0000000000548148

AUTHOR

Tapio Rajala

showing 39 related works from this author

Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm

2011

We construct geodesics in the Wasserstein space of probability measure along which all the measures have an upper bound on their density that is determined by the densities of the endpoints of the geodesic. Using these geodesics we show that a local Poincar\'e inequality and the measure contraction property follow from the Ricci curvature bounds defined by Sturm. We also show for a large class of convex functionals that a local Poincar\'e inequality is implied by the weak displacement convexity of the functional.

Mathematics - Differential GeometryPure mathematicsGeodesicPoincaré inequalityMetric measure spaceCurvature01 natural sciencesConvexitysymbols.namesakeMathematics - Analysis of PDEsMathematics - Metric GeometryFOS: MathematicsMathematics::Metric Geometry0101 mathematicsRicci curvatureMathematicsProbability measure010102 general mathematicsta111Measure contraction propertyMetric Geometry (math.MG)53C23 (Primary) 28A33 49Q20 (Secondary)Functional Analysis (math.FA)010101 applied mathematicsMathematics - Functional AnalysisMetric spaceRicci curvatureDifferential Geometry (math.DG)Poincaré inequalityBounded functionsymbolsMathematics::Differential GeometryAnalysisAnalysis of PDEs (math.AP)
researchProduct

Ahlfors-regular distances on the Heisenberg group without biLipschitz pieces

2015

We show that the Heisenberg group is not minimal in looking down. This answers Problem 11.15 in `Fractured fractals and broken dreams' by David and Semmes, or equivalently, Question 22 and hence also Question 24 in `Thirty-three yes or no questions about mappings, measures, and metrics' by Heinonen and Semmes. The non-minimality of the Heisenberg group is shown by giving an example of an Ahlfors $4$-regular metric space $X$ having big pieces of itself such that no Lipschitz map from a subset of $X$ to the Heisenberg group has image with positive measure, and by providing a Lipschitz map from the Heisenberg group to the space $X$ having as image the whole $X$. As part of proving the above re…

53C17 22F50 22E25 14M17General MathematicsSpace (mathematics)Heisenberg group01 natural sciencesMeasure (mathematics)Image (mathematics)Set (abstract data type)Ahlfors-regular distancesMathematics - Metric Geometry53C170103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsHeisenberg groupMathematics::Metric GeometryMathematics (all)22E250101 mathematicsMathematicsDiscrete mathematicsmatematiikkamathematicsMathematics::Complex Variables010308 nuclear & particles physicsta111010102 general mathematicsMetric Geometry (math.MG)Lipschitz continuityMetric spaceMathematics - Classical Analysis and ODEsBounded function14M17; 22E25; 22F50; 53C17; Mathematics (all)14M1722F50
researchProduct

Sharp estimate on the inner distance in planar domains

2020

We show that the inner distance inside a bounded planar domain is at most the one-dimensional Hausdorff measure of the boundary of the domain. We prove this sharp result by establishing an improved Painlev\'e length estimate for connected sets and by using the metric removability of totally disconnected sets, proven by Kalmykov, Kovalev, and Rajala. We also give a totally disconnected example showing that for general sets the Painlev\'e length bound $\kappa(E) \le\pi \mathcal{H}^1(E)$ is sharp.

Pure mathematicsMathematics - Complex VariablesGeneral MathematicsBoundary (topology)accessible pointsMetric Geometry (math.MG)31A15Domain (mathematical analysis)inner distancePlanarMathematics - Metric GeometryPrimary 28A75. Secondary 31A15Bounded functionTotally disconnected spaceMetric (mathematics)FOS: Mathematics28A75Hausdorff measureComplex Variables (math.CV)Painlevé lengthMathematics
researchProduct

Failure of topological rigidity results for the measure contraction property

2014

We give two examples of metric measure spaces satisfying the measure contraction property MCP(K,N) but having different topological dimensions at different regions of the space. The first one satisfies MCP(0,3) and contains a subset isometric to $\mathbb{R}$, but does not topologically split. The second space satisfies MCP(2,3) and has diameter $\pi$, which is the maximal possible diameter for a space satisfying MCP(N-1,N), but is not a topological spherical suspension. The latter example gives an answer to a question by Ohta.

Mathematics - Differential Geometrymetric measure spacesGeodesicPhysics::Instrumentation and DetectorsQuantitative Biology::Tissues and Organsmeasure contraction propertyMetric Geometry (math.MG)53C23 (Primary) 28A33 49Q20 (Secondary)Ricci curvature lower boundsTopologyPotential theorymaximal diameter theoremnonbranchingRigidity (electromagnetism)Mathematics - Metric GeometryDifferential Geometry (math.DG)splitting theoremFOS: MathematicsSplitting theoremContraction (operator theory)AnalysisMathematicsgeodesics
researchProduct

Optimal transport maps on Alexandrov spaces revisited

2018

We give an alternative proof for the fact that in $n$-dimensional Alexandrov spaces with curvature bounded below there exists a unique optimal transport plan from any purely $(n-1)$-unrectifiable starting measure, and that this plan is induced by an optimal map.

