| 30 GeV/c. Next-to-leading order perturbative QCD predictions are in good agreement with the measured cross sections.

PhysicsQuantum chromodynamicsParticle physicsAnnihilation010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaGeneral Physics and AstronomyPerturbative QCDElectron01 natural sciences7. Clean energyNuclear physicsPair production0103 physical sciencesPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentRapidityMultiplicity (chemistry)010306 general physicsCollider Detector at FermilabPhysical Review Letters
researchProduct

Precision Measurement of theX(3872)Mass inJ/ψπ+π−Decays

2009

We present an analysis of the mass of the X(3872) reconstructed via its decay to J/psi pi(+)pi(-) using 2.4 fb(-1) of integrated luminosity from p (p) over bar collisions at root s = 1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. The possible existence of two nearby mass states is investigated. Within the limits of our experimental resolution the data are consistent with a single state, and having no evidence for two states we set upper limits on the mass difference between two hypothetical states for different assumed ratios of contributions to the observed peak. For equal contributions, the 95% confidence level upper limit on the mass difference is 3.6 MeV/c(2). Un…

PhysicsParticle physicsMeson010308 nuclear & particles physicsHadronTevatronGeneral Physics and AstronomyQuarkonium7. Clean energy01 natural sciencesLuminosityNuclear physicsParticle decayPion0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsX(3872)Physical Review Letters
researchProduct

Measurements of the top-quark mass using charged particle tracking

2010

21 páginas, 13 figuras, 6 tablas.-- PACS numbers: 12.15.-y, 13.85.-t, 14.60.-z, 14.65.Fy.-- CDF Collaboration: et al.

Nuclear and High Energy PhysicsTop quarkParticle physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesElementary particleElectronddc:500.201 natural sciences7. Clean energy114 Physical sciencesTOP QUARKHigh Energy Physics - ExperimentPHYSICSNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences010306 general physicsTEVATRONNuclear ExperimentPhysicsMuon010308 nuclear & particles physicshep-exPhysicsHigh Energy Physics::PhenomenologyFermionCharged particleCDFHigh Energy Physics::ExperimentEnergy (signal processing)Lepton
researchProduct

A low-mass dark matter search using ionization signals in XENON100

2016

We perform a low-mass dark matter search using an exposure of 30\,kg$\times$yr with the XENON100 detector. By dropping the requirement of a scintillation signal and using only the ionization signal to determine the interaction energy, we lowered the energy threshold for detection to 0.7\,keV for nuclear recoils. No dark matter detection can be claimed because a complete background model cannot be constructed without a primary scintillation signal. Instead, we compute an upper limit on the WIMP-nucleon scattering cross section under the assumption that every event passing our selection criteria could be a signal event. Using an energy interval from 0.7\,keV to 9.1\,keV, we derive a limit on …

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsDark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSignalHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)WIMPIonization0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsPhysicsScintillation010308 nuclear & particles physicsDetectorInstrumentation and Detectors (physics.ins-det)Physics and Astronomy (miscellaneous) DARK MATTER XENON TPC WIMPHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Scintillation counterEnergy (signal processing)Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

First measurement of the ratio of branching fractionsB(Λb0→Λc+μ−ν¯μ)/B(Λb0→Λc+π−)

2009

This article presents the first measurement of the ratio of branching fractions B(Lambda(0)(b) -> Lambda(+)(c) mu(-) (nu) over bar (mu))/B(Lambda(0)(b) -> Lambda(+)(c) pi(-)). Measurements in two control samples using the same technique B((B) over bar (0) -> D+ mu(-) (nu) over bar (mu))/B((B) over bar (0) -> D+ pi(-)) and B((B) over bar (0) -> D*(2010)(+) mu(-) (nu) over bar (mu))/B((B) over bar (0) -> D*(2010)(+) pi(-)) are also reported. The analysis uses data from an integrated luminosity of approximately 172 pb(-1) of p (p) over bar collisions at root s = 1: 96 TeV, collected with the CDF II detector at the Fermilab Tevatron. The relative branching fractions are measured to be B(Lambda(…

PhysicsSemileptonic decayNuclear and High Energy PhysicsMuonMeson010308 nuclear & particles physicsBranching fractionHigh Energy Physics::PhenomenologyAnalytical chemistryParticle Data GroupLambda01 natural sciences0103 physical sciencesHigh Energy Physics::ExperimentB meson010306 general physicsBar (unit)Physical Review D
researchProduct

Measurement of thett¯production cross section with anin situcalibration ofb-jet identification efficiency

2011

A measurement of the top-quark pair-production cross section in ppbar collisions at sqrt{s}=1.96 TeV using data corresponding to an integrated luminosity of 1.12/fb collected with the Collider Detector at Fermilab is presented. Decays of top-quark pairs into the final states e nu + jets and mu nu + jets are selected, and the cross section and the b-jet identification efficiency are determined using a new measurement technique which requires that the measured cross sections with exactly one and multiple identified b-quarks from the top-quark decays agree. Assuming a top-quark mass of 175 GeV/c^2, a cross section of 8.5+/-0.6(stat.)+/-0.7(syst.) pb is measured.

PhysicsNuclear and High Energy PhysicsTop quarkParticle physicsLuminosity (scattering theory)010308 nuclear & particles physicsHigh Energy Physics::Phenomenology7. Clean energy01 natural sciencesb-taggingNuclear physicsParticle decayCross section (physics)Pair production0103 physical sciencesHigh Energy Physics::ExperimentFermilab010306 general physicsCollider Detector at FermilabPhysical Review D
researchProduct

Strong Evidence forZZProduction inpp¯Collisions ats=1.96  TeV

2008

We report the first measurement of the cross section for Z boson pair production at a hadron collider. This result is based on a data sample corresponding to 1.9 fb{sup -1} of integrated luminosity from p{bar p} collisions at {radical}s = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. In the {ell}{ell}{ell}{prime}{ell}{prime} channel, we observe three ZZ candidates with an expected background of 0.096{sub -0.063}{sup +0.092} events. In the {ell}{ell}{nu}{nu} channel, we use a leading-order calculation of the relative ZZ and WW event probabilities to discriminate between signal and background. In the combination of {ell}{ell}{ell}{prime}{ell}{prime} and {ell}{ell}{nu}{…

PhysicsParticle physics010308 nuclear & particles physicsHadronTevatronGeneral Physics and Astronomy01 natural sciencesPrime (order theory)LuminosityStandard ModelNuclear physicsPair production0103 physical sciencesHigh Energy Physics::ExperimentProduction (computer science)010306 general physicsBosonPhysical Review Letters
researchProduct

Measurement of thepp¯→tt¯production cross section and the top quark mass ats=1.96  TeVin the all-hadronic decay mode

2007

We report the measurements of the t{bar t} production cross section and of the top quark mass using 1.02 fb{sup -1} of p{bar p} data collected with the CDF II detector at the Fermilab Tevatron. We select events with six or more jets on which a number of kinematical requirements are imposed by means of a neural network algorithm. At least one of these jets must be identified as initiated by a b-quark candidate by the reconstruction of a secondary vertex. The cross section is measured to be {sigma}{sub t{bar t}} = 8.3 {+-} 1.0(stat. ){sup +2.0}{sub -1.5}(syst.) {+-} 0.5(lumi.) pb, which is consistent with the standard model prediction. The top quark mass of 174.0 {+-} 2.2(stat.){+-}4.8(syst.)…

PhysicsNuclear and High Energy PhysicsParticle physicsTop quarkMass distribution010308 nuclear & particles physicsHadronHigh Energy Physics::PhenomenologyTevatron01 natural sciencesParticle identificationStandard ModelNuclear physicsPair productionAntiproton0103 physical sciencesHigh Energy Physics::ExperimentProduction (computer science)Invariant massFermilabNuclear Experiment010306 general physicsPhysical Review D
researchProduct

Search for a Fermiophobic Higgs Boson Decaying into Diphotons inpp¯Collisions ats=1.96  TeV

2009

A search for a narrow diphoton mass resonance is presented based on data from 3.0 fb{sup -1} of integrated luminosity from p{bar p} collisions at {radical}s = 1.96 TeV collected by the CDF experiment. No evidence of a resonance in the diphoton mass spectrum is observed, and upper limits are set on the cross section times branching fraction of the resonant state as a function of Higgs boson mass. The resulting limits exclude Higgs bosons with masses below 106 GeV/c{sup 2} at a 95% Bayesian credibility level (C.L.) for one fermiophobic benchmark model.

PhysicsParticle physicsMeson010308 nuclear & particles physicsBranching fractionHigh Energy Physics::PhenomenologyTevatronGeneral Physics and AstronomyElementary particle01 natural sciencesStandard ModelNuclear physics0103 physical sciencesMass spectrumHiggs bosonHigh Energy Physics::Experiment010306 general physicsBosonPhysical Review Letters
researchProduct

Search for Coherent Elastic Scattering of Solar B8 Neutrinos in the XENON1T Dark Matter Experiment

2021

We report on a search for nuclear recoil signals from solar $^8$B neutrinos elastically scattering off xenon nuclei in XENON1T data, lowering the energy threshold from 2.6 keV to 1.6 keV. We develop a variety of novel techniques to limit the resulting increase in backgrounds near the threshold. No significant $^8$B neutrino-like excess is found in an exposure of 0.6 t $\times$ y. For the first time, we use the non-detection of solar neutrinos to constrain the light yield from 1-2 keV nuclear recoils in liquid xenon, as well as non-standard neutrino-quark interactions. Finally, we improve upon world-leading constraints on dark matter-nucleus interactions for dark matter masses between 3 GeV/…

Elastic scatteringPhysicsPhysics::Instrumentation and DetectorsScatteringAstrophysics::High Energy Astrophysical PhenomenaSolar neutrinoDark matterGeneral Physics and Astronomychemistry.chemical_element01 natural sciences7. Clean energyNuclear physicsXenonRecoilchemistry0103 physical sciencesHigh Energy Physics::ExperimentNeutrinoNuclear Experiment010306 general physicsOrder of magnitudePhysical Review Letters
researchProduct

Observation of s-Channel Production of Single Top Quarks at the Tevatron

2014

We report the first observation of single-top-quark production in the s channel through the combination of the CDF and D0 measurements of the cross section in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. The data correspond to total integrated luminosities of up to 9.7fb-1 per experiment. The measured cross section is σs=1.29-0.24+0.26pb. The probability of observing a statistical fluctuation of the background to a cross section of the observed size or larger is 1.8×10-10, corresponding to a significance of 6.3 standard deviations for the presence of an s-channel contribution to the production of single-top quarks. © 2014 American Physical Society.

P(P)OVER-BAR COLLISIONSTevatronGeneral Physics and AstronomyCHANGING NEUTRAL CURRENTS01 natural sciences7. Clean energyStandard deviationHigh Energy Physics - ExperimentCHANGING NEUTRAL CURRENTS; B-JET IDENTIFICATION; P(P)OVER-BAR COLLISIONS; FERMILAB-TEVATRON; ROOT-S=1.96 TEV; COUPLINGS; DETECTOR; SEARCH; FB(-1); DECAYSHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]SCALEPhysicsB-JET IDENTIFICATION02 Physical SciencesPhysicsSigmaCOUPLINGSROOT-S=1.96 TEVPhysical SciencesComputingMethodologies_DOCUMENTANDTEXTPROCESSINGProduction (computer science)Communication channelFERMILAB-TEVATRONQuarkParticle physicsGeneral PhysicsPhysics MultidisciplinaryFOS: Physical sciencesParticle Physics; Collider Physics; Top quark; Single top productionDECAYSCDF CollaborationNuclear physicsPhysics and Astronomy (all)Cross section (physics)SEARCH0103 physical sciencesParticle Physics010306 general physicsDETECTORFB(-1)Science & Technology010308 nuclear & particles physicshep-exTop quarkCollider PhysicsExperimental High Energy PhysicsSingle top productionHigh Energy Physics::ExperimentEnergy (signal processing)D0 Collaboration
researchProduct

Search for Neutral Higgs Bosons in Events with Multiple Bottom Quarks at the Tevatron

2012

The combination of searches performed by the CDF and D0 collaborations at the Fermilab Tevatron Collider for neutral Higgs bosons produced in association with b quarks is reported. The data, corresponding to 2.6fb -1 of integrated luminosity at CDF and 5.2fb -1 at D0, have been collected in final states containing three or more b jets. Upper limits are set on the cross section multiplied by the branching ratio varying between 44 pb and 0.7 pb in the Higgs boson mass range 90 to 300 GeV, assuming production of a narrow scalar boson. Significant enhancements to the production of Higgs bosons can be found in theories beyond the standard model, for example, in supersymmetry. The results are int…

Nuclear and High Energy PhysicsParticle physicsPhysics beyond the Standard ModelSTANDARD MODELP(P)OVER-BAR COLLISIONSTevatronFOS: Physical sciencesMASSLESS PARTICLES7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentStandard ModelNuclear physicsHigh Energy Physics - Experiment (hep-ex)Higgs particle: search for | Higgs particle: associated production | minimal supersymmetric standard model: parameter space | bottom: multiple production | cross section: branching ratio: upper limit | benchmark | DZERO | CDF | anti-p p: interaction | experimental results | Batavia TEVATRON Coll | anti-p p --> Higgs particle bottom anything | Higgs particle --> bottom anti-bottom | 1960 GeV-cms0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]BROKEN SYMMETRIESTEVATRONMASSES010306 general physicsDETECTORSUPERSYMMETRYBosonPhysicsHIGGS BOSON010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyDETECTOR; SUPERSYMMETRY; MASSES; MSSM; ROOT-S=1.96 TEV; BROKEN SYMMETRIES; MASSLESS PARTICLES; STANDARD MODEL; P(P)OVER-BAR COLLISIONSSupersymmetryScalar bosonROOT-S=1.96 TEVExperimental High Energy PhysicsHiggs bosonComputingMethodologies_DOCUMENTANDTEXTPROCESSINGCDFHigh Energy Physics::ExperimentMSSMMinimal Supersymmetric Standard Model
researchProduct

Search for the supersymmetric partner of the top quark inpp¯collisions ats=1.96  TeV

2010

We present a search for the lightest supersymmetric partner of the top quark in proton-antiproton collisions at a center-of-mass energy root s = 1: 96 TeV. This search was conducted within the framework of the R parity conserving minimal supersymmetric extension of the standard model, assuming the stop decays dominantly to a lepton, a sneutrino, and a bottom quark. We searched for events with two oppositely-charged leptons, at least one jet, and missing transverse energy in a data sample corresponding to an integrated luminosity of 1 fb(-1) collected by the Collider Detector at Fermilab experiment. No significant evidence of a stop quark signal was found. Exclusion limits at 95% confidence …

