0000000000689966

AUTHOR

Javier Gonzalez

showing 33 related works from this author

Gold catalyzed stereoselective tandem hydroamination–formal aza-Diels–Alder reaction of propargylic amino esters

2013

A gold-catalyzed tandem intramolecular hydroamination-formal aza-Diels-Alder reaction of propargylic amino esters is described. The overall process leads to the formation of a tetracyclic framework as a single diastereoisomer, with the creation of four bonds and five stereocenters.

Amino estersChemistryStereochemistryMetals and AlloysDiastereomerGeneral ChemistryCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsStereocenterCatalysisIntramolecular forceMaterials ChemistryCeramics and CompositesStereoselectivityAza-Diels–Alder reactionHydroaminationChemical Communications
researchProduct

ChemInform Abstract: Gold Catalyzed Stereoselective Tandem Hydroamination-Formal Aza-Diels-Alder Reaction of Propargylic Amino Esters.

2013

The overall sequence of the tandem reaction presented here leads to nitrogen-containing tetracycles under formation of 4 bonds and five stereocenters, in most cases as single diastereoisomers.

Cascade reactionAmino estersChemistryStereochemistryDiastereomerAza-Diels–Alder reactionStereoselectivityGeneral MedicineHydroaminationStereocenterCatalysisChemInform
researchProduct

Constraints on ultra-high-energy cosmic ray sources from a search for neutrinos above 10 PeV with IceCube

2016

We report constraints on the sources of ultra-high-energy cosmic ray (UHECR) above $10^{9}$ GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high energy neutrino-induced events which have deposited energies from $\sim 10^6$ GeV to above $10^{11}$ GeV. Two neutrino-induced events with an estimated deposited energy of $(2.6 \pm 0.3) \times 10^6$ GeV, the highest neutrino energies observed so far, and $(7.7 \pm 2.0) \times 10^5$ GeV were detected. The atmospheric background-only hypothesis of detecting these events is rejected at 3.6$\sigma$. The hypothesis that the observed events are of cosmogenic origin is also rejected at $>$99% CL because of…

FLUXSELECTIONFERMI-LATActive galactic nucleusCosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaGeneral Physics and AstronomyFOS: Physical sciencesCosmic rayAstrophysicsParameter space7. Clean energy01 natural sciencesCOSMOGENIC NEUTRINOS; TRACK RECONSTRUCTION; FERMI-LAT; BURSTS; SPECTRUM; MODEL; FLUX; TELESCOPES; SELECTION; EMISSIONPulsar0103 physical sciencesTRACK RECONSTRUCTIONBURSTSddc:550Ultrahigh energy010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)SPECTRUM010308 nuclear & particles physicsStar formationCOSMOGENIC NEUTRINOSAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyMODELPhysics and Astronomy13. Climate actionTELESCOPESHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaEMISSIONEnergy (signal processing)Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Follow-up of Astrophysical Transients in Real Time with the IceCube Neutrino Observatory

2020

In multi-messenger astronomy, rapid investigation of interesting transients is imperative. As an observatory with a 4$\pi$ steradian field of view and $\sim$99\% uptime, the IceCube Neutrino Observatory is a unique facility to follow up transients, and to provide valuable insight for other observatories and inform their observing decisions. Since 2016, IceCube has been using low-latency data to rapidly respond to interesting astrophysical events reported by the multi-messenger observational community. Here, we describe the pipeline used to perform these follow up analyses and provide a summary of the 58 analyses performed as of July 2020. We find no significant signal in the first 58 analys…

High Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEPhysics010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Instrumentation and Methods for AstrophysicsNeutrino astronomy; High energy astrophysicsFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics01 natural sciencesIceCube Neutrino ObservatoryNeutrino astronomySpace and Planetary ScienceObservatory0103 physical sciencesNeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)High energy astrophysics010303 astronomy & astrophysicsastro-ph.IM0105 earth and related environmental sciencesThe Astrophysical Journal
researchProduct