Mathematics - Differential GeometryClass (set theory)Pure mathematicsGeneral MathematicsExistential quantificationPlan (drawing)Algebraic geometryoptimaalisuusCurvatureMeasure (mathematics)Primary 53C23. Secondary 49K30Mathematics - Analysis of PDEsMathematics - Metric GeometryFOS: Mathematicsmass transportationMathematics::Metric GeometryMathematicsAlexandrov-avaruudetMetric Geometry (math.MG)Number theoryDifferential Geometry (math.DG)Bounded functionMathematics::Differential GeometrymassasiirtoAlexandrov spacesAnalysis of PDEs (math.AP)
researchProduct

Existence of doubling measures via generalised nested cubes

2012

Working on doubling metric spaces, we construct generalised dyadic cubes adapting ultrametric structure. If the space is complete, then the existence of such cubes and the mass distribution principle lead into a simple proof for the existence of doubling measures. As an application, we show that for each $\epsilon>0$ there is a doubling measure having full measure on a set of packing dimension at most $\epsilon$.

Applied MathematicsGeneral MathematicsDyadic cubesStructure (category theory)Space (mathematics)Measure (mathematics)CombinatoricsMetric spacePacking dimension28C15 (Primary) 54E50 (Secondary)Mathematics - Classical Analysis and ODEsSimple (abstract algebra)Classical Analysis and ODEs (math.CA)FOS: MathematicsUltrametric spaceMathematicsProceedings of the American Mathematical Society
researchProduct

Weakly controlled Moran constructions and iterated functions systems in metric spaces

2011

We study the Hausdorff measures of limit sets of weakly controlled Moran constructions in metric spaces. The separation of the construction pieces is closely related to the Hausdorff measure of the corresponding limit set. In particular, we investigate different separation conditions for semiconformal iterated function systems. Our work generalizes well known results on self-similar sets in metric spaces as well as results on controlled Moran constructions in Euclidean spaces.

Pure mathematicsClosed set28A8028A80 28A78 (Primary); 37C45 (Secondary)General MathematicsHausdorff dimensionDynamical Systems (math.DS)Hausdorff measureCombinatoricsopen set conditionsemikonforminen iteroitu funktiojärjestelmäsemiconformal iterated function systemFOS: Mathematics37C45 (Secondary)Hausdorff measureHausdorff-ulottuvuusMathematics - Dynamical SystemsHausdorffin mittaMathematicsball condition37C45avoimen joukon ehtoMoran-konstruktiofinite clustering propertyInjective metric spaceHausdorff spaceMoran constructionäärellinen pakkautuminenConvex metric space28A80 28A78 (Primary)Metric spaceHausdorff distance28A78palloehtoNormal space
researchProduct

Dimension estimates for the boundary of planar Sobolev extension domains

2020

We prove an asymptotically sharp dimension upper-bound for the boundary of bounded simply-connected planar Sobolev $W^{1,p}$-extension domains via the weak mean porosity of the boundary. The sharpness of our estimate is shown by examples.

Applied MathematicsMathematical analysisBoundary (topology)Extension (predicate logic)Physics::Classical PhysicsFunctional Analysis (math.FA)Sobolev spaceMathematics - Functional AnalysisPlanarDimension (vector space)46E35 28A75Mathematics - Classical Analysis and ODEsBounded functionClassical Analysis and ODEs (math.CA)FOS: MathematicsAnalysisMathematics
researchProduct

Approximation by uniform domains in doubling quasiconvex metric spaces

2020

We show that any bounded domain in a doubling quasiconvex metric space can be approximated from inside and outside by uniform domains.

Pure mathematicsPrimary 30L99. Secondary 46E35 26B30Algebraic geometry01 natural sciencesDomain (mathematical analysis)funktioteoriaQuasiconvex functionMathematics::Group TheoryquasiconvexityMathematics - Metric Geometry0103 physical sciencesFOS: Mathematics0101 mathematicsuniform domainComputer Science::DatabasesMathematicsPartial differential equationFunctional analysis010102 general mathematicsMetric Geometry (math.MG)General Medicinemetriset avaruudetMetric spaceBounded functionSobolev extension010307 mathematical physicsfunktionaalianalyysi
researchProduct

Generalized Hausdorff dimension distortion in Euclidean spaces under Sobolev mappings

2010

Abstract We investigate how the integrability of the derivatives of Orlicz–Sobolev mappings defined on open subsets of R n affect the sizes of the images of sets of Hausdorff dimension less than n. We measure the sizes of the image sets in terms of generalized Hausdorff measures.