QuarkPhysicsNuclear and High Energy PhysicsParticle physicsTop quark010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyDown quarkOmega baryon7. Clean energy01 natural sciencesBottom quarkNuclear physicsR-parity0103 physical sciencesUp quarkHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsCollider Detector at FermilabPhysical Review D
researchProduct

Production ofΛ0,Λ¯0,Ξ±, andΩ±hyperons inpp¯collisions ats=1.96  TeV

2012

We report a set of measurements of inclusive invariant ${p}_{T}$ differential cross sections of ${\ensuremath{\Lambda}}^{0}$, ${\overline{\ensuremath{\Lambda}}}^{0}$, ${\ensuremath{\Xi}}^{\ifmmode\pm\else\textpm\fi{}}$, and ${\ensuremath{\Omega}}^{\ifmmode\pm\else\textpm\fi{}}$ hyperons reconstructed in the central region with pseudorapidity $|\ensuremath{\eta}|l1$ and ${p}_{T}$ up to $10\text{ }\text{ }\mathrm{GeV}/c$. Events are collected with a minimum-bias trigger in $p\overline{p}$ collisions at a center-of-mass energy of 1.96 TeV using the CDF II detector at the Tevatron Collider. As ${p}_{T}$ increases, the slopes of the differential cross sections of the three particles are similar,…

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsTevatronHyperonDeep inelastic scatteringLambda01 natural sciencesCentral regionEngineering physicsOmegaPseudorapidity0103 physical sciencesYield ratioHigh Energy Physics::Experiment010306 general physicsPhysical Review D
researchProduct

Measurement of theCP-violating phaseβsJ/ψϕinBs0→J/ψϕdecays with the CDF II detector

2012

We present a measurement of the \CP-violating parameter \betas using approximately 6500 $$\BsJpsiPhi$$ decays reconstructed with the CDF\,II detector in a sample of $$p\bar p$$ collisions at $$\sqrt{s}=1.96$$ TeV corresponding to 5.2 fb$$^{-1}$$ integrated luminosity produced by the Tevatron Collider at Fermilab. We find the \CP-violating phase to be within the range $$\betas \in [0.02, 0.52] \cup [1.08, 1.55]$$ at 68% confidence level where the coverage property of the quoted interval is guaranteed using a frequentist statistical analysis. This result is in agreement with the standard model expectation at the level of about one Gaussian standard deviation. We consider the inclusion of a po…

PhysicsNuclear and High Energy PhysicsTop quarkParticle physics010308 nuclear & particles physicsPhase (waves)TevatronInterval (mathematics)State (functional analysis)01 natural sciencesLuminosityStandard ModelParticle decayClassical mechanicsAngular distribution0103 physical sciencesCP violationSensitivity (control systems)010306 general physicsFlavorPhysical Review D
researchProduct

Online $$^{222}$$ 222 Rn removal by cryogenic distillation in the XENON100 experiment

2017

researchProduct

Search for inelastic scattering of WIMP dark matter in XENON1T

2021

We report the results of a search for the inelastic scattering of weakly interacting massive particles (WIMPs) in the XENON1T dark matter experiment. Scattering off $^{129}$Xe is the most sensitive probe of inelastic WIMP interactions, with a signature of a 39.6 keV de-excitation photon detected simultaneously with the nuclear recoil. Using an exposure of 0.89 tonne-years, we find no evidence of inelastic WIMP scattering with a significance of more than 2$\sigma$. A profile-likelihood ratio analysis is used to set upper limits on the cross-section of WIMP-nucleus interactions. We exclude new parameter space for WIMPs heavier than 100 GeV/c${}^2$, with the strongest upper limit of $3.3 \time…

xenon: targetPhotonPhysics::Instrumentation and DetectorsParameter space01 natural sciencesWIMP: dark matterHigh Energy Physics - Experiment; High Energy Physics - Experiment; astro-ph.COHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)XENONRecoilWIMPWIMP nucleus: cross section[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Dark Matterparameter spaceNuclear ExperimentComputingMilieux_MISCELLANEOUSnucleus: recoilPhysicsDark Matter Inelastic scattering XENON Direct Dark MatterPhysicsphotonAstrophysics::Instrumentation and Methods for AstrophysicsDirect Dark MatterWeakly interacting massive particlesastro-ph.COsignatureAstrophysics - Cosmology and Nongalactic AstrophysicsParticle physicsInelastic scatteringCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterFOS: Physical sciencesWIMP: massAstrophysics::Cosmology and Extragalactic AstrophysicsInelastic scatteringNOPE2_2PE2_10103 physical sciencesddc:530010306 general physics010308 nuclear & particles physicsScatteringWIMP nucleus: interactionDarkmatterWIMP: interactionHigh Energy Physics::Experiment[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics and astroparticle physicsexperimental resultsPhysical Review D. Particles, Fields, Gravitation, and Cosmology
researchProduct

Direct Top-Quark Width Measurement at CDF

2010

7 páginas, 2 figuras, 2 tablas.-- CDF Collaboration: et al.

QuarkTop quarkParticle physicsJet energyAstrophysics::High Energy Astrophysical PhenomenaTevatronGeneral Physics and AstronomyFOS: Physical sciencesElementary particleddc:500.27. Clean energy01 natural sciencesBottom quark114 Physical sciencesHigh Energy Physics - ExperimentStandard ModelHEAVY QUARKS DECAY PHYSICSNuclear physicsPHYSICSHigh Energy Physics - Experiment (hep-ex)In-situ calibrationHeavy quarks0103 physical sciencesHigh energy physics010306 general physicsBosonsBosonPhysicsIntegrated luminosityQuark mass010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologyConfidence levelsDecayUpper limitsDecay channelsTevatronThe standard modelFermilabHigh Energy Physics::ExperimentHEAVY QUARKSData sampleHEAVY QUARKS; DECAY; PHYSICSDECAYWidth measurementsColliderLepton
researchProduct

Observation of Orbitally Excited Bs Mesons

2007

We report the first observation of two narrow resonances consistent with states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+, \bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1}) = 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.

Particle physicsMesonFermilab TevatronPhysics::Instrumentation and DetectorsHadronPhysics MultidisciplinaryFOS: Physical sciencesGeneral Physics and Astronomyddc:500.201 natural sciencesResonanceHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Pion0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]B meson010306 general physicsNuclear ExperimentPhysicsMuonMesons010308 nuclear & particles physicsTwo-body decaysPhysicsHigh Energy Physics::PhenomenologyExcited statesElementary particles14.40.Nd 12.40.YxQuarkoniumPair productionMolecular orbitals_Physics::Accelerator PhysicsHigh Energy Physics::ExperimentCollider Detector at Fermilab
researchProduct

Combination of CDF and D0 W-Boson mass measurements

2013

We summarize and combine direct measurements of the mass of the W boson in √s=1.96 TeV proton-antiproton collision data collected by CDF and D0 experiments at the Fermilab Tevatron Collider. Earlier measurements from CDF and D0 are combined with the two latest, more precise measurements: a CDF measurement in the electron and muon channels using data corresponding to 2.2 fb-1 of integrated luminosity, and a D0 measurement in the electron channel using data corresponding to 4.3 fb-1 of integrated luminosity. The resulting Tevatron average for the mass of the W boson is M W=80387±16 MeV. Including measurements obtained in electron-positron collisions at LEP yields the most precise value of M W…

Particle physicsNuclear and High Energy PhysicsInclusive production with identified leptonsSTANDARD MODELTevatronDecays of W bosonsFOS: Physical sciencesddc:500.201 natural sciences7. Clean energyStandard Modellaw.inventionHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)law0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]photonsFermilab010306 general physicsColliderTEVATRONNuclear ExperimentDETECTORGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)BosonPhysicsLuminosity (scattering theory)MuonLarge Hadron Collider010308 nuclear & particles physicsApplications of electroweak models to specific processesHigh Energy Physics::Phenomenologyor other nonhadronic particlesW bosonsW bosons; Applications of electroweak models to specific processes; Decays of W bosons; Inclusive production with identified leptons; photons; or other nonhadronic particlesExperimental High Energy PhysicsCDFPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentLHCSTANDARD MODEL; LHC; DETECTOR
researchProduct

Search for Large Extra Dimensions in Final States Containing One Photon or Jet and Large Missing Transverse Energy Produced inpp¯Collisions ats=1.96 …

2008

We present the results of searches for large extra dimensions in samples of events with large missing transverse energy E_{T} and either a photon or a jet produced in pp[over ] collisions at sqrt[s]=1.96 TeV collected with the Collider Detector at Fermilab II. For gamma+E_{T} and jet+E_{T} candidate samples corresponding to 2.0 and 1.1 fb;{-1} of integrated luminosity, respectively, we observe good agreement with standard model expectations and obtain a combined lower limit on the fundamental parameter of the large extra dimensions model M_{D} as a function of the number of extra dimensions in the model.

PhysicsJet (fluid)Particle physicsPhotonLuminosity (scattering theory)010308 nuclear & particles physicsGeneral Physics and Astronomy7. Clean energy01 natural sciencesStandard ModelNuclear physicsExtra dimensions0103 physical sciencesLarge extra dimensionHigh Energy Physics::Experiment010306 general physicsCollider Detector at FermilabEnergy (signal processing)Physical Review Letters
researchProduct

Search for the DecaysB(s)0→e+μ−andB(s)0→e+e−in CDF Run II

2009

We report results from a search for the lepton flavor violating decays $B^0_{(s)}\to e^+\mu^-$, and the flavor-changing neutral-current decays $B^0_{(s)} \to e^+ e^-$. The analysis uses data corresponding to ${\rm 2 fb^{-1}}$ of integrated luminosity of $p \bar{p}$ collisions at $\sqrt{s}=1.96 {\rm TeV}$ collected with the upgraded Collider Detector (CDF II) at the Fermilab Tevatron. The observed number of $B^0_{(s)}$ candidates is consistent with background expectations. The resulting Bayesian upper limits on the branching ratios at 90% credibility level are $\mathcal{B}(B^0_s \to e^{+}\mu^{-}) 47.8 {\rm TeV/c^2}$, and ${M_{LQ}}(B^0\to e^+ \mu^-) > 59.3 {\rm TeV/c^2}$, at 90% credibility l…

PhysicsParticle physicsLuminosity (scattering theory)010308 nuclear & particles physicsBranching fractionHigh Energy Physics::PhenomenologyTevatronGeneral Physics and Astronomy01 natural scienceslaw.inventionNuclear physicslaw0103 physical sciencesPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentFermilab010306 general physicsColliderLeptonPhysical Review Letters
researchProduct

Search for a Higgs Boson Decaying to Two W Bosons at CDF

2008

We present a search for a Higgs boson decaying to two W bosons in p (p) over bar collisions at root s = 1.96 TeV center-of-mass energy. The data sample corresponds to an integrated luminosity of 3.0 fb(-1) collected with the CDF II detector. We find no evidence for production of a Higgs boson with mass between 110 and 200 GeV/c(2), and determine upper limits on the production cross section. For the mass of 160 GeV/c(2), where the analysis is most sensitive, the observed (expected) limit is 0.7 pb (0.9 pb) at 95% Bayesian credibility level which is 1.7 (2.2) times the standard model cross section.

Particle physicsFOS: Physical sciencesGeneral Physics and Astronomyddc:500.2BayesianProduction cross sections114 Physical sciences01 natural sciences7. Clean energyParticle identificationHigh Energy Physics - ExperimentStandard ModelLuminosityData samplesNuclear physicsHigh Energy Physics - Experiment (hep-ex)Tellurium compoundsCenter-of-mass energiesParticle decayIntegrated luminosities0103 physical sciences010306 general physicsBosonsBosonPhysicsHIGGS BOSONW BOSONHiggs bosonshep-ex010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologyLead alloysUpper limitsCross sectionsThe standard modelsHiggs bosonCDFHigh Energy Physics::ExperimentProduction (computer science)Energy (signal processing)
researchProduct

Limits on anomalous triple gauge couplings inpp¯collisions ats=1.96  TeV

2007

We present a search for anomalous triple gauge couplings (ATGC) in WW and WZ boson production. The boson pairs are produced in p (p) over bar collisions at root s = 1.96 TeV, and the data sample corresponds to 350 pb(-1) of integrated luminosity collected with the CDF II detector at the Fermilab Tevatron. In this search one W decays to leptons, and the other boson (W or Z) decays hadronically. Combining with a previously published CDF measurement of W gamma boson production yields ATGC limits of -0.18 <lambda < 0.17 and -0.46 <Delta kappa < 0.39 at the 95% confidence level, using a cutoff scale Lambda=1.5 TeV.

PhysicsNuclear and High Energy PhysicsParticle physicsLuminosity (scattering theory)Photon010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyTevatronLambda7. Clean energy01 natural sciencesNuclear physicsParticle decay0103 physical sciencesHigh Energy Physics::ExperimentFermilab010306 general physicsLeptonBosonPhysical Review D
researchProduct

Measurement of the top quark mass in the dilepton channel using mT2 at CDF

2010

We present measurements of the top quark mass using mT2, a variable related to the transverse mass in events with two missing particles. We use the template method applied to tt̅ dilepton events produced in pp̅ collisions at Fermilab’s Tevatron Collider and collected by the CDF detector. From a data sample corresponding to an integrated luminosity of 3.4  fb-1, we select 236 tt̅ candidate events. Using the mT2 distribution, we measure the top quark mass to be Mtop=168.0-4.0+4.8(stat)±2.9(syst)  GeV/c2. By combining mT2 with the reconstructed top quark mass distributions based on a neutrino weighting method, we measure Mtop=169.3±2.7(stat)±3.2(syst)  GeV/c2. This is the first application of …

PhysicsQuarkNuclear and High Energy PhysicsTop quarkParticle physicsMass distribution010308 nuclear & particles physicshep-exHadronHigh Energy Physics::PhenomenologyTevatronddc:500.201 natural sciences114 Physical scienceslaw.inventionNuclear physicslaw0103 physical sciencesTransverse massHigh Energy Physics::ExperimentFermilab010306 general physicsColliderNuclear Experiment
researchProduct

Combination of the top-quark mass measurements from the Tevatron collider

2012

Aaltonen, T. et al.