Mathematics::Functional AnalysisPure mathematicsApplied Mathematicsta111Hausdorff spaceMathematics::General Topology30C62Measure (mathematics)Image (mathematics)Dimension distortionMappings of finite distortionDistortion (mathematics)Sobolev spaceMathematics - Classical Analysis and ODEsHausdorff dimensionEuclidean geometryClassical Analysis and ODEs (math.CA)FOS: MathematicsSobolev mappingsAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Isometric embeddings of snowflakes into finite-dimensional Banach spaces

2016

We consider a general notion of snowflake of a metric space by composing the distance by a nontrivial concave function. We prove that a snowflake of a metric space $X$ isometrically embeds into some finite-dimensional normed space if and only if $X$ is finite. In the case of power functions we give a uniform bound on the cardinality of $X$ depending only on the power exponent and the dimension of the vector space.

30L05 46B85 54C25 54E40 28A80Pure mathematicsmetric spacesGeneral MathematicsMathematicsofComputing_GENERALBanach space01 natural sciencesfunctional analysisCardinalityMathematics - Metric GeometryDimension (vector space)0103 physical sciencesFOS: MathematicsMathematics (all)Mathematics::Metric Geometry0101 mathematicsSnowflakeNormed vector spaceMathematicsConcave functionApplied Mathematicsta111010102 general mathematicsnormiavaruudetMetric Geometry (math.MG)normed spacesmetriset avaruudetMetric spacefractalsfraktaalit010307 mathematical physicsfunktionaalianalyysiMathematics (all); Applied MathematicsVector spaceProceedings of the American Mathematical Society
researchProduct

Euclidean spaces as weak tangents of infinitesimally Hilbertian metric spaces with Ricci curvature bounded below

2013

We show that in any infinitesimally Hilbertian CD* (K,N)-space at almost every point there exists a Euclidean weak tangent, i.e., there exists a sequence of dilations of the space that converges to Euclidean space in the pointed measured Gromov-Hausdorff topology. The proof follows by considering iterated tangents and the splitting theorem for infinitesimally Hilbertian CD* (0,N)-spaces.

Mathematics - Differential GeometryPure mathematicsGeneral MathematicsSpace (mathematics)01 natural sciencesMeasure (mathematics)Mathematics - Metric Geometry0103 physical sciencesFOS: MathematicsMathematics::Metric Geometry0101 mathematics[MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG]tangent spaces; non-smooth geometryRicci curvatureMathematics51F99-53B99non-smooth geometrySequenceEuclidean spaceApplied MathematicsHilbertian spaces010102 general mathematicstangent spacesTangentMetric Geometry (math.MG)Euclidean spacesDifferential Geometry (math.DG)[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]weak tangentsBounded functionSplitting theorem010307 mathematical physics
researchProduct

Assouad dimension, Nagata dimension, and uniformly close metric tangents

2013

We study the Assouad dimension and the Nagata dimension of metric spaces. As a general result, we prove that the Nagata dimension of a metric space is always bounded from above by the Assouad dimension. Most of the paper is devoted to the study of when these metric dimensions of a metric space are locally given by the dimensions of its metric tangents. Having uniformly close tangents is not sufficient. What is needed in addition is either that the tangents have dimension with uniform constants independent from the point and the tangent, or that the tangents are unique. We will apply our results to equiregular subRiemannian manifolds and show that locally their Nagata dimension equals the to…

Pure mathematicssub-Riemannian manifoldsGeneral Mathematics54F45 (Primary) 53C23 54E35 53C17 (Secondary)01 natural sciencessymbols.namesakeMathematics - Geometric TopologyDimension (vector space)Mathematics - Metric Geometry0103 physical sciencesFOS: MathematicsMathematics (all)assouad dimensionMathematics::Metric GeometryPoint (geometry)0101 mathematicsMathematics010102 general mathematicsta111TangentMetric Geometry (math.MG)Geometric Topology (math.GT)16. Peace & justiceMetric dimensionAssouad dimension; Metric tangents; Nagata dimension; Sub-Riemannian manifolds; Mathematics (all)Metric spaceBounded functionNagata dimensionMetric (mathematics)symbols010307 mathematical physicsMathematics::Differential Geometrymetric tangentsLebesgue covering dimension
researchProduct

Characterisation of upper gradients on the weighted Euclidean space and applications

2020

In the context of Euclidean spaces equipped with an arbitrary Radon measure, we prove the equivalence among several different notions of Sobolev space present in the literature and we characterise the minimal weak upper gradient of all Lipschitz functions.

Pure mathematicsEuclidean spaceApplied MathematicsMathematics::Analysis of PDEsContext (language use)Sobolev spaceLipschitz continuityFunctional Analysis (math.FA)46E35 53C23 26B05differentiaaligeometriaSobolev spaceMathematics - Functional AnalysisMathematics - Analysis of PDEsRadon measureEuclidean geometryFOS: MathematicsWeighted Euclidean spaceDecomposability bundlefunktionaalianalyysiEquivalence (measure theory)MathematicsAnalysis of PDEs (math.AP)
researchProduct

Radon–Nikodym Property and Area Formula for Banach Homogeneous Group Targets

2013

We prove a Rademacher-type theorem for Lipschitz mappings from a subset of a Carnot group to a Banach homogeneous group, equipped with a suitably weakened Radon-Nikodym property. We provide a metric area formula that applies to these mappings and more generally to all almost everywhere metrically differentiable Lipschitz mappings defined on a Carnot group. peerReviewed

Discrete mathematicsMathematics::Functional AnalysisProperty (philosophy)General Mathematicsmetric area formulata111Mathematics::Analysis of PDEsCarnot groupBanach homogeneous groupsalmost everywhere differentiabilityRadon-Nikodym propertyLipschitz continuityRadon–Nikodym theoremBanach homogeneous groups; metric area formula; almost everywhere differentiability; Radon-Nikodym propertyMetric (mathematics)Homogeneous groupMathematics::Metric GeometryAlmost everywhereDifferentiable functionMathematics
researchProduct

Indecomposable sets of finite perimeter in doubling metric measure spaces

2020

We study a measure-theoretic notion of connectedness for sets of finite perimeter in the setting of doubling metric measure spaces supporting a weak $(1,1)$-Poincar\'{e} inequality. The two main results we obtain are a decomposition theorem into indecomposable sets and a characterisation of extreme points in the space of BV functions. In both cases, the proof we propose requires an additional assumption on the space, which is called isotropicity and concerns the Hausdorff-type representation of the perimeter measure.

Pure mathematicsSocial connectednessvariaatiolaskentaSpace (mathematics)01 natural sciencesMeasure (mathematics)differentiaaligeometriaPerimeterMathematics - Analysis of PDEsMathematics - Metric Geometry0103 physical sciencesFOS: Mathematics0101 mathematicsExtreme pointRepresentation (mathematics)MathematicsApplied Mathematics010102 general mathematicsdifferential equationsMetric Geometry (math.MG)metriset avaruudetFunctional Analysis (math.FA)Mathematics - Functional AnalysisMetric (mathematics)mittateoria010307 mathematical physicsvariation26B30 53C23Indecomposable moduleAnalysisAnalysis of PDEs (math.AP)Calculus of Variations and Partial Differential Equations
researchProduct

Failure of the local-to-global property for CD(K,N) spaces

2016

Given any K and N we show that there exists a compact geodesic metric measure space satisfying locally the CD(0,4) condition but failing CD(K,N) globally. The space with this property is a suitable non convex subset of R^2 equipped with the l^\infty-norm and the Lebesgue measure. Combining many such spaces gives a (non compact) complete geodesic metric measure space satisfying CD(0,4) locally but failing CD(K,N) globally for every K and N.

Mathematics - Differential GeometryDiscrete mathematicsProperty (philosophy)GeodesicLebesgue measureExistential quantification010102 general mathematicsMetric Geometry (math.MG)Space (mathematics)01 natural sciencesMeasure (mathematics)Theoretical Computer ScienceMathematics (miscellaneous)Mathematics - Metric GeometryDifferential Geometry (math.DG)0103 physical sciencesMetric (mathematics)FOS: Mathematics010307 mathematical physics0101 mathematics53C23 (Primary) 28A33 49Q20 (Secondary)MathematicsANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE
researchProduct

Thin and fat sets for doubling measures in metric spaces

2011

We consider sets in uniformly perfect metric spaces which are null for every doubling measure of the space or which have positive measure for all doubling measures. These sets are called thin and fat, respectively. In our main results, we give sufficient conditions for certain cut-out sets being thin or fat.