FERMILAB TEVATRON COLLIDERNuclear and High Energy PhysicsPAIR PRODUCTIONNuclear TheoryFOS: Physical sciencesLibrary science01 natural sciences7. Clean energyWorld classHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsTEVATRONNuclear Experimentproton antiproton collisions; FERMILAB TEVATRON COLLIDER; Top quark; Top quark properties; JET ENERGY SCALE; PARTON DISTRIBUTIONS; PAIR PRODUCTIONPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyTop quark propertiesTop quarkResearch councilPARTON DISTRIBUTIONSExperimental High Energy Physicsproton antiproton collisionsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGCDFHigh Energy Physics::ExperimentJET ENERGY SCALE
researchProduct

Search for Maximal Flavor Violating Scalars in Same-Charge Lepton Pairs inpp¯Collisions ats=1.96  TeV

2009

Models of maximal flavor violation (MxFV) in elementary particle physics may contain at least one new scalar SU(2) doublet field {phi}{sub FV}=({eta}{sup 0},{eta}{sup +}) that couples the first and third generation quarks (q{sub 1}, q{sub 3}) via a Lagrangian term L{sub FV}={xi}{sub 13}{phi}{sub FV}q{sub 1}q{sub 3}. These models have a distinctive signature of same-charge top-quark pairs and evade flavor-changing limits from meson mixing measurements. Data corresponding to 2 fb{sup -1} collected by the Collider Dectector at Fermilab II detector in pp collisions at {radical}(s)=1.96 TeV are analyzed for evidence of the MxFV signature. For a neutral scalar {eta}{sup 0} with m{sub {eta}{sup 0}…

PhysicsQuarkParticle physicsMeson010308 nuclear & particles physicsScalar (mathematics)General Physics and AstronomyElementary particle01 natural sciencesThird generationElementary particle physicsNuclear physicssymbols.namesake0103 physical sciencessymbolsHigh Energy Physics::Experiment010306 general physicsLagrangianLeptonPhysical Review Letters
researchProduct

Search for the Higgs Boson in Events with Missing Transverse Energy andbQuark Jets Produced inpp¯Collisions ats=1.96  TeV

2008

We search for the standard model Higgs boson produced in association with an electroweak vector boson in events with no identified charged leptons, large imbalance in transverse momentum, and two jets where at least one contains a secondary vertex consistent with the decay of b hadrons. We use {approx}1 fb{sup -1} integrated luminosity of p{bar p} collisions at {radical}s = 1.96 TeV recorded by the CDF II experiment at the Tevatron. We find 268 (16) single (double) b-tagged candidate events, where 248 {+-} 43 (14.4 {+-} 2.7) are expected from standard model background processes. We place 95% confidence level upper limits on the Higgs boson production cross section for several Higgs boson ma…

PhysicsParticle physicsHigh Energy Physics::PhenomenologyTevatronGeneral Physics and Astronomy01 natural sciencesBottom quarkSearch for the Higgs boson010305 fluids & plasmasVector bosonNuclear physicsParticle decay0103 physical sciencesHiggs bosonHigh Energy Physics::Experiment010306 general physicsBosonLeptonPhysical Review Letters
researchProduct

First Results on the Scalar WIMP-Pion Coupling, Using the XENON1T Experiment

2018

We present first results on the scalar coupling of weakly interacting massive particles (WIMPs) to pions from 1 t yr of exposure with the XENON1T experiment. This interaction is generated when the WIMP couples to a virtual pion exchanged between the nucleons in a nucleus. In contrast to most nonrelativistic operators, these pion-exchange currents can be coherently enhanced by the total number of nucleons and therefore may dominate in scenarios where spin-independent WIMP-nucleon interactions are suppressed. Moreover, for natural values of the couplings, they dominate over the spin-dependent channel due to their coherence in the nucleus. Using the signal model of this new WIMP-pion channel, …

Nuclear TheoryPhysics::Instrumentation and DetectorsNuclear TheoryGeneral Physics and Astronomy01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)WIMPPions[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear ExperimentS030UDMPhysicsStarke Wechselwirkung und exotische Kerne – Abteilung BlaumAstrophysics::Instrumentation and Methods for AstrophysicsnucleonsuppressionHigh Energy Physics - PhenomenologyWeakly interacting massive particlesmedicine.anatomical_structureWeakly interacting massive particlesNucleonCoherence (physics)Astrophysics - Cosmology and Nongalactic AstrophysicsWIMP nucleon: interactionParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]FOS: Physical sciencesWIMP: massspin: dependenceGravitation and Astrophysicsoperator: nonrelativisticDark matter Particle dark matter Pions Weakly interacting massive particles Dark matter detectorsNuclear Theory (nucl-th)PionParticle dark matter0103 physical sciencesmedicineDark mattercross section: upper limit010306 general physicsCouplingDark matter detectorsnucleusScalar (physics)coherenceDark Matter WIMP-Pion coupling Xenon Direct seartch[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experiment[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Nucleus
researchProduct

Tevatron Combination of Single-Top-Quark Cross Sections and Determination of the Magnitude of the Cabibbo-Kobayashi-Maskawa Matrix Element Vtb

2015

et al.

QuarkTop quarkParticle physicsP(P)OVER-BAR COLLISIONS; JET IDENTIFICATION; ROOT-S=7 TEV; HIGGS-BOSON; CHANNEL; DETECTOR; ATLASJET IDENTIFICATIONmeasured [channel cross section]P(P)OVER-BAR COLLISIONSTevatronGeneral Physics and AstronomyFOS: Physical sciencesmeasured [cross section]Astrophysics::Cosmology and Extragalactic Astrophysicssingle production [top]7. Clean energyHigh Energy Physics - ExperimentMeasurements of cross sections for single-top-quark productionNuclear physicsproton-antiproton collisionsHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)CHANNELDZEROddc:550[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Batavia TEVATRON Collcross section measurementDETECTORPhysicsscattering [anti-p p]1960 GeV-cmsROOT-S=7 TEVCabibbo–Kobayashi–Maskawa matrixSigmaATLASMeasurements of cross sections for single-top-quark production; proton-antiproton collisions; cross section measurement2 [dimension]missing-energy [transverse energy]CKM matrixExperimental High Energy PhysicsHiggs bosonComputingMethodologies_DOCUMENTANDTEXTPROCESSINGCDFHigh Energy Physics::ExperimentPhysics and Astronomy (all) Nuclear and high energy physicscolliding beams [anti-p p]coupling [quark]HIGGS-BOSON
researchProduct

Search for anomalous production of events with two photons and additional energetic objects at CDF

2010

27 páginas, 17 figuras, 5 tablas.-- CDF Collaboration: et al.

COLLIDER DETECTORNuclear and High Energy PhysicsParticle physicsMEDIATED SUPERSYMMETRY-BREAKINGPhysics beyond the Standard ModelP(P)OVER-BAR COLLISIONSFOS: Physical sciencesElementary particleddc:500.2GAMMA PRODUCTION114 Physical sciences01 natural sciences7. Clean energyHigh Energy Physics - ExperimentMEDIATED SUPERSYMMETRY-BREAKING; CENTRAL ELECTROMAGNETIC CALORIMETER; ELECTROWEAK SYMMETRY-BREAKING; LARGE EXTRA DIMENSIONS; P(P)OVER-BAR COLLISIONS; COLLIDER DETECTOR; GAMMA PRODUCTION; ROOT-S=1.96 TEV; QCD; PYTHIA-5.7Nuclear physicsHigh Energy Physics - Experiment (hep-ex)13.85Rm; 13.85Qk; 18.80.-j; 14.80.Ly0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]PYTHIA-5.7010306 general physicsPhysicsMuonLuminosity (scattering theory)hep-ex010308 nuclear & particles physicsPhysicsLARGE EXTRA DIMENSIONSQCDCENTRAL ELECTROMAGNETIC CALORIMETERROOT-S=1.96 TEVLarge extra dimensionHigh Energy Physics::ExperimentELECTROWEAK SYMMETRY-BREAKINGCollider Detector at FermilabEvent (particle physics)Lepton
researchProduct

Inclusive Search for Squark and Gluino Production inpp¯Collisions ats=1.96  TeV

2009

We report on a search for inclusive production of squarks and gluinos in p{bar p} collisions at {radical}s = 1.96 TeV, in events with large missing transverse energy and multiple jets of hadrons in the final state. The study uses a CDF Run II data sample corresponding to 2 fb-1 of integrated luminosity. The data are in good agreement with the standard model predictions, giving no evidence for any squark or gluino component. In an R-parity conserving minimal supergravity scenario with A{sub 0} = 0, mu < 0 and tan beta = 5, 95% C.L. upper limits on the production cross sections in the range between 0.1 pb and 1 pb are obtained, depending on the squark and gluino masses considered. For gluino …

PhysicsParticle physicsGluinoLuminosity (scattering theory)010308 nuclear & particles physicsSupergravityHadronGeneral Physics and AstronomySupersymmetry01 natural sciencesEngineering physicsStandard Modellaw.inventionArbitrarily largelaw0103 physical sciences010306 general physicsColliderPhysical Review Letters
researchProduct

Light Dark Matter Search with Ionization Signals in XENON1T

2019

We report constraints on light dark matter (DM) models using ionization signals in the XENON1T experiment. We mitigate backgrounds with strong event selections, rather than requiring a scintillation signal, leaving an effective exposure of (22±3) tonne day. Above ∼0.4 keVee, we observe &lt;1 event/(tonne day keVee), which is more than 1000 times lower than in similar searches with other detectors. Despite observing a higher rate at lower energies, no DM or CEvNS detection may be claimed because we cannot model all of our backgrounds. We thus exclude new regions in the parameter spaces for DM-nucleus scattering for DM masses mχ within 3–6 GeV/c2, DM-electron scattering for mχ&gt;30 MeV/c2, a…

Light Dark Matter TPC Ionization Axion-Like particlesCosmology and Nongalactic Astrophysics (astro-ph.CO)PhotonFOS: Physical sciencesGeneral Physics and AstronomyS030DI5S029AECAstrophysics01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)S030DE5Ionization0103 physical sciencesionization[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsAbsorption (electromagnetic radiation)Light dark matterscintillation counterPhysicsDark Matter WIMP Dark-Matter detectors Time-projection chamber detectorsScintillationScatteringbackgrounddark matter: massphotonscatteringS029HPHS030DN5* Automatic Keywords *Scintillation counterElementary Particles and Fieldsaxion-like particles[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Event (particle physics)absorptionAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Observation and applications of single-electron charge signals in the XENON100 experiment

2014

The XENON100 dark matter experiment uses liquid xenon in a time projection chamber (TPC) to measure xenon nuclear recoils resulting from the scattering of dark matter Weakly Interacting Massive Particles (WIMPs). In this paper, we report the observation of single-electron charge signals which are not related to WIMP interactions. These signals, which show the excellent sensitivity of the detector to small charge signals, are explained as being due to the photoionization of impurities in the liquid xenon and of the metal components inside the TPC. They are used as a unique calibration source to characterize the detector. We explain how we can infer crucial parameters for the XENON100 experim…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsDrift velocity[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Physics::Instrumentation and DetectorsDark matterchemistry.chemical_elementFOS: Physical sciencesdouble phase TPC01 natural sciencesdark matterHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)XenonWIMPdouble phase TPC; photoionization; single electron; xenon0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsphotoionizationInstrumentation and Methods for Astrophysics (astro-ph.IM)PhysicsTime projection chamber010308 nuclear & particles physicsScatteringDetectorAstrophysics::Instrumentation and Methods for AstrophysicsInstrumentation and Detectors (physics.ins-det)single electron3. Good health[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]xenonchemistryWeakly interacting massive particlesAtomic physicsAstrophysics - Instrumentation and Methods for AstrophysicsJ. Phys.
researchProduct

Search for the Higgs Boson Using Neural Networks in Events with Missing Energy andb-Quark Jets inpp¯Collisions ats=1.96  TeV

2010

We report on a search for the standard model Higgs boson produced in association with a W or Z boson in p{bar p} collisions at {radical}s = 1.96 TeV recorded by the CDF II experiment at the Tevatron in a data sample corresponding to an integrated luminosity of 2.1 fb{sup -1}. We consider events which have no identified charged leptons, an imbalance in transverse momentum, and two or three jets where at least one jet is consistent with originating from the decay of a b hadron. We find good agreement between data and predictions. We place 95% confidence level upper limits on the production cross section for several Higgs boson masses ranging from 110 GeV/c{sup 2} to 150 GeV/c{sup 2}. For a ma…

PhysicsParticle physics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyTevatronGeneral Physics and AstronomyElementary particle01 natural sciencesBottom quarkSearch for the Higgs bosonStandard ModelNuclear physics0103 physical sciencesHiggs bosonHigh Energy Physics::Experiment010306 general physicsLeptonBosonPhysical Review Letters
researchProduct

XENON1T Dark Matter Data Analysis: Signal Reconstruction, Calibration and Event Selection

2019

The XENON1T experiment at the Laboratori Nazionali del Gran Sasso is the most sensitive direct detection experiment for dark matter in the form of weakly interacting particles (WIMPs) with masses above $6\,$GeV/$c^2$ scattering off nuclei. The detector employs a dual-phase time projection chamber with 2.0 metric tons of liquid xenon in the target. A one metric $\mathrm{ton}\times\mathrm{year}$ exposure of science data was collected between October 2016 and February 2018. This article reports on the performance of the detector during this period and describes details of the data analysis that led to the most stringent exclusion limits on various WIMP-nucleon interaction models to date. In pa…

xenon: targetWIMP nucleon: interactiondata analysis methodPhysics - Instrumentation and Detectorsinteraction: modelPhysics::Instrumentation and DetectorsDark matterchemistry.chemical_elementFOS: Physical sciencesdark matter: direct detection01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)XENONXenon0103 physical sciencesCalibration[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Dark MatterParticle Physics Experiments[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNuclear ExperimentDark Matter Direct Search Signal reconstruction calibratiuonPhysicsxenon: liquidTime projection chamber010308 nuclear & particles physicsScatteringSignal reconstructionDetectorAstrophysics::Instrumentation and Methods for AstrophysicsInstrumentation and Detectors (physics.ins-det)calibrationtime projection chamberEvent selectionchemistryHigh Energy Physics::Experimentperformance
researchProduct

Removing krypton from xenon by cryogenic distillation to the ppq level

2017

The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β -emitter 85 Kr which is present in the xenon. For XENON1T a concentration of natural krypton in xenon natKr/Xe&lt;200ppq (parts per quadrillion, 1 ppq =10−15mol/mol) is required. In this work, the design, construction and test of a novel cryogenic distillation column using the common McCabe–Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4⋅10⁵ with thermodynamic stabili…

7. Clean energy
researchProduct

XENON100 dark matter results from a combination of 477 live days

2016

We report on WIMP search results of the XENON100 experiment, combining three runs summing up to 477 live days from January 2010 to January 2014. Data from the first two runs were already published. A blind analysis was applied to the last run recorded between April 2013 and January 2014 prior to combining the results. The ultra-low electromagnetic background of the experiment, ~$5 \times 10^{-3}$ events/(keV$_{\mathrm{ee}}\times$kg$\times$day) before electronic recoil rejection, together with the increased exposure of 48 kg $\times$ yr improves the sensitivity. A profile likelihood analysis using an energy range of (6.6 - 43.3) keV$_{\mathrm{nr}}$ sets a limit on the elastic, spin-independe…

Scattering cross-sectionPhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics - Instrumentation and DetectorsProton010308 nuclear & particles physicsDark matterFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)01 natural sciences7. Clean energyXENON DARK MATTER WIMP TPCNuclear physicsRecoilWIMPLikelihood analysis0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Sensitivity (control systems)010306 general physicsEnergy (signal processing)Astrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review D
researchProduct

Combination of CDF and D0 measurements of the W boson helicity in top quark decays

2012

Aaltonen, T. et al.