Discrete mathematics28A12 (Primary) 30L10 (Secondary)General MathematicsInjective metric space010102 general mathematicsNull (mathematics)Space (mathematics)01 natural sciencesMeasure (mathematics)Thin setIntrinsic metric010101 applied mathematicsMetric spaceMathematics - Classical Analysis and ODEsMetric (mathematics)Classical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsMathematics
researchProduct

Optimal maps and exponentiation on finite dimensional spaces with Ricci curvature bounded from below

2013

We prove existence and uniqueness of optimal maps on $RCD^*(K,N)$ spaces under the assumption that the starting measure is absolutely continuous. We also discuss how this result naturally leads to the notion of exponentiation.

Mathematics - Differential GeometryExponentiationLower Ricci bounds; Optimal maps; Optimal transport; RCD spaces01 natural sciencesMeasure (mathematics)Combinatoricssymbols.namesakeMathematics - Metric GeometryRCD spacesSettore MAT/05 - Analisi MatematicaFOS: MathematicsOptimal transportMathematics::Metric GeometryUniqueness0101 mathematicsLower Ricci bounds[MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG]Ricci curvatureMathematicsDiscrete mathematics010102 general mathematicsMetric Geometry (math.MG)Absolute continuity16. Peace & justice010101 applied mathematicsMathematics::LogicDifferential geometryDifferential Geometry (math.DG)Fourier analysisBounded functionsymbolsOptimal mapsGeometry and Topology
researchProduct

Products of snowflaked Euclidean lines are not minimal for looking down

2017

We show that products of snowflaked Euclidean lines are not minimal for looking down. This question was raised in Fractured fractals and broken dreams, Problem 11.17, by David and Semmes. The proof uses arguments developed by Le Donne, Li and Rajala to prove that the Heisenberg group is not minimal for looking down. By a method of shortcuts, we define a new distance $d$ such that the product of snowflaked Euclidean lines looks down on $(\mathbb R^N,d)$, but not vice versa.

Ahlfors-regularity26B05 (Primary) 28A80 (Secondary)01 natural sciences010104 statistics & probabilityFractalMathematics - Metric GeometryEuclidean geometryClassical Analysis and ODEs (math.CA)FOS: MathematicsHeisenberg groupMathematics::Metric GeometryBPI-spacesbpi-spacessecondary 28a800101 mathematicsbilipschitz piecesMathematicsDiscrete mathematicsQA299.6-433ahlfors-regularityApplied Mathematics010102 general mathematicsprimary 26b05Metric Geometry (math.MG)biLipschitz piecesMathematics - Classical Analysis and ODEsProduct (mathematics)Geometry and TopologyAnalysis
researchProduct

Local multifractal analysis in metric spaces

2013

We study the local dimensions and local multifractal properties of measures on doubling metric spaces. Our aim is twofold. On one hand, we show that there are plenty of multifractal type measures in all metric spaces which satisfy only mild regularity conditions. On the other hand, we consider a local spectrum that can be used to gain finer information on the local behaviour of measures than its global counterpart.

Pure mathematicsApplied MathematicsGeneral Physics and AstronomyMetric Geometry (math.MG)Statistical and Nonlinear PhysicsDynamical Systems (math.DS)Multifractal systemType (model theory)28A80 28D20 54E50Metric spaceLocal spectrumMathematics - Metric GeometryMathematics - Classical Analysis and ODEsClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics - Dynamical SystemsMathematical PhysicsMathematicsNonlinearity
researchProduct

A function whose graph has positive doubling measure

2014

We show that a doubling measure on the plane can give positive measure to the graph of a continuous function. This answers a question by Wang, Wen and Wen. Moreover we show that the doubling constant of the measure can be chosen to be arbitrarily close to the doubling constant of the Lebesgue measure.

Discrete mathematics28A12 (Primary) 30L10 (Secondary)Lebesgue measureApplied MathematicsGeneral Mathematicsta111thin setThin setMathematics - Classical Analysis and ODEsfat setdoubling measureClassical Analysis and ODEs (math.CA)FOS: MathematicsGraph (abstract data type)Computer Science::DatabasesMathematicsProceedings of the American Mathematical Society
researchProduct

Generalized Dimension Distortion under Mappings of Sub-Exponentially Integrable Distortion

2010

We prove a dimension distortion estimate for mappings of sub-exponentially integrable distortion in Euclidean spaces, which is essentially sharp in the plane.

Integrable systemMathematics - Complex VariablesGeneral MathematicsModulota111Mathematical analysisData_MISCELLANEOUSComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONData_CODINGANDINFORMATIONTHEORY30C62Distortion (mathematics)Exponential growthDimension (vector space)TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYEuclidean geometryFOS: MathematicsComplex Variables (math.CV)Constant (mathematics)MathematicsMathematicsofComputing_DISCRETEMATHEMATICS
researchProduct

A Density Result for Homogeneous Sobolev Spaces on Planar Domains

2018

We show that in a bounded simply connected planar domain $\Omega$ the smooth Sobolev functions $W^{k,\infty}(\Omega)\cap C^\infty(\Omega)$ are dense in the homogeneous Sobolev spaces $L^{k,p}(\Omega)$.