FERMILAB TEVATRON COLLIDERNuclear and High Energy PhysicsParticle physicsTop quark[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]TevatronW helicityValue (computer science)FOS: Physical sciencesTOP QUARK7. Clean energy01 natural sciencesHigh Energy Physics - Experimentlaw.inventionStandard ModelNuclear physicsHigh Energy Physics - Experiment (hep-ex)law0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]FermilabTEVATRON010306 general physicsColliderBosonPhysicsW BOSONp-pbar collider; FERMILAB TEVATRON COLLIDER; W bosons; W helicity010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]W bosonsHelicityD0p-pbar colliderExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGCDFPhysical Review. D, Particles, Fields, Gravitation, and Cosmology
researchProduct

Top quark mass measurement in the lepton plus jets channel using a modified matrix element method

2008

We report a measurement of the top quark mass, m(t), obtained from p(p)over bar collisions at root s=1.96 TeV at the Fermilab Tevatron using the CDF II detector. We analyze a sample corresponding to an integrated luminosity of 1.9 fb(-1). We select events with an electron or muon, large missing transverse energy, and exactly four high-energy jets in the central region of the detector, at least one of which is tagged as coming from a b quark. We calculate a signal likelihood using a matrix element integration method, where the matrix element is modified by using effective propagators to take into account assumptions on event kinematics. Our event likelihood is a function of m(t) and a parame…

Nuclear and High Energy PhysicsTop quarkParticle physicsTevatronFOS: Physical sciencesddc:500.2Jet (particle physics)01 natural sciences7. Clean energyBottom quark114 Physical sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsPhysicsLuminosity (scattering theory)Muon010308 nuclear & particles physicshep-exPhysicsHigh Energy Physics::PhenomenologyTOP QUARK MASSCDF14.65.HaHigh Energy Physics::ExperimentEnergy (signal processing)Lepton
researchProduct

Search for WIMP Inelastic Scattering off Xenon Nuclei with XENON100

2017

We present the first constraints on the spin-dependent, inelastic scattering cross section of weakly interacting massive particles (WIMPs) on nucleons from XENON100 data with an exposure of 7.64 ×103 kg .days . XENON100 is a dual-phase xenon time projection chamber with 62 kg of active mass, operated at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy and designed to search for nuclear recoils from WIMP-nucleus interactions. Here we explore inelastic scattering, where a transition to a low-lying excited nuclear state of Xe 129 is induced. The experimental signature is a nuclear recoil observed together with the prompt deexcitation photon. We see no evidence for such inelastic WIMP-Xe…

Physics - Instrumentation and DetectorsXenonPhysics and Astronomy (miscellaneous)Physics::Instrumentation and Detectors[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)XenonRecoilWIMP[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Dark MatterNuclear Experiment[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]nucleus: recoilPhysicsTime projection chamberAstrophysics::Instrumentation and Methods for AstrophysicsWIMP nucleon: cross sectionInstrumentation and Detectors (physics.ins-det)Excited stateWeakly interacting massive particlesTPCNucleonchannel cross section: measuredsignatureAstrophysics - Cosmology and Nongalactic AstrophysicsParticle physicsdata analysis methodCosmology and Nongalactic Astrophysics (astro-ph.CO)WIMPchemistry.chemical_elementFOS: Physical sciencesInelastic scatteringspin: dependenceNuclear physicsstatistical analysis[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]photon: emission0103 physical sciencescross section: inelastic scattering[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsWIMP nucleon: inelastic scattering010308 nuclear & particles physicsS030DP2WIMP nucleus: interactionGran SassochemistryDirect Searchtime projection chamber: xenonHigh Energy Physics::Experiment[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]experimental results
researchProduct

Measurements of branching fraction ratios andCPasymmetries inB±→DCPK±decays in hadron collisions

2010

9 paginas, 3 figuras, 2 tablas.-- PACS numbers: 13.25.Hw, 11.30.Er, 14.40.Nd.--CDF Collaboration: et al.

PhysicsNuclear and High Energy PhysicsParticle physicsMeson010308 nuclear & particles physicsBranching fractionQuark modelHadronElementary particle01 natural sciences3. Good healthNuclear physicsParticle decayPion0103 physical sciencesB meson010306 general physicsPhysical Review D
researchProduct

Search for Electronic Recoil Event Rate Modulation with 4 Years of XENON100 Data

2017

We report on a search for electronic recoil event rate modulation signatures in the XENON100 data accumulated over a period of 4 years, from January 2010 to January 2014. A profile likelihood method, which incorporates the stability of the XENON100 detector and the known electronic recoil background model, is used to quantify the significance of periodicity in the time distribution of events. There is a weak modulation signature at a period of $431^{+16}_{-14}$ days in the low energy region of $(2.0-5.8)$ keV in the single scatter event sample, with a global significance of $1.9\,\sigma$, however no other more significant modulation is observed. The expected annual modulation of a dark matt…

Physics and Astronomy (all) XENON DARK MATTER MODULATION TPCPhysics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterGeneral Physics and AstronomyFOS: Physical sciencesElectron01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Recoil0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsPseudovectorInstrumentation and Methods for Astrophysics (astro-ph.IM)Physics010308 nuclear & particles physicsDetectorInstrumentation and Detectors (physics.ins-det)Coupling (probability)ModulationAstrophysics - Instrumentation and Methods for AstrophysicsEvent (particle physics)Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Tevatron constraints on models of the Higgs boson with exotic spin and parity using decays to bottom-antibottom quark pairs.

2015

et al.

QuarkParticle physicsHiggs bosonSTANDARD MODELTevatronFOS: Physical sciencesGeneral Physics and AstronomyATLAS DETECTORD0 EXPERIMENT01 natural sciences7. Clean energy530CDF collaborationHigh Energy Physics - ExperimentVector bosonNuclear physicsproton-antiproton collisionsHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)SEARCH0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Fysik010306 general physicsPhysics and Astronomy (all). B-JET IDENTIFICATIONCDF collaboration; Higgs boson; proton-antiproton collisionsDETECTORBosonPhysicsB-JET IDENTIFICATIONLarge Hadron Collider010308 nuclear & particles physicsBranching fractionHigh Energy Physics::PhenomenologyATLASD0 experimentPARTON DISTRIBUTIONSExperimental High Energy PhysicsPhysical SciencesComputingMethodologies_DOCUMENTANDTEXTPROCESSINGHiggs bosonATLAS; Higgs; Hadron-Hadron ScatteringHigh Energy Physics::ExperimentLHCB-JET IDENTIFICATION; STANDARD MODEL; PARTON DISTRIBUTIONS; ATLAS; DETECTOR; D0 EXPERIMENT; LHC; SEARCH
researchProduct

Measurement of theΛb0Lifetime inΛb0→Λc+π−Decays inpp¯Collisions ats=1.96  TeV

2007

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Co…

PhysicsParticle physics010308 nuclear & particles physicsGeneral Physics and AstronomyLibrary scienceLambda7. Clean energy01 natural sciencesEngineering physicsBildungWorld classParticle decayBasic researchPolitical science0103 physical sciencesHeavy quark effective theoryHigh Energy Physics::ExperimentChristian ministryAtomic physics010306 general physicsChinaPhysical Review Letters
researchProduct

Material radioassay and selection for the XENON1T dark matter experiment

2017

The XENON1T dark matter experiment aims to detect weakly interacting massive particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T experiment. Using gamma-ray spectroscopy and mass spectrometry techniques, systematic measurements of trace radioactive impurities in over one hundred samples within a wide range of materials were performed. The measured activities allowed for stringent selection and placement of materials during the…

Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsDark matterMonte Carlo methodmeasurement methodsFOS: Physical scienceschemistry.chemical_elementRadiopuritylcsh:AstrophysicsWIMP: detectorSciences de l'ingénieur01 natural sciencesgamma ray: energy spectrumNuclear physicsmass spectrumXENONXenonWIMPlcsh:QB460-4660103 physical sciencesDark Matterlcsh:Nuclear and particle physics. Atomic energy. Radioactivity[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsSpectroscopy[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Engineering (miscellaneous)background: radioactivityPhysicsRange (particle radiation)Physique010308 nuclear & particles physicsDetectorInstrumentation and Detectors (physics.ins-det)AstronomiesensitivitychemistryWeakly interacting massive particleslcsh:QC770-798TPCnumerical calculations: Monte Carlo
researchProduct

Search for the Production of Scalar Bottom Quarks inpp¯Collisions ats=1.96  TeV

2010

We report on a search for direct scalar bottom quark (sbottom) pair production in pp collisions at {radical}(s)=1.96 TeV, in events with large missing transverse energy and two jets of hadrons in the final state, where at least one of the jets is required to be identified as originating from a b quark. The study uses a collider detector at Fermilab Run II data sample corresponding to 2.65 fb{sup -1} of integrated luminosity. The data are in agreement with the standard model. In an R-parity conserving minimal supersymmetric scenario, and assuming that the sbottom decays exclusively into a bottom quark and a neutralino, 95% confidence-level upper limits on the sbottom pair production cross se…

QuarkPhysicsParticle physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyHadronGeneral Physics and AstronomySupersymmetry7. Clean energy01 natural sciencesBottom quarkNuclear physicsPair production0103 physical sciencesNeutralinoGrand Unified TheoryHigh Energy Physics::Experiment010306 general physicsCollider Detector at FermilabPhysical Review Letters
researchProduct

Search for third generation vector leptoquarks inpp¯collisions ats=1.96  TeV

2008

We search for a third generation vector leptoquark (VLQ3) that decays to a b quark and tau lepton using the CDF II detector and 320pb-1 of integrated luminosity from the Fermilab Tevatron. Observing a number of events in agreement with standard model expectations, we obtain, assuming Yang-Mills (minimal) couplings, the most stringent upper limit on the VLQ3 pair production cross section of 344 fb (493 fb) and lower limit on the VLQ3 mass of 317GeV/c2 (251GeV/c2) at 95% C.L. © 2008 The American Physical Society.

QuarkPhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyTevatron7. Clean energy01 natural sciencesBottom quarkStandard ModelNuclear physicsPair production0103 physical sciencesHigh Energy Physics::ExperimentLeptoquarkFermilab010306 general physicsLeptonPhysical Review D
researchProduct

Search for the Production of Narrowtb¯Resonances in1.9  fb−1ofpp¯Collisions ats=1.96  TeV

2009

We present new limits on resonant tb production in ppbar collisions at sqrt(s) = 1.96 TeV, using 1.9 fb{sup -1} of data recorded with the CDF II detector at the Fermilab Tevatron. We reconstruct a putative tb mass in events with a lepton, neutrino candidate, and two or three jets, and search for anomalous tb production as modeled by W{prime} {yields} tb. We set a new limit on a right-handed W{prime} with standard model-like coupling, excluding any mass below 800 GeV at 95% C.L. For any narrow W{prime}-like state with mass above 800 GeV, the cross-section is found to be less than 0.28 pb at 95% C.L. We also present an exclusion of the W{prime} coupling strength versus W{prime} mass.

PhysicsParticle physics010308 nuclear & particles physicsTevatronGeneral Physics and AstronomyCoupling (probability)01 natural sciencesPrime (order theory)Standard ModelNuclear physics0103 physical sciencesHigh Energy Physics::ExperimentProduction (computer science)FermilabNeutrino010306 general physicsLeptonPhysical Review Letters
researchProduct

Measurement ofW-Boson Polarization in Top-Quark Decay inpp¯Collisions ats=1.96  TeV

2010

We report measurements of the polarization of W bosons from top-quark decays using 2.7 fb(-1) of p (p) over bar collisions collected by the CDF II detector. Assuming a top-quark mass of 175 GeV/c(2), three measurements are performed. A simultaneous measurement of the fraction of longitudinal (f(0)) and right-handed (f(0)) W bosons yields the model- independent results f(0) =0. 88 +/- 0.11(stat) +/- 0.06(syst) and f(+) = 0.15 +/- 0.07(stat) +/- 0.06(syst) with a correlation coefficient of -0.59. A measurement of f(0) [f(+)] constraining f(+) [f(0)] to its standard model value of 0.0 [0.7] yields f(0) 0.70 + 0.07(stat) +/- 0.04(syst) [f(+) - 0.01 +/- 0.02(stat) +/- 0.05(syst)]. All these resu…

QuarkPhysicsParticle physicsTop quark010308 nuclear & particles physicsGeneral Physics and AstronomyElementary particleFermion01 natural sciencesHelicityNuclear physicsPair production0103 physical sciencesGrand Unified Theory010306 general physicsBosonPhysical Review Letters
researchProduct

Inclusive Search for Standard Model Higgs Boson Production in the WW Decay Channel using the CDF II Detector

2010

We present a search for standard model (SM) Higgs boson production using p (p) over bar collision data at root s = 1. 96 TeV, collected with the CDF II detector and corresponding to an integrated luminosity of 4. 8 fb(-1). We search for Higgs bosons produced in all processes with a significant production rate and decaying to two W bosons. We find no evidence for SM Higgs boson production and place upper limits at the 95% confidence level on the SM production cross section (sigma(H)) for values of the Higgs boson mass (m(H)) in the range from 110 to 200 GeV. These limits are the most stringent for m(H) > 130 GeV and are 1.29 above the predicted value of sigma(H) for m(H) 165 GeV.