Pure mathematicsMathematics::Analysis of PDEs01 natural sciencesPotential theoryDomain (mathematical analysis)010104 statistics & probabilityPlanartiheysSimply connected spaceClassical Analysis and ODEs (math.CA)FOS: Mathematics46E350101 mathematicsMathematicsMathematics::Functional AnalysisFunctional analysis010102 general mathematicshomogeneous Sobolev spaceSobolev spaceFunctional Analysis (math.FA)Sobolev spaceMathematics - Functional AnalysisHomogeneousMathematics - Classical Analysis and ODEsBounded functionAnalysis
researchProduct

Slopes of Kantorovich potentials and existence of optimal transport maps in metric measure spaces

2014

We study optimal transportation with the quadratic cost function in geodesic metric spaces satisfying suitable non-branching assumptions. We introduce and study the notions of slope along curves and along geodesics and we apply the latter to prove suitable generalizations of Brenier's theorem of existence of optimal maps.

Mathematics - Differential GeometryPure mathematicsGeodesicApplied MathematicsInjective metric spacenon-brancingMathematical analysis49Q20 53C23Metric Geometry (math.MG)Measure (mathematics)geodesic metric spaceConvex metric spaceIntrinsic metricMetric spaceMathematics - Metric GeometryDifferential Geometry (math.DG)Metric (mathematics)FOS: Mathematicsupper gradientMetric mapoptimal transportationMathematics
researchProduct

A density problem for Sobolev spaces on Gromov hyperbolic domains

2017

We prove that for a bounded domain $\Omega\subset \mathbb R^n$ which is Gromov hyperbolic with respect to the quasihyperbolic metric, especially when $\Omega$ is a finitely connected planar domain, the Sobolev space $W^{1,\,\infty}(\Omega)$ is dense in $W^{1,\,p}(\Omega)$ for any $1\le p<\infty$. Moreover if $\Omega$ is also Jordan or quasiconvex, then $C^{\infty}(\mathbb R^n)$ is dense in $W^{1,\,p}(\Omega)$ for $1\le p<\infty$.

Pure mathematicsdensityApplied Mathematics010102 general mathematicsta111Sobolev space01 natural sciencesDomain (mathematical analysis)Functional Analysis (math.FA)Sobolev spaceMathematics - Functional AnalysisQuasiconvex functionPlanartiheysBounded function0103 physical sciencesMetric (mathematics)FOS: MathematicsMathematics::Metric Geometry010307 mathematical physics0101 mathematicsAnalysisMathematics
researchProduct

A density result on Orlicz-Sobolev spaces in the plane

2018

We show the density of smooth Sobolev functions $W^{k,\infty}(\Omega)\cap C^\infty(\Omega)$ in the Orlicz-Sobolev spaces $L^{k,\Psi}(\Omega)$ for bounded simply connected planar domains $\Omega$ and doubling Young functions $\Psi$.

Pure mathematicsMathematics::Functional AnalysisdensityPlane (geometry)Applied Mathematics010102 general mathematicsMathematics::Analysis of PDEsSobolev space01 natural sciencesFunctional Analysis (math.FA)Mathematics - Functional Analysis010101 applied mathematicsSobolev spacePlanarMathematics - Classical Analysis and ODEsOrlicz-Sobolev spaceBounded functionSimply connected spaceClassical Analysis and ODEs (math.CA)FOS: Mathematics46E350101 mathematicsfunktionaalianalyysiAnalysisMathematics
researchProduct

L∞ estimates in optimal mass transportation

2016

We show that in any complete metric space the probability measures μ with compact and connected support are the ones having the property that the optimal transportation distance to any other probability measure ν living on the support of μ is bounded below by a positive function of the L∞ transportation distance between μ and ν. The function giving the lower bound depends only on the lower bound of the μ-measures of balls centered at the support of μ and on the cost function used in the optimal transport. We obtain an essentially sharp form of this function. In the case of strictly convex cost functions we show that a similar estimate holds on the level of optimal transport plans if and onl…

Sequence010102 general mathematicsta111Function (mathematics)01 natural sciencesUpper and lower boundsComplete metric space010101 applied mathematicsCombinatoricsMetric spaceBounded functionoptimal mass transportationWasserstein distance0101 mathematicsConvex functionAnalysisProbability measureMathematicsJournal of Functional Analysis
researchProduct

Planar Sobolev homeomorphisms and Hausdorff dimension distortion

2011

We investigate how planar Sobolev-Orlicz homeomorphisms map sets of Hausdorff dimension less than two. With the correct gauge functions the generalized Hausdorff measures of the image sets are shown to be zero.

Mathematics::Functional AnalysisPure mathematicsApplied MathematicsGeneral MathematicsMathematical analysisMathematics::General TopologyDimension functionUrysohn and completely Hausdorff spacesEffective dimensionHausdorff distancePacking dimensionHausdorff dimensionHausdorff measureOuter measureMathematicsProceedings of the American Mathematical Society
researchProduct

Multi-marginal entropy-transport with repulsive cost

2020

In this paper we study theoretical properties of the entropy-transport functional with repulsive cost functions. We provide sufficient conditions for the existence of a minimizer in a class of metric spaces and prove the $\Gamma$-convergence of the entropy-transport functional to a multi-marginal optimal transport problem with a repulsive cost. We also prove the entropy-regularized version of the Kantorovich duality.

osittaisdifferentiaaliyhtälötPure mathematicsApplied Mathematics010102 general mathematicsMathematicsofComputing_NUMERICALANALYSISA domainFOS: Physical sciencesMathematical Physics (math-ph)matemaattinen optimointi01 natural sciences010101 applied mathematicsMetric spaceMathematics - Analysis of PDEsOptimization and Control (math.OC)FOS: MathematicsEntropy (information theory)0101 mathematicsMathematics - Optimization and ControlMathematical PhysicsAnalysisAnalysis of PDEs (math.AP)MathematicsCalculus of Variations and Partial Differential Equations
researchProduct

Strong BV-extension and W1,1-extension domains

2021

We show that a bounded domain in a Euclidean space is a $W^{1,1}$-extension domain if and only if it is a strong $BV$-extension domain. In the planar case, bounded and strong $BV$-extension domains are shown to be exactly those $BV$-extension domains for which the set $\partial\Omega \setminus \bigcup_{i} \overline{\Omega}_i$ is purely $1$-unrectifiable, where $\Omega_i$ are the open connected components of $\mathbb{R}^2\setminus\overline{\Omega}$.

46E35 26B30Mathematics - Metric GeometrymatematiikkaMathematics::Complex VariablesBV-extensionFOS: MathematicsSobolev extensionMetric Geometry (math.MG)Analysis
researchProduct

Tangent lines and Lipschitz differentiability spaces

2015

We study the existence of tangent lines, i.e. subsets of the tangent space isometric to the real line, in tangent spaces of metric spaces. We first revisit the almost everywhere metric differentiability of Lipschitz continuous curves. We then show that any blow-up done at a point of metric differentiability and of density one for the domain of the curve gives a tangent line. Metric differentiability enjoys a Borel measurability property and this will permit us to use it in the framework of Lipschitz differentiability spaces. We show that any tangent space of a Lipschitz differentiability space contains at least $n$ distinct tangent lines, obtained as the blow-up of $n$ Lipschitz curves, whe…

Pure mathematicsLipschitz differentiability spaces; metric geometry; Ricci curvature; tangent of metric spaces01 natural sciencesMathematics - Metric GeometrySettore MAT/05 - Analisi MatematicaTangent lines to circles0103 physical sciencesTangent spaceClassical Analysis and ODEs (math.CA)FOS: Mathematicsmetric geometryDifferentiable function0101 mathematicsReal lineMathematicstangent of metric spacesQA299.6-433Applied Mathematics010102 general mathematicsTangentLipschitz differentiability spacesMetric Geometry (math.MG)Lipschitz continuityFunctional Analysis (math.FA)Mathematics - Functional AnalysisMetric spaceRicci curvatureMathematics - Classical Analysis and ODEsMetric (mathematics)010307 mathematical physicsGeometry and TopologyMathematics::Differential GeometryAnalysis
researchProduct

Removable sets for intrinsic metric and for holomorphic functions

2019

We study the subsets of metric spaces that are negligible for the infimal length of connecting curves; such sets are called metrically removable. In particular, we show that every totally disconnected set with finite Hausdorff measure of codimension 1 is metrically removable, which answers a question raised by Hakobyan and Herron. The metrically removable sets are shown to be related to other classes of "thin" sets that appeared in the literature. They are also related to the removability problems for classes of holomorphic functions with restrictions on the derivative.