COLLISIONSParticle physicsZ-GAMMA PRODUCTION; HADRON COLLIDERS; QCD CORRECTIONS; NNLO QCD; COLLISIONS; FERMILABGeneral Physics and AstronomyLibrary scienceFOS: Physical sciencesddc:500.2114 Physical sciences01 natural sciencesZ-GAMMA PRODUCTIONBildungWorld classHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)NNLO QCDBasic research0103 physical sciencesHADRON COLLIDERSFERMILAB010306 general physicsChinaPhysicshep-ex010308 nuclear & particles physicsPhysicsHigh Energy Physics::Phenomenology3. Good healthChristian ministryHigh Energy Physics::ExperimentQCD CORRECTIONS
researchProduct

Search for the neutral current top quark decayt→Zcusing the ratio ofZ-boson+4  jetstoW-boson+4  jetsproduction

2009

We have used the Collider Detector at Fermilab (CDF II) to search for the flavor-changing neutral-current (FCNC) top quark decay t {yields} Zc using a technique employing ratios of W and Z production, measured in p{bar p} data corresponding to an integrated luminosity of 1.52 fb{sup -1}. The analysis uses a comparison of two decay chains, p{bar p} {yields} t{bar t} {yields} WbWb {yields} {ell}{nu}bjjb and p{bar p} {yields} t{bar t} {yields} ZcWb {yields} {ell}{ell}cjjb, to cancel systematic uncertainties in acceptance, efficiency, and luminosity. We validate the modeling of acceptance and efficiency for lepton identification over the multi-year dataset using another ratio of W and Z product…

QuarkPhysicsNuclear and High Energy PhysicsTop quarkParticle physicsNeutral current010308 nuclear & particles physicsBranching fractionHigh Energy Physics::Phenomenology7. Clean energy01 natural sciencesStandard ModelNuclear physicsParticle decay0103 physical sciencesHigh Energy Physics::ExperimentProduction (computer science)010306 general physicsCollider Detector at FermilabPhysical Review D
researchProduct

Observation of theΩb−baryon and measurement of the properties of theΞb−andΩb−baryons

2009

The authors report the observation of the bottom, doubly-strange baryon {Omega}{sub b}{sup -} through the decay chain {Omega}{sub b}{sup -} {yields} J/{psi}{Omega}{sup -}, where J/{psi} {yields} {mu}{sup +} {mu}{sup -}, {Omega}{sup -} {yields} {Lambda}K{sup -}, and {Lambda} {yields} p {pi}{sup -}, using 4.2 fb{sup -1} of data from p{bar p} collisions at {radical}s = 1.96 TeV, and recorded with the Collider Detector at Fermilab. A signal is observed whose probability of arising from a background fluctuation is 4.0 x 10{sup -8}, or 5.5 Gaussian standard deviations. The {Omega}{sub b}{sup -} mass is measured to be 6054.4 {+-} 6.8(stat.) {+-} 0.9(syst.) MeV/c{sup 2}. The lifetime of the {Omega}…

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsLambda01 natural sciencesOmegaBaryonParticle decayCrystallography0103 physical sciencesTransverse momentumHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsCollider Detector at FermilabPhysical Review D
researchProduct

Search for Supersymmetry with Gauge-Mediated Breaking in Diphoton Events with Missing Transverse Energy at CDF II

2010

8 páginas, 3 figuras.-- PACS numbers: 12.60.Jv, 13.85.Rm, 13.85.Qk, 14.80.Ly.-- CDF Collaboration: et al.

Particle physicsMODELSFOS: Physical sciencesGeneral Physics and Astronomyddc:500.2GAMMA PRODUCTIONKinetic energy114 Physical sciencesE(+)E(-) COLLISIONS; HADRON COLLIDERS; GAMMA PRODUCTION; QCD CORRECTIONS; PHOTON; COUPLINGS; PHYSICS; MODELS; TEV01 natural sciencesHigh Energy Physics - ExperimentStandard ModelPHYSICSNuclear physicsHigh Energy Physics - Experiment (hep-ex)E(+)E(-) COLLISIONS0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Grand Unified TheoryHADRON COLLIDERSSymmetry breakingQuantum field theory010306 general physicsPhysics010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologySupersymmetryCOUPLINGSTransverse planePHOTONTEVHigh Energy Physics::ExperimentGravitinoQCD CORRECTIONS13.85.Rm 12.60.Jv 13.85.Qk 14.80.Ly
researchProduct

Search for standard model Higgs bosons produced in association with W bosons.

2007

We report on the results of a search for standard model Higgs bosons produced in association with W bosons from p-pbar collisions at root s = 1.96 TeV. The search uses a data sample corresponding to approximately 1 fb-1 of integrated luminosity. Events consistent with the W to l-nu and H to b-bbar signature are selected by triggering on a high-pT electron or muon candidate and tagging one or two of the jet candidates as having originated from b quarks. A neural network filter rejects a fraction of tagged charm and light flavor jets, increasing the b-jet purity in the sample and thereby reducing the background to Higgs boson production. We observe no excess l-nu-b-bbar production beyond the …

Particle physicsFOS: Physical sciencesNeural network filtersGeneral Physics and AstronomyElementary particleddc:500.201 natural sciencesStandard ModelHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)13.85.Rm 14.80.BnJets0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Mass hypothesesSampling010306 general physicsBosonsBosonPhysicsProblem solvingMathematical models010308 nuclear & particles physicsBranching fractionPhysicsHigh Energy Physics::PhenomenologyCenter (category theory)Higgs BosonsHiggs bosonProduction (computer science)High Energy Physics::ExperimentNeural networksLeptonPhysical review letters
researchProduct

Measurement of the single-top-quark production cross section at CDF.

2008

We report a measurement of the single top quark production cross section in 2.2 ~fb-1 of p-pbar collision data collected by the Collider Detector at Fermilab at sqrt{s}=1.96 TeV. Candidate events are classified as signal-like by three parallel analyses which use likelihood, matrix element, and neural network discriminants. These results are combined in order to improve the sensitivity. We observe a signal consistent with the standard model prediction, but inconsistent with the background-only model by 3.7 standard deviations with a median expected sensitivity of 4.9 standard deviations. We measure a cross section of 2.2 +0.7 -0.6(stat+sys) pb, extract the CKM matrix element value |V_{tb}|=0…

StandardsTop quarkParticle physicsFOS: Physical sciencesGeneral Physics and Astronomyddc:500.2Astrophysics::Cosmology and Extragalactic Astrophysics114 Physical sciences01 natural sciencesStandard ModelHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Tellurium compoundsMatrix elementsCross section (physics)Colliding beam acceleratorsStandard deviations0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Sensitivity (control systems)010306 general physicsStandard models14.65.Ha 13.85Qk 12.15Hh 12.15.JiPhysicshep-ex010308 nuclear & particles physicsCabibbo–Kobayashi–Maskawa matrixPhysicsStatisticsHigh Energy Physics::PhenomenologyOrder (ring theory)Collider Detector at FermilabCross sections_Parallel analysisProduction (computer science)High Energy Physics::ExperimentCollider Detector at FermilabNeural networksQuark productions
researchProduct

Search for Event Rate Modulation in XENON100 Electronic Recoil Data

2015

We have searched for periodic variations of the electronic recoil event rate in the (2-6) keV energy range recorded between February 2011 and March 2012 with the XENON100 detector, adding up to 224.6 live days in total. Following a detailed study to establish the stability of the detector and its background contributions during this run, we performed an un-binned profile likelihood analysis to identify any periodicity up to 500 days. We find a global significance of less than 1 sigma for all periods suggesting no statistically significant modulation in the data. While the local significance for an annual modulation is 2.8 sigma, the analysis of a multiple-scatter control sample and the phas…

Dark Matter Wimps ModulationPhysicsPhysics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)530 PhysicsDetectorDark matterPhase (waves)FOS: Physical sciencesGeneral Physics and AstronomySigmaInstrumentation and Detectors (physics.ins-det)AstrophysicsParticle detectorHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)RecoilModulation[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Event (particle physics)Astrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review Letters
researchProduct

$^{222}$Rn emanation measurements for the XENON1T experiment

2021

The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the $^{222}$Rn emanation measurements performed for the XENON1T dark matter experiment. Together with the bulk impurity screening campaign, the results enabled us to select the radio-purest construction materials, targeting a $^{222}$Rn activity concentration of 10 $\mu$Bq/kg in 3.2 t of xenon. The knowledge of the distribut…

Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Radon emanationFOS: Physical scienceschemistry.chemical_element01 natural sciencesNOHigh Energy Physics - Experimentradon: nuclideHigh Energy Physics - Experiment (hep-ex)XENONXenon222 RnPE2_2PE2_10103 physical sciencesActivity concentration[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Dark Matter[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsEngineering (miscellaneous)background: radioactivityPhysicsradon: admixture010308 nuclear & particles physicsdetector: surfacescreeningInstrumentation and Detectors (physics.ins-det)chemistryXenon Dark matter 222 Rn radioactivityDark Matter Radon emanation XENON Direct Dark MatterDirect Dark MatterradioactivityAtomic physics
researchProduct

Measurement of the Ratioσtt¯/σZ/γ*→lland Precise Extraction of thett¯Cross Section

2010

We report a measurement of the ratio of the t (t) over bar to Z/gamma* production cross sections in root s = 1.96 TeV p (p) over bar collisions using data corresponding to an integrated luminosity of up to 4.6 fb(-1), collected by the CDF II detector. The t (t) over bar cross section ratio is measured using two complementary methods, a b-jet tagging measurement and a topological approach. By multiplying the ratios by the well-known theoretical Z/gamma* -> ll cross section predicted by the standard model, the extracted t (t) over bar cross sections are effectively insensitive to the uncertainty on luminosity. A best linear unbiased estimate is used to combine both measurements with the resul…

PhysicsParticle physicsLuminosity (scattering theory)010308 nuclear & particles physicsBar (music)Astrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyGeneral Physics and AstronomyElementary particleFermion01 natural sciencesParticle detectorStandard ModelNuclear physicsCross section (physics)0103 physical sciencesMeasuring instrumentHigh Energy Physics::Experiment010306 general physicsPhysical Review Letters
researchProduct

Cross section measurements of high-p(T) dilepton final-state processes using a global fitting method

2008

We present a new method for studying high-$p_T$ dilepton events ($e^{\pm}e^{\mp}$, $\mu^{\pm}\mu^{\mp}$, $e^{\pm}\mu^{\mp}$) and simultaneously extracting the production cross sections of $p\bar{p} \to t\bar{t}$, $p\bar{p} \to W^+W^-$, and $p\bar{p} \to \ztt$ at a center-of-mass energy of $\sqrt{s} = 1.96$ TeV. We perform a likelihood fit to the dilepton data in a parameter space defined by the missing transverse energy and the number of jets in the event. Our results, which use $360 {\rm pb^{-1}}$ of data recorded with the CDF II detector at the Fermilab Tevatron Collider, are $\sigma(t\bar{t}) = 8.5_{-2.2}^{+2.7}$ pb, $\sigma(W^+W^-) = 16.3^{+5.2}_{-4.4}$ pb, and $\sigma(\ztt) =291^{+50}_…

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologyGlobal fittingFOS: Physical sciencesddc:500.2State (functional analysis)Astronomy & Astrophysics;; Physics Particles & Fields01 natural sciences7. Clean energyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)CrystallographyTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical sciences_High Energy Physics::ExperimentProduction (computer science)010306 general physicsEnergy (signal processing)Bar (unit)Lepton
researchProduct

Measurement of the top quark mass andpp¯→tt¯cross section in the all-hadronic mode with the CDF II detector

2010

We present a measurement of the top quark mass and of the top-antitop pair production cross section using p-pbar data collected with the CDFII detector at the Tevatron Collider at the Fermi National Accelerator Laboratory and corresponding to an integrated luminosity of 2.9 fb-1. We select events with six or more jets satisfying a number of kinematical requirements imposed by means of a neural network algorithm. At least one of these jets must originate from a b quark, as identified by the reconstruction of a secondary vertex inside the jet. The mass measurement is based on a likelihood fit incorporating reconstructed mass distributions representative of signal and background, where the abs…

PhysicsQuarkNuclear and High Energy PhysicsParticle physicsTop quarkMass distribution010308 nuclear & particles physicsHadronTevatron01 natural sciencesBottom quarkNuclear physicsPair production0103 physical sciencesMass spectrumHigh Energy Physics::Experiment010306 general physicsPhysical Review D
researchProduct

Measurement of the top pair production cross section in the dilepton decay channel inpp¯collisions ats=1.96  TeV

2010

A measurement of the tt production cross section in pp collisions at {radical}(s)=1.96 TeV using events with two leptons, missing transverse energy, and jets is reported. The data were collected with the CDF II detector. The result in a data sample corresponding to an integrated luminosity 2.8 fb{sup -1} is {sigma}{sub tt}=6.27{+-}0.73(stat){+-}0.63(syst){+-}0.39(lum) pb. for an assumed top mass of 175 GeV/c{sup 2}.