Pure mathematicsintrinsic metricsGeneral MathematicsHolomorphic function01 natural sciencesIntrinsic metricSet (abstract data type)Mathematics - Metric GeometryTotally disconnected spaceholomorphic functionsFOS: MathematicsHausdorff measure0101 mathematicsComplex Variables (math.CV)MathematicsPartial differential equationmatematiikkaMathematics - Complex Variables010102 general mathematicsMetric Geometry (math.MG)Codimensionmetriset avaruudet010101 applied mathematicsMetric space28A78 (Primary) 26A16 30C62 30H05 49Q15 51F99 (Secondary)Analysis
researchProduct

Duality theory for multi-marginal optimal transport with repulsive costs in metric spaces

2018

In this paper we extend the duality theory of the multi-marginal optimal transport problem for cost functions depending on a decreasing function of the distance (not necessarily bounded). This class of cost functions appears in the context of SCE Density Functional Theory introduced in "Strong-interaction limit of density-functional theory" by M. Seidl.

Class (set theory)Control and OptimizationComputer Science::Information Retrieval010102 general mathematicsFOS: Physical sciencesContext (language use)Function (mathematics)Mathematical Physics (math-ph)01 natural sciences010101 applied mathematicsComputational MathematicsMetric spaceMathematics - Analysis of PDEsControl and Systems EngineeringOptimization and Control (math.OC)Bounded functionFOS: MathematicsApplied mathematicsDensity functional theoryLimit (mathematics)0101 mathematicsMathematics - Optimization and ControlMathematical PhysicsMathematicsAnalysis of PDEs (math.AP)
researchProduct

Bi-Lipschitz invariance of planar BV- and W1,1-extension domains

2021

We prove that a bi-Lipschitz image of a planar $BV$-extension domain is also a $BV$-extension domain, and that a bi-Lipschitz image of a planar $W^{1,1}$-extension domain is again a $W^{1,1}$-extension domain.

Mathematics - Functional AnalysisMathematics - Classical Analysis and ODEsBV-extensionClassical Analysis and ODEs (math.CA)FOS: MathematicsSobolev extension46E35funktionaalianalyysiFunctional Analysis (math.FA)
researchProduct

Riemannian Ricci curvature lower bounds in metric measure spaces with σ-finite measure

2015

In a prior work of the first two authors with Savar´e, a new Riemannian notion of a lower bound for Ricci curvature in the class of metric measure spaces (X, d, m) was introduced, and the corresponding class of spaces was denoted by RCD(K,∞). This notion relates the CD(K, N) theory of Sturm and Lott-Villani, in the case N = ∞, to the Bakry-Emery approach. In this prior work the RCD(K,∞) property is defined in three equivalent ways and several properties of RCD(K,∞) spaces, including the regularization properties of the heat flow, the connections with the theory of Dirichlet forms and the stability under tensor products, are provided. In the above-mentioned work only finite reference measure…

Mathematics::Metric GeometryMathematics::Differential GeometryRiemannian Ricci curvature
researchProduct

Porosity and dimension of sets and measures

2009

huokoisuusporositydimensionulottuvuus
researchProduct

Tensorization of quasi-Hilbertian Sobolev spaces

2022

The tensorization problem for Sobolev spaces asks for a characterization of how the Sobolev space on a product metric measure space $X\times Y$ can be determined from its factors. We show that two natural descriptions of the Sobolev space from the literature coincide, $W^{1,2}(X\times Y)=J^{1,2}(X,Y)$, thus settling the tensorization problem for Sobolev spaces in the case $p=2$, when $X$ and $Y$ are infinitesimally quasi-Hilbertian, i.e. the Sobolev space $W^{1,2}$ admits an equivalent renorming by a Dirichlet form. This class includes in particular metric measure spaces $X,Y$ of finite Hausdorff dimension as well as infinitesimally Hilbertian spaces. More generally for $p\in (1,\infty)$ we…

Mathematics - Differential Geometrymetric measure spacesDirichlet formsminimal upper gradientFunctional Analysis (math.FA)Mathematics - Functional Analysistensorization46E36 (Primary) 31C25 (Secondary)Differential Geometry (math.DG)Sobolev spacesFOS: Mathematicsanalysis on metric spacespotentiaaliteoriafunktionaalianalyysi
researchProduct

Non-branching geodesics and optimal maps in strong CD(K,∞) -spaces

2014

We prove that in metric measure spaces where the entropy functional is Kconvex along every Wasserstein geodesic any optimal transport between two absolutely continuous measures with finite second moments lives on a non-branching set of geodesics. As a corollary we obtain that in these spaces there exists only one optimal transport plan between any two absolutely continuous measures with finite second moments and this plan is given by a map. The results are applicable in metric measure spaces having Riemannian Ricci curvature bounded below, and in particular they hold also for Gromov-Hausdorff limits of Riemannian manifolds with Ricci curvature bounded from below by some constant. peerReview…

metric measure spacesoptimal mapssMathematics::Metric GeometryMathematics::Differential Geometrynon-branching geodesic
researchProduct