PhysicsNuclear and High Energy PhysicsParticle physicsLuminosity (scattering theory)010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaElementary particleAstrophysics::Cosmology and Extragalactic AstrophysicsKinetic energy01 natural sciencesNuclear physicsParticle decayPair production0103 physical sciencesHigh Energy Physics::ExperimentProduction (computer science)Nuclear Experiment010306 general physicsEnergy (signal processing)LeptonPhysical Review D
researchProduct

Dark Matter Search Results from a One Ton-Year Exposure of XENON1T

2018

We report on a search for Weakly Interacting Massive Particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS. XENON1T utilizes a liquid xenon time projection chamber with a fiducial mass of $(1.30 \pm 0.01)$ t, resulting in a 1.0 t$\times$yr exposure. The energy region of interest, [1.4, 10.6] $\mathrm{keV_{ee}}$ ([4.9, 40.9] $\mathrm{keV_{nr}}$), exhibits an ultra-low electron recoil background rate of $(82\substack{+5 \\ -3}\textrm{ (sys)}\pm3\textrm{ (stat)})$ events/$(\mathrm{t}\times\mathrm{yr}\times\mathrm{keV_{ee}})$. No significant excess over background is found and a profile likelihood analysis parameterized in spatial and energy dimensions exclude…

Dark matterGeneral Physics and Astronomychemistry.chemical_elementS030DI5WIMP: massElectronParameter spacedark matter: direct detectionGravitation and AstrophysicsS030DI101 natural sciencesS030DI3S030DI2Nuclear physicsXenonRecoilWIMPelectron: recoil0103 physical sciencesS046DM2[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsnumerical calculationsDark Matter WIMP TPC XENON Direct searchPhysicsxenon: liquidTime projection chamber010308 nuclear & particles physicsbackgrounddark matter: massGran SassoWIMP nucleonchemistryWeakly interacting massive particles[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]time projection chamber: xenon[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

The XENON1T Dark Matter Experiment

2017

The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2 t liquid xenon inventory, 2.0 t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented. © 2017, The Author(s).

xenon: targetPhotomultiplierCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)WIMP[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Dark matterchemistry.chemical_elementFOS: Physical scienceslcsh:Astrophysics01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)XENONXenonbackground: lowWIMP[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]Ionization0103 physical scienceslcsh:QB460-466[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Dark Matterlcsh:Nuclear and particle physics. Atomic energy. Radioactivity[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsEngineering (miscellaneous)Instrumentation and Methods for Astrophysics (astro-ph.IM)[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]AstrophysiquePhysicsScintillationxenon: liquidTime projection chamberphotomultiplier010308 nuclear & particles physicsDetectorInstrumentation and Detectors (physics.ins-det)dark matter: detectortime projection chamberchemistrylcsh:QC770-798TPCAstrophysics - Instrumentation and Methods for Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]performanceAstrophysics - Cosmology and Nongalactic AstrophysicsEuropean Physical Journal C
researchProduct

Measurement of the cross section forW-boson production in association with jets inpp¯collisions ats=1.96  TeV

2008

We present a measurement of the cross section for W-boson production in association with jets in p{bar p} collisions at {radical}s = 1.96 TeV. The analysis uses a data sample corresponding to an integrated luminosity of 320 pb{sup -1} collected with the CDF II detector. W bosons are identified in their electron decay channel and jets are reconstructed using a cone algorithm. For each W + {ge} n-jet sample (n = 1-4) we measure {sigma}(p{bar p} {yields} W + {ge} n-jet) x {Beta}(W {yields} e{nu}) with respect to the transverse energy E{sub T} of the nth-highest E{sub T} jet above 20 GeV, for a restricted W {yields} e{nu} decay phase space. The cross sections, corrected for all detector effects…

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaOrder (ring theory)Elementary particleFermionKinetic energy01 natural sciencesNuclear physics0103 physical sciencesHigh Energy Physics::ExperimentProduction (computer science)010306 general physicsEnergy (signal processing)LeptonBosonPhysical Review D
researchProduct

DARWIN: Towards the ultimate dark matter detector

2016

DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/c2, such a detector with its large mass, low-energy …

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsdouble beta decay7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentPhysics Particles & FieldsNeutrino detectorHigh Energy Physics - Experiment (hep-ex)XenonWIMPPHOTOMULTIPLIERAXIONSphysics.ins-detsolar and atmospheric neutrinosPhysicsDark matter detectorTime projection chamberdark matter detectorsPhysicsSolar and atmospheric neutrinoInstrumentation and Detectors (physics.ins-det)Nuclear & Particles PhysicsNeutrino detectorSOLAR NEUTRINOSGASPhysical SciencesNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsGRAN SASSODark matter detectors; Double beta decay; Neutrino detectors; Solar and atmospheric neutrinosDark matterchemistry.chemical_elementFOS: Physical sciencesAstronomy & AstrophysicsLIQUID-XENON DETECTOR0202 Atomic Molecular Nuclear Particle And Plasma PhysicsSettore FIS/05 - Astronomia e AstrofisicaSEARCH0103 physical sciencesIsotopes of xenonZEPLIN-III[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsAxionInstrumentation and Methods for Astrophysics (astro-ph.IM)Science & Technology010308 nuclear & particles physicshep-exAstronomyAstronomy and Astrophysics0201 Astronomical And Space ScienceschemistryHigh Energy Physics::ExperimentSCINTILLATIONneutrino detectorsastro-ph.IMJournal of Cosmology and Astroparticle Physics
researchProduct

Tevatron Run II combination of the effective leptonic electroweak mixing angle

2018

The Ministry of Science and Innovation and the Consolider-Ingenio 2010 Program and the European Union community Marie Curie Fellowship Contract No. 302103.

Drell-Yan processsemianalytical programsPhysics and Astronomy (miscellaneous)FERMION PAIR PRODUCTIONUPGRADETevatronhadron-colliders01 natural sciencesHigh Energy Physics - ExperimentPhysics Particles & Fieldselectron: pair productionHigh Energy Physics - Experiment (hep-ex)MONTE-CARLOUNIVERSAL MONTE-CARLOELECTROMAGNETIC CALORIMETERDZERO[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]HADRON COLLIDERSangular distributionBatavia TEVATRON CollMonte CarloPhysicsscattering [anti-p p]gauge bosonPhysicsElectroweak interactionDrell–Yan processWeinberg anglespontaneous symmetry breaking [electroweak interaction]muon: pair productionPhysical Sciencesmixing angle [electroweak interaction]bosonPHOTOSmass: measured [W]asymmetryParticle physicsFOS: Physical sciencesSEMIANALYTICAL PROGRAMddc:500.2Astronomy & Astrophysicselectroweak interaction: spontaneous symmetry breaking114 Physical sciences530programmingW: mass: measuredStandard Modelanti-p p: colliding beams[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]hadroproduction [Z0]0103 physical sciencesanti-p p: scatteringddc:530High Energy Physicspair production [electron]pair production [muon]CALORIMETER010306 general physicsQED RADIATIVE-CORRECTIONSQed radiative-corrections; fermion pair production; universal; Monte Carlo; parton distributions; hadron-colliders; electromagnetic; calorimeter;semianalytical programs; E(+)E(-) annihilation; boson; production; D0 detectorGauge bosonBOSON PRODUCTIONMuonScience & Technologyelectroweak interaction: mixing angleAnti-p p: scattering | anti-p p: colliding beams | Z0: hadroproduction | Z0: leptonic decay | electroweak interaction: spontaneous symmetry breaking | electroweak interaction: mixing angle | muon: pair production | W: mass: measured | Weinberg angle | Batavia TEVATRON Coll | angular distribution | electron: pair production | Drell-Yan process | gauge boson | programming | asymmetry | CDF | DZERO | experimental resultsIDENTIFICATION010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyuniversalWeinberg angleZ0: hadroproductionQED RADIATIVE-CORRECTIONS; FERMION PAIR PRODUCTION; UNIVERSAL; MONTE-CARLO; PARTON DISTRIBUTIONS; HADRON COLLIDERS; ELECTROMAGNETIC; CALORIMETER; SEMIANALYTICAL PROGRAM; E(+)E(-) ANNIHILATION; BOSON; PRODUCTION; D0 DETECTORleptonic decay [Z0]E(+)E(-) ANNIHILATIONelectromagneticPARTON DISTRIBUTIONSExperimental High Energy PhysicsZ0: leptonic decayD0 DETECTORCDFHigh Energy Physics::Experimentproductioncolliding beams [anti-p p]Leptonexperimental results
researchProduct

Search for ExclusiveZ-Boson Production and Observation of High-Masspp¯→pγγp¯→pl+l−p¯Events inpp¯Collisions ats=1.96  TeV

2009

We present a search for exclusive Z boson production in proton-antiproton collisions at {radical}s = 1.96 TeV, using the CDF II detector at Fermilab. We observe no exclusive Z {yields} {ell}{sup +}{ell}{sup -} candidates and place the first upper limit on the exclusive Z cross section in hadron collisions, {sigma}{sub excl}(Z) 40 GeV=c{sup 2} and |{eta}{sub {ell}}| < 4 to be {sigma} = 0.24{sub -0.10}{sup +0.13} pb, which is the first measurement for this mass range and is consistent with the standard model prediction.

PhysicsParticle physics010308 nuclear & particles physicsHadronGeneral Physics and AstronomySigmaElementary particle01 natural sciences7. Clean energyStandard ModelNuclear physics0103 physical sciencesGrand Unified TheoryHigh Energy Physics::ExperimentProduction (computer science)Quantum field theoryNuclear Experiment010306 general physicsBosonPhysical Review Letters
researchProduct

First Measurement of Boson Production in Association with a Single Charm Quark in Collisions at

2008

The authors present the first measurement of the production cross section of a W boson with a single charm quark (c) in p{bar p} collisions at {radical}s = 1.96 TeV, using soft muon tagging of c jets. In a data sample of {approx} 1.8 fb{sup -1}, recorded with the CDF II detector at the Fermilab Tevatron, they select events with W + 1 or 2 jets. They use the charge correlation between the W and the muon from the semileptonic decay of a charm hadron to extract the We signal. They measure {sigma}{sub Wc} (p{sub Tc} > 20 GeV/c, |{eta}{sub c}| < 1.5) x BR(W {yields} {ell}{nu}) = 9.8 {+-} 3.2 pb, in agreement with theoretical expectations.

QuarkSemileptonic decayPhysicsParticle physicsMuon010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyHadronTevatronGeneral Physics and Astronomy7. Clean energy01 natural sciencesCharm quarkNuclear physics0103 physical sciencesHigh Energy Physics::ExperimentProduction (computer science)Charm (quantum number)010306 general physics
researchProduct

Search for Light Dark Matter Interactions Enhanced by the Migdal Effect or Bremsstrahlung in XENON1T.

2019

Direct dark matter detection experiments based on a liquid xenon target are leading the search for dark matter particles with masses above ∼5 GeV/c2, but have limited sensitivity to lighter masses because of the small momentum transfer in dark matter-nucleus elastic scattering. However, there is an irreducible contribution from inelastic processes accompanying the elastic scattering, which leads to the excitation and ionization of the recoiling atom (the Migdal effect) or the emission of a bremsstrahlung photon. In this Letter, we report on a probe of low-mass dark matter with masses down to about 85 MeV/c2 by looking for electronic recoils induced by the Migdal effect and bremsstrahlung us…

xenon: targetPhysics - Instrumentation and Detectorsdark matter: interactionelastic scatteringGeneral Physics and Astronomy01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)XenonIonizationexcited state[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear ExperimentLight dark matterElastic scatteringPhysicsxenon: liquidatommomentum transferMomentum transferBremsstrahlungInstrumentation and Detectors (physics.ins-det)photon: bremsstrahlungS030DN5Weakly interacting massive particlesExcited stateAstrophysics - Cosmology and Nongalactic AstrophysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterLight Dark Matter Direct search Liquid Xenon TPCFOS: Physical sciencesS030DI5chemistry.chemical_elementNuclear physicsParticle dark matterrecoilionization0103 physical sciencesDark matter[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsscintillation counterS030DP5010308 nuclear & particles physicsdown: masssensitivityDark matter Particle dark matter Weakly interacting massive particles* Automatic Keywords *chemistryElementary Particles and Fieldsbremsstrahlung: emission[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Physical review letters
researchProduct

Search for New Physics with a Dijet Plus MissingETSignature inpp¯Collisions ats=1.96  TeV

2010

We present results of a signature-based search for new physics using a dijet plus missing transverse energy (E{sub T}) data sample collected in 2 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV with the CDF II detector at the Fermilab Tevatron. We observe no significant event excess with respect to the standard model prediction and extract a 95% C.L. upper limit on the cross section times acceptance for a potential contribution from a non-standard model process. Based on this limit the mass of a potential first or second generation scalar leptoquark is constrained to be above 187 GeV/c{sup 2}.

PhysicsParticle physics010308 nuclear & particles physicsPhysics beyond the Standard ModelHigh Energy Physics::PhenomenologyScalar (mathematics)TevatronGeneral Physics and Astronomy01 natural sciencesStandard ModelNuclear physics0103 physical sciencesHigh Energy Physics::ExperimentLeptoquarkLimit (mathematics)Fermilab010306 general physicsEnergy (signal processing)Physical Review Letters
researchProduct

Projected WIMP sensitivity of the XENONnT dark matter experiment

2020

XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3 ± 0.6 (keV t y)-1 and (2.2± 0.5)× 10−3 (keV t y)-1, respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage…

WIMP nucleon: scatteringdata analysis methodCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics - Instrumentation and DetectorsHadronDark matterFOS: Physical sciencesElementary particledark matter: direct detection01 natural sciencesWIMP: dark matterHigh Energy Physics - ExperimentNONuclear physicsHigh Energy Physics - Experiment (hep-ex)XENONPE2_2WIMPPE2_1electron: recoil0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutron[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsPE2_4Dark matter experimentComputingMilieux_MISCELLANEOUSactivity reportnucleus: recoilPhysicsxenon: liquid010308 nuclear & particles physicsbackgroundAstronomy and AstrophysicsInstrumentation and Detectors (physics.ins-det)Dark matter experiments dark matter simulationssensitivityBaryonDark matter experimentsDark matter simulationsWeakly interacting massive particlesDark matter experiments; Dark matter simulationsNucleon[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

Measurement ofb-jet shapes in inclusive jet production inpp¯collisions ats=1.96  TeV

2008

We present a measurement of the shapes of b-jets using 300 pb(-1) of data obtained with the upgraded Collider Detector at Fermilab (CDF II) in p(p)overbar collisions at center-of-mass energy root s=1.96 TeV. This measurement covers a wide transverse momentum range, from 52 to 300 GeV/c. Samples of heavy-flavor enhanced jets together with inclusive jets are used to extract the average shapes of b-jets. The b-jets are expected to be broader than inclusive jets. Moreover, b-jets containing a single b-quark are expected to be narrower than those containing a b(b)overbar pair from gluon splitting. The measured b-jet shapes are found to be significantly broader than expected from the PYTHIA and H…

PhysicsNuclear and High Energy PhysicsParticle physicsMeson010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaHadronMonte Carlo methodElementary particle01 natural sciences7. Clean energyParticle detectorGluonNuclear physics0103 physical sciencesHigh Energy Physics::ExperimentB meson010306 general physicsCollider Detector at FermilabPhysical Review D
researchProduct

Effective field theory search for high-energy nuclear recoils using the XENON100 dark matter detector

2017

International audience; We report on weakly interacting massive particles (WIMPs) search results in the XENON100 detector using a nonrelativistic effective field theory approach. The data from science run II (34  kg×224.6 live days) were reanalyzed, with an increased recoil energy interval compared to previous analyses, ranging from (6.6–240)  keVnr. The data are found to be compatible with the background-only hypothesis. We present 90% confidence level exclusion limits on the coupling constants of WIMP-nucleon effective operators using a binned profile likelihood method. We also consider the case of inelastic WIMP scattering, where incident WIMPs may up-scatter to a higher mass state, and …

WIMP nucleon: scatteringParticle physicsdata analysis methodCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsWIMP[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Dark matterchemistry.chemical_elementFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesNuclear physicsXENONXenonWIMPstatistical analysis0103 physical sciencesEffective field theoryDark Matter010306 general physicsS030UDMnucleus: recoilPhysicsCoupling constanteffective field theory: nonrelativistic010308 nuclear & particles physicsScatteringDetectorAstrophysics::Instrumentation and Methods for Astrophysicsdark matter: detectorchemistryWeakly interacting massive particlesDirect SearchHigh Energy Physics::ExperimentTPC[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]recoil: energyAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Removing krypton from xenon by cryogenic distillation to the ppq level

2017

The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β-emitter 85Kr which is present in the xenon. For XENON1T a concentration of natural krypton in xenon natKr/Xe<200ppq (parts per quadrillion, 1ppq=10-15mol/mol) is required. In this work, the design, construction and test of a novel cryogenic distillation column using the common McCabe–Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4 · 10 5 with thermodynamic stability a…

CryostatPhysics - Instrumentation and DetectorsXenonPhysics and Astronomy (miscellaneous)WIMPDark matterAnalytical chemistryFOS: Physical scienceschemistry.chemical_elementlcsh:AstrophysicsWeakly Interact Massive ParticleSciences de l'ingénieur01 natural sciences7. Clean energyXenonlcsh:QB460-4660103 physical sciencesDark Matterlcsh:Nuclear and particle physics. Atomic energy. RadioactivitySensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsComputer science information & general worksEngineering (miscellaneous)Liquid XenonComputingMilieux_MISCELLANEOUSPhysicsAir separationPhysique010308 nuclear & particles physicsDistillation ColumnKryptonKryptonOrder (ring theory)Instrumentation and Detectors (physics.ins-det)AstronomiechemistryDirect Searchddc:000lcsh:QC770-798TPCOrder of magnitude
researchProduct

Search for Anomalous Production of Events with a Photon, Jet, b-quark Jet, and Missing Transverse Energy

2009

We present a signature-based search for the anomalous production of events containing a photon, two jets, of which at least one is identified as originating from a b quark, and missing transverse energy ((sic)(T)). The search uses data corresponding to 2.0 fb(-1) of integrated luminosity from p (p) over bar collisions at a center-of-mass energy of root s = 1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. From 6.697 47 x 10(6) events with a photon candidate with transverse energy E-T > 25 GeV, we find 617 events with (sic)(T) > 25 GeV and two or more jets with E-T > 15 GeV, at least one identified as originating from a b quark, versus an expectation of 607 +/- 113 event…

Nuclear and High Energy PhysicsParticle physicsMISSING TRANSVERSE ENERGYParticle modelScience and engineeringAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesLibrary scienceddc:500.201 natural sciences7. Clean energy114 Physical sciencesHigh Energy Physics - ExperimentBildungHigh Energy Physics - Experiment (hep-ex)Basic research0103 physical sciencesMatrix element010306 general physicsNuclear ExperimentPhysics010308 nuclear & particles physicshep-exPhysicsPHOTONJETSCDFChristian ministryHigh Energy Physics::ExperimentEngineering research
researchProduct

Top quark mass measurement in thett¯all hadronic channel using a matrix element technique inpp¯collisions ats=1.96  TeV

2009

We present a measurement of the top quark mass in the all hadronic channel ($t\overline{t}\ensuremath{\rightarrow}b\overline{b}{q}_{1}{\overline{q}}_{2}{q}_{3}{\overline{q}}_{4}$) using $943\text{ }\text{ }{\mathrm{pb}}^{\ensuremath{-}1}$ of $p\overline{p}$ collisions at $\sqrt{s}=1.96\text{ }\text{ }\mathrm{TeV}$ collected at the CDF II detector at Fermilab (CDF). We apply the standard model production and decay matrix element (ME) to $t\overline{t}$ candidate events. We calculate per-event probability densities according to the ME calculation and construct template models of signal and background. The scale of the jet energy is calibrated using additional templates formed with the invaria…

PhysicsNuclear and High Energy PhysicsParticle physicsTop quark010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyHadronJet (particle physics)01 natural sciencesStandard ModelNuclear physicsParticle decay0103 physical sciencesHigh Energy Physics::ExperimentProduction (computer science)Invariant mass010306 general physicsEnergy (signal processing)Physical Review D
researchProduct

Observation of Exclusive Dijet Production at the Fermilab Tevatron p-pbar Collider

2007

We present the first observation and cross section measurement of exclusive dijet production in pbar-p interactions, pbar + p --&gt; pbar + dijet + p. Using a data sample of 310 pb-1 collected by the Run II Collider Detector at Fermilab at sqrt{s}=1.96 TeV, exclusive cross sections for events with two jets of transverse energy ET &gt;= 10 GeV have been measured as a function of minimum ET(jet). The exclusive signal is extracted from fits to data distributions based on Monte Carlo simulations of expected dijet signal and background shapes. The simulated background distribution shapes are checked in a study of a largely independent data sample of 200 pb-1 of b-tagged jet events, where exclusi…

Nuclear and High Energy PhysicsParticle physicsTevatronFOS: Physical sciencesddc:500.201 natural scienceslaw.inventionHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Particle decaylaw0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsColliderPhysicsLarge Hadron Collider010308 nuclear & particles physicsHigh Energy Physics::Phenomenology13.87.Ce 12.38.Qk 12.40.NnHiggs boson_Production (computer science)High Energy Physics::ExperimentCollider Detector at FermilabEnergy (signal processing)
researchProduct

Search for New Bottomlike Quark Pair DecaysQQ¯→(tW∓)(t¯W±)in Same-Charge Dilepton Events

2010

We report the most restrictive direct limits on masses of fourth-generation down-type quarks b{sup '}, and quarklike composite fermions (B or T{sub 5/3}), decaying promptly to tW{sup +}-. We search for a significant excess of events with two same-charge leptons (e, mu), several hadronic jets, and missing transverse energy. An analysis of data from pp collisions with an integrated luminosity of 2.7 fb{sup -1} collected with the CDF II detector at Fermilab yields no evidence for such a signal, setting mass limits m{sub b}{sup '}, m{sub B}>338 GeV/c{sup 2} and m{sub T{sub 5{sub /{sub 3}}}}>365 GeV/c{sup 2} at 95% confidence level.

QuarkPhysicsParticle physics010308 nuclear & particles physicsHadronGeneral Physics and AstronomyElementary particleFermion01 natural sciencesLuminosityNuclear physicsParticle decay0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsEnergy (signal processing)LeptonPhysical Review Letters
researchProduct

Searching the inclusiveℓγE̸T+b-quark signature for radiative top quark decay and non-standard-model processes

2009

We compare the inclusive production of events containing a lepton (l), a photon ({gamma}), significant transverse momentum imbalance (Ee{sub T}), and a jet identified as containing a b-quark, to SM predictions. The search uses data produced in proton-antiproton collisions at {radical}(s)=1.96 TeV corresponding to 1.9 fb{sup -1} of integrated luminosity taken with the CDF detector. We find 28 l{gamma}bEe{sub T} events versus an expectation of 31.0{sub -3.5}{sup +4.1} events. If we further require events to contain at least three jets and large total transverse energy, the largest SM source is radiative top-quark pair production, tt+{gamma}. In the data we observe 16 tt{gamma} candidate event…

PhysicsNuclear and High Energy PhysicsParticle physicsTop quark010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaElementary particle01 natural sciences7. Clean energyBottom quarkNuclear physicsParticle decayPair production0103 physical sciencesHigh Energy Physics::ExperimentProduction (computer science)010306 general physicsEnergy (signal processing)LeptonPhysical Review D
researchProduct

Search for chargino-neutralino production inpp¯collisions ats=1.96  TeVwith high-pTleptons

2007

We present a search for the associated production of charginos and neutralinos in pp collisions at s=1.96TeV. The data were collected at the Collider Detector at Fermilab (CDF II) and correspond to integrated luminosities between 0.7 and 1.0fb-1. We look for final states with one high-pT electron or muon, and two additional leptons. Our results are consistent with the standard model expectations, and we set limits on the cross section as a function of the chargino mass in three different supersymmetric scenarios. For a specific minimal supersymmetric standard model scenario with no slepton mixing, we set a 95% C.L. limit at 151GeV/c2. © 2008 The American Physical Society.

PhysicsNuclear and High Energy PhysicsParticle physicsMuon010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyGeneral Physics and AstronomySupersymmetry01 natural sciences7. Clean energyStandard ModelNuclear physicsChargino0103 physical sciencesNeutralinoProduction (computer science)High Energy Physics::Experiment010306 general physicsCollider Detector at FermilabMinimal Supersymmetric Standard ModelLeptonPhysical Review D
researchProduct

Search for high-mass resonances decaying to dimuons at CDF.

2009

We present a search for high-mass neutral resonances using dimuon data corresponding to an integrated luminosity of 2.3 fb(-1) collected in pp collisions at s=1.96 TeV by the CDF II detector at the Fermilab Tevatron. No significant excess above the standard model expectation is observed in the dimuon invariant-mass spectrum. We set 95% confidence level upper limits on sigma BR(pp -> X ->mu mu), where X is a boson with spin-0, 1, or 2. Using these cross section limits, we determine lower mass limits on sneutrinos in R-parity-violating supersymmetric models, Z(') bosons, and Kaluza-Klein gravitons in the Randall-Sundrum model.

HIGH MASS RESONANCEParticle physicsFermilab TevatronTevatronGeneral Physics and AstronomyFOS: Physical sciencesddc:500.2114 Physical sciencesResonance7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsTellurium compoundsHigh Energy Physics - Experiment (hep-ex)Integrated luminosities0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Fermilab010306 general physicsBosonsBosonPhysicsMuonMass spectrometryhep-ex010308 nuclear & particles physicsPhysicsInvariant-mass spectrum13.85.Rm 13.85.Qk 12.60.Cn 14.70.Pw 04.50.-hHigh Energy Physics::PhenomenologyConfidence levelsGravitonSupersymmetryUpper limitsSupersymmetric modelsCross sectionsRandall–Sundrum modelThe standard modelsMass spectrumCDFHigh Energy Physics::ExperimentPhysical review letters
researchProduct

Measurement ofZγproduction inpp¯collisions ats=1.96  TeV

2010

The production rate and kinematics of photons produced in association with Z bosons are studied using 2 fb{sup -1} of p{bar p} collision data collected at the Collider Detector at Fermilab. The cross section for p{bar p} {yields} {ell}{sup +}{ell}{sup -}{gamma} + X (where the leptons {ell} are either muons or electrons with dilepton mass M{sub {ell}{ell}} > 40 GeV/c{sup 2}, and where the photon has transverse energy E{sub T}{sup {gamma}} > 7 GeV and is well separated from the leptons) is 4.6 {+-} 0.2 (stat) {+-} 0.3 (syst) {+-} 0.3 (lum) pb, which is consistent with standard model expectations. We use the photon ET distribution from Z{gamma} events where the Z has decayed to {mu}{sup +}{mu}…

PhysicsNuclear and High Energy PhysicsAntiparticleParticle physicsMuon010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyElementary particle7. Clean energy01 natural sciencesNuclear physicsParticle decay0103 physical sciencesHigh Energy Physics::ExperimentProduction (computer science)010306 general physicsCollider Detector at FermilabEnergy (signal processing)LeptonPhysical Review D
researchProduct

Online ^{222}Rn removal by cryogenic distillation in the XENON100 experiment

2017

International audience; We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant$^{222}$ Rn background originating from radon emanation. After inserting an auxiliary$^{222}$ Rn emanation source in the gas loop, we determined a radon reduction factor of $R\,>\,27$ (95% C.L.) for the distillation column by monitoring the$^{222}$ Rn activity concentration inside the XENON100 detector.

xenon: liquidradon: admixturePhysics - Instrumentation and DetectorsPhysicsFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)XENONmonitoringefficiencycryogenicsgasddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]background: radioactivity[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]
researchProduct

Observation of the Baryonic Flavor-Changing Neutral Current Decay Λb0→Λμ+μ-

2011

8 páginas, 2 figuras, 4 tablas.-- PACS numbers: 13.30.Ce, 12.15.Mm, 14.20.Mr.-- CDF Collaboration: et al.

PhysicsParticle physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Neutral current010308 nuclear & particles physicsBranching fractionFlavor-changing neutral current[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]TevatronGeneral Physics and Astronomyddc:500.2Leptonicand radiative decays01 natural sciencesBaryonFLAVOR CHANGING NEUTRAL CURRENTNeutral currents0103 physical sciencessemileptonic[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]CDFBottom baryonsTEVATRON010306 general physics13.25 Hw 13.20 He 13.30 -a
researchProduct

Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

2018

The CDF and D0 experiments at the Fermilab Tevatron have measured the asymmetry between yields of forward- and backward-produced top and antitop quarks based on their rapidity difference and the asymmetry between their decay leptons. These measurements use the full data sets collected in proton-antiproton collisions at a center-of-mass energy of √s=1.96  TeV. We report the results of combinations of the inclusive asymmetries and their differential dependencies on relevant kinematic quantities. The combined inclusive asymmetry is At¯tFB=0.128±0.025. The combined inclusive and differential asymmetries are consistent with recent standard model predictions.

Top quarkTevatronGeneral Physics and Astronomypair production [top]01 natural sciences7. Clean energyHigh Energy Physics - ExperimentSubatomär fysikHigh Energy Physics - Experiment (hep-ex)DZEROSubatomic Physicsddc:550[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Quantum ChromodynamicsBatavia TEVATRON CollGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)media_commonPhysicsscattering [anti-p p]Particle properties02 Physical Sciencesrapidity: differenceCDF; Tevatron; top-quarkPhysicsdifference [rapidity]asymmetry [angular distribution]kinematicsPhysical Sciencestop: pair productionQuarkParticle physicsGeneral Physicsangular distribution: asymmetryTevatron Collidermedia_common.quotation_subjectPhysics MultidisciplinaryFOS: Physical sciencesForward backwardddc:500.2Hadron-hadron interactionsAsymmetryComputer Science::Digital Libraries114 Physical sciencesMarie curieCDF Collaborationanti-p p: colliding beamsPhysics and Astronomy (all)[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesanti-p p: scatteringmedia_common.cataloged_instanceddc:530High Energy PhysicsEuropean union010306 general physicsScience & Technology1960 GeV-cms010308 nuclear & particles physicshep-exHigh Energy Physics::PhenomenologyTop quarkQ007TFBResearch councilExperimental High Energy PhysicsCDFHigh Energy Physics::Experimentcolliding beams [anti-p p]High Energy Physics Top quark Hadron-hadron interactions Quantum Chromodynamics Particle properties Tevatron ColliderD0 Collaborationexperimental resultsPhysical Review Letters
researchProduct

Search for new particles leading toZ+jetsfinal states inpp¯collisions ats=1.96  TeV

2007

We present the results of a search for new particles that lead to a Z boson plus jets in p{bar p} collisions at {radical}s = 1.96 TeV using the Collider Detector at Fermilab (CDF II). A data sample with a luminosity of 1.06 fb{sup -1} collected using Z boson decays to ee and {mu}{mu} is used. We describe a completely data-based method to predict the dominant background from standard-model Z+jet events. This method can be similarly applied to other analyses requiring background predictions in multi-jet environments, as shown when validating the method by predicting the background from W+jets in t{bar t} production. No significant excess above the background prediction is observed, and a limi…

QuarkPhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsBranching fraction01 natural sciencesParticle identificationStandard ModelNuclear physicsParticle decay0103 physical sciencesHigh Energy Physics::ExperimentProduction (computer science)010306 general physicsCollider Detector at FermilabBosonPhysical Review D
researchProduct

Search for new particles decaying into dijets in proton-antiproton collisions at root s=1.96 TeV

2009

We present a search for new particles which produce narrow two-jet (dijet) resonances using proton-antiproton collision data corresponding to an integrated luminosity of 1.13 fb(-1) collected with the CDF II detector. The measured dijet mass spectrum is found to be consistent with next-to-leading-order perturbative QCD predictions, and no significant evidence of new particles is found. We set upper limits at the 95% confidence level on cross sections times the branching fraction for the production of new particles decaying into dijets with both jets having a rapidity magnitude vertical bar y vertical bar < 1. These limits are used to determine the mass exclusions for the excited quark, axig…

QuarkNuclear and High Energy PhysicsParticle physicsFOS: Physical sciencesddc:500.2114 Physical sciences7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Particle decay0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Rapidity010306 general physics13.85.Rm 14.70.Pw 14.80.-jQuantum chromodynamicsPhysicshep-ex010308 nuclear & particles physicsBranching fractionPhysicsHigh Energy Physics::PhenomenologyPerturbative QCD3. Good healthDiquarkAntiprotonHigh Energy Physics::Experiment
researchProduct

Search for Heavy, Long-Lived Neutralinos that Decay to Photons at CDF II Using Photon Timing

2008

We present the results of the first hadron collider search for heavy, long-lived neutralinos that decay via lightest neutralino to gamma gravitino in gauge-mediated supersymmetry breaking models. Using an integrated luminosity of $570\pm34 pb^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV, we select $\gamma$+jet+missing transverse energy candidate events based on the arrival time of a high-energy photon at the electromagnetic calorimeter as measured with a timing system that was recently installed on the CDF II detector. We find 2 events, consistent with the background estimate of 1.3$\pm$0.7 events. While our search strategy does not rely on model-specific dynamics, we set cross sec…

Nuclear and High Energy PhysicsParticle physicsFOS: Physical sciencesElementary particleddc:500.2Astronomy & Astrophysics;; Physics Particles & Fields7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Particle decay0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsPhysicsLarge Hadron ColliderLuminosity (scattering theory)010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologySupersymmetryMassless particleNeutralino_GravitinoHigh Energy Physics::Experiment13.85.Rm 12.60.Jv 13.85.Qk 14.80.Ly
researchProduct

Search for the Higgs Boson Produced in Association withZ→ℓ+ℓ−inpp¯Collisions ats=1.96  TeV

2009

We present a search for associated production of the standard model (SM) Higgs boson and a Z boson where the Z boson decays to two leptons and the Higgs decays to a pair of b quarks in p{bar p} collisions at the Fermilab Tevatron. We use event probabilities based on SM matrix elements to construct a likelihood function of the Higgs content of the data sample. In a CDF data sample corresponding to an integrated luminosity of 2.7 fb{sup -1} we see no evidence of a Higgs boson with a mass between 100 GeV/c{sup 2} and 150 GeV/c{sup 2}. We set 95% confidence level (C.L.) upper limits on the cross-section for ZH production as a function of the Higgs boson mass m{sub H}; the limit is 8.2 times the…

QuarkPhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyTevatronCenter (category theory)General Physics and AstronomyElementary particle01 natural sciencesSearch for the Higgs bosonStandard ModelNuclear physicsParticle decayContent (measure theory)0103 physical sciencesHiggs bosonHigh Energy Physics::ExperimentProduction (computer science)010306 general physicsCollider Detector at FermilabLeptonBosonPhysical Review Letters
researchProduct

First Dark Matter Search Results from the XENON1T Experiment

2017

We report the first dark matter search results from XENON1T, a ∼2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind. The blinded search used 34.2 live days of data acquired between November 2016 and January 2017. Inside the (1042±12)-kg fiducial mass and in the [5,40] keVnr energy range of interest for weakly interacting massive particle (WIMP) dark matter searches, the electronic recoil background was (1.93±0.25)×10-4 events/(kg×day×keVee), the lowest ever achieved in such a dark matter detector. A profile likelihood analysis shows that the data are consisten…

Xenon[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Massive particleGeneral Physics and Astronomy01 natural sciencesWIMP: dark matterHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)RecoilXenonWIMPS046DM2[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Dark Matter[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]PhysicsRange (particle radiation)Time projection chamberDetectorHigh Energy Physics - Phenomenologydark matter: scatteringTPCAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - Cosmology and Nongalactic AstrophysicsWIMP nucleon: interactionParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)WIMPDark matterFOS: Physical scienceschemistry.chemical_elementWIMP: massS030DI2Nuclear physicsPhysics and Astronomy (all)[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesrecoil[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Physique010308 nuclear & particles physicsbackgrounddark matter: detectorAstronomieGran SassochemistryDirect Searchtime projection chamber: xenoninterpretation of experiments: XENON[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Measurement ofbHadron Lifetimes in Exclusive Decays Containing aJ/ψinpp¯Collisions ats=1.96  TeV

2011

We report on a measurement of b-hadron lifetimes in the fully reconstructed decay modes B{sup +}{yields}J/{psi}K{sup +}, B{sup 0}{yields}J/{psi}K{sup *}(892){sup 0}, B{sup 0}{yields}J/{psi}K{sub s}{sup 0}, and {Lambda}{sub b}{sup 0}{yields}J/{psi}{Lambda}{sup 0} using data corresponding to an integrated luminosity of 4.3 fb{sup -1}, collected by the CDF II detector at the Fermilab Tevatron. The measured lifetimes are {tau}(B{sup +})=[1.639{+-}0.009(stat){+-}0.009(syst)] ps, {tau}(B{sup 0})=[1.507{+-}0.010(stat){+-}0.008(syst)] ps, and {tau}({Lambda}{sub b}{sup 0})=[1.537{+-}0.045(stat){+-}0.014(syst)] ps. The lifetime ratios are {tau}(B{sup +})/{tau}(B{sup 0})=[1.088{+-}0.009(stat){+-}0.004…

PhysicsParticle physicsMeson010308 nuclear & particles physicsHadronGeneral Physics and AstronomyElementary particleLambdaQuarkonium01 natural sciences7. Clean energyCrystallography0103 physical sciencesB meson010306 general physicsBosonPhysical Review Letters
researchProduct

Cross-section-constrained top-quark mass measurement from dilepton events at the tevatron

2008

We report the first top quark mass measurement that uses a cross section constraint to improve the mass determination. This measurement is made with a dilepton $t\bar{t}$ event sample collected with the CDF II detector. From a data sample corresponding to an integrated luminosity of 1.2 fb$^{-1}$, we measure a top quark mass of $\rm{170.7^{+4.2}_{-3.9}(stat)\pm2.6(syst)}$ $\rm{\pm2.4(theory) GeV/{\it{c}}^{2}}$. The measurement without the cross section constraint results in a top quark mass of $\rm{169.7^{+5.2}_{-4.9}(stat)\pm3.1(syst) GeV/{\it{c}}^{2}}$.

Top quarkParticle physicsPhysics MultidisciplinaryTevatronFOS: Physical sciencesGeneral Physics and Astronomyddc:500.2Molecular dynamics01 natural sciencesHigh Energy Physics - Experimentlaw.inventionNuclear physicsHigh Energy Physics - Experiment (hep-ex)Colliding beam acceleratorslaw0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]FermilabHigh energy physicsNuclear Experiment010306 general physicsColliderConstraint theoryAstrophysics::Galaxy AstrophysicsPhysicsLuminosity (scattering theory)010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologyDetector14.65.Ha 13.85.Ni 13.85.Qk 12.15.FfIntegrated controlConstraint (information theory)Collider DetectorFermi levelCross-section constraintsHigh Energy Physics::ExperimentEvent (particle physics)Top-quark mass measurement
researchProduct

Search for doubly charged higgs bosons with lepton-rlavor-violating decays involving τ leptons

2008

We search for pair production of doubly charged Higgs particles (H(+/-+/-)) followed by decays into electron-tau (e tau) and muon-tau (mu tau) pairs using data (350 pb(-1)) collected from (p) over barp collisions at root s = 1.96 TeV by the CDF II experiment. We search separately for cases where three or four final-state leptons are detected, and combine results for exclusive decays to left-handed e tau (mu tau) pairs. We set an H(+/-+/-) lower mass limit of 114(112) GeV/c(2) at the 95% confidence level. RI Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Prokoshin, Fedor/E-2795-2012; Azzi, Patrizia/H-5404-2012

Pair productionParticle physicsGeneral Physics and AstronomyFOS: Physical sciencesElementary particleddc:500.201 natural sciencesHigh Energy Physics - ExperimentNuclear physicsTellurium compoundsParticle decayHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesHiggs particles010306 general physicsBosonsBosonPhysicsHiggs bosonsMuon010308 nuclear & particles physicsBranching fractionPhysicsHigh Energy Physics::PhenomenologyPair productionConfidence levelHiggs boson_High Energy Physics::ExperimentLepton
researchProduct

Search for Gluino-Mediated Bottom Squark Production inpp¯Collisions ats=1.96  TeV

2009

We report on a search for the supersymmetric partner of the bottom quark produced from gluino decays in data from 2.5 fb{sup -1} of integrated luminosity collected by the Collider Detector at Fermilab at {radical}s = 1.96 TeV. Candidate events are selected requiring two or more jets and large missing transverse energy. At least two of the jets are required to be tagged as originating from a b quark to enhance the sensitivity. The results are in good agreement with the prediction of the standard model processes, giving no evidence for gluino decay to sbottom quarks. This result constrains the gluino-pair-production cross section to be less than 40 fb at 95% credibility level for a gluino mas…

QuarkPhysicsParticle physicsGluino010308 nuclear & particles physicsHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyGeneral Physics and AstronomySuperpartnerSupersymmetry01 natural sciences7. Clean energyBottom quarkStandard ModelNuclear physicsParticle decay0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsCollider Detector at FermilabPhysical Review Letters
researchProduct

First simultaneous measurement of the top quark mass in thelepton+jetsand dilepton channels at CDF

2009

We present a measurement of the mass of the top quark using data corresponding to an integrated luminosity of 1.9 fb{sup -1} of pp collisions collected at {radical}(s)=1.96 TeV with the CDF II detector at Fermilab's Tevatron. This is the first measurement of the top quark mass using top-antitop pair candidate events in the lepton+jets and dilepton decay channels simultaneously. We reconstruct two observables in each channel and use a nonparametric kernel density estimation technique to derive two-dimensional probability density functions from simulated signal and background samples. The observables are the top quark mass and the invariant mass of two jets from the W decay in the lepton+jets…

PhysicsNuclear and High Energy PhysicsTop quarkParticle physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyHadronTevatronJet (particle physics)01 natural sciencesBottom quarkNuclear physicsParticle decay0103 physical sciencesHigh Energy Physics::ExperimentInvariant mass010306 general physicsLeptonPhysical Review D
researchProduct

First Observation of Vector Boson Pairs in a Hadronic Final State at the Tevatron Collider

2009

We present the first observation in hadronic collisions of the electroweak production of vector boson pairs (VV, V=W, Z) where one boson decays to a dijet final state. The data correspond to 3.5 fb(-1) of integrated luminosity of pp collisions at s=1.96 TeV collected by the CDF II detector at the Fermilab Tevatron. We observe 1516 +/- 239(stat)+/- 144(syst) diboson candidate events and measure a cross section sigma(pp -> VV+X) of 18.0 +/- 2.8(stat)+/- 2.4(syst)+/- 1.1(lumi) pb, in agreement with the expectations of the standard model.

Particle physicsFinal stateFermilab TevatronTevatronFOS: Physical sciencesGeneral Physics and AstronomyElementary particleddc:500.27. Clean energy01 natural sciences114 Physical sciencesStandard ModelVector bosonHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Tellurium compounds0103 physical sciences010306 general physicsNuclear ExperimentVECTOR BOSONBosonsBosonPhysicsGauge bosonIntegrated luminosityCross section010308 nuclear & particles physicshep-exPhysicsHadronic collisionsElectroweak interactionHigh Energy Physics::PhenomenologyTevatronVector bosonThe standard modelCDFProduction (computer science)High Energy Physics::ExperimentCollider
researchProduct

Search for two-neutrino double electron capture of $^{124}$Xe with XENON100

2017

Two-neutrino double electron capture is a rare nuclear decay where two electrons are simultaneously captured from the atomic shell. For $^{124}$Xe this process has not yet been observed and its detection would provide a new reference for nuclear matrix element calculations. We have conducted a search for two-neutrino double electron capture from the K-shell of $^{124}$Xe using 7636 kg$\cdot$d of data from the XENON100 dark matter detector. Using a Bayesian analysis we observed no significant excess above background, leading to a lower 90 % credibility limit on the half-life $T_{1/2}&gt;6.5\times10^{20}$ yr. We also evaluated the sensitivity of the XENON1T experiment, which is currently bein…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsElectron captureenergy resolutionFOS: Physical scienceschemistry.chemical_elementelectron: captureElectron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesBayesianX-rayneutrinoXenon0103 physical sciencesSensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det][ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)010306 general physics[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear ExperimentPhysicsnucleus: decayTime projection chamberphotomultiplier010308 nuclear & particles physicsbackgroundInstrumentation and Detectors (physics.ins-det)dark matter: detectorAtomic shellsensitivitytime projection chamberGran SassoxenonchemistryNeutrinoAtomic physicsRadioactive decayexperimental results
researchProduct