Time-integrated Neutrino Source Searches with 10 years of IceCube Data

2020

Physical review letters 124(5), 051103 (1-9) (2020). doi:10.1103/PhysRevLett.124.051103

background [atmosphere]Astrophysics::High Energy Astrophysical Phenomenamedia_common.quotation_subjectGeneral Physics and AstronomyFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics53001 natural sciencesIceCubeparticle source [neutrino]TRACK RECONSTRUCTION0103 physical sciencesddc:530atmosphere [muon]010306 general physicsAstrophysics::Galaxy Astrophysicsmedia_commonastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)MuonAstrophysics::Instrumentation and Methods for AstrophysicsNorthern HemisphereAstronomyGalaxymessengerPhysics and AstronomySkycorrelationtime dependenceupgradegalaxyNeutrinoAstrophysics - High Energy Astrophysical Phenomenastatistical
researchProduct

IceCube-Gen2: The Window to the Extreme Universe

2020

The observation of electromagnetic radiation from radio to $\gamma$-ray wavelengths has provided a wealth of information about the universe. However, at PeV (10$^{15}$ eV) energies and above, most of the universe is impenetrable to photons. New messengers, namely cosmic neutrinos, are needed to explore the most extreme environments of the universe where black holes, neutron stars, and stellar explosions transform gravitational energy into non-thermal cosmic rays. The discovery of cosmic neutrinos with IceCube has opened this new window on the universe. In this white paper, we present an overview of a next-generation instrument, IceCube-Gen2, which will sharpen our understanding of the proce…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HENuclear and High Energy PhysicsActive galactic nucleus010308 nuclear & particles physicsHigh-energy astronomyGravitational wavemedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyFOS: Physical sciencesCosmic ray01 natural sciencesUniverseNeutron star0103 physical sciencesNeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsmedia_common
researchProduct

ChemInform Abstract: Gold-Catalyzed Tandem Hydroamination/Formal Aza-Diels-Alder Reaction of Homopropargyl Amino Esters: A Combined Computational and…

2015

Under optimized conditions, the title reaction leads to formation of a tetracyclic nitrogen-containing framework with generation of 4 bonds and 5 stereocenters.

Amino estersTandemChemistryAza-Diels–Alder reactionGeneral MedicineHydroaminationCombinatorial chemistryCatalysisStereocenterChemInform
researchProduct

EV-Scale Sterile Neutrino Search Using Eight Years of Atmospheric Muon Neutrino Data from the IceCube Neutrino Observatory

2020

Physical review letters 125(14), 141801 (1-11) (2020). doi:10.1103/PhysRevLett.125.141801

Sterile neutrinoPhysics::Instrumentation and DetectorsGeneral Physics and Astronomysterile [neutrino]01 natural sciencesCosmologyIceCubeHigh Energy Physics - ExperimentSubatomär fysikHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Astronomi astrofysik och kosmologiSubatomic PhysicsTOOLAstronomy Astrophysics and Cosmologyatmosphere [muon]Muon neutrinoPhysicsPhysicsoscillation [neutrino]Astrophysics::Instrumentation and Methods for Astrophysicshep-phneutrino: sterilemass difference [neutrino]ddc:muon: atmosphereobservatoryHigh Energy Physics - PhenomenologyPhysique des particules élémentairessignatureParticle physicsdata analysis methodScale (ratio)Astrophysics::High Energy Astrophysical Phenomenaneutrino: mass differenceFOS: Physical sciences530IceCube Neutrino Observatorystatistical analysis0103 physical sciencesOSCILLATIONSddc:530010306 general physicshep-exICEHigh Energy Physics::Phenomenologyneutrino: mixing angleCONVERSIONPhysics and AstronomyCOSMOLOGYHigh Energy Physics::Experimentneutrino: oscillationBAYESIAN-INFERENCEmixing angle [neutrino]experimental results
researchProduct

Astrophysical neutrinos and cosmic rays observed by IceCube

2018

The core mission of the IceCube neutrino observatory is to study the origin and propagation of cosmic rays. IceCube, with its surface component IceTop, observes multiple signatures to accomplish this mission. Most important are the astrophysical neutrinos that are produced in interactions of cosmic rays, close to their sources and in interstellar space. IceCube is the first instrument that measures the properties of this astrophysical neutrino flux and constrains its origin. In addition, the spectrum, composition, and anisotropy of the local cosmic-ray flux are obtained from measurements of atmospheric muons and showers. Here we provide an overview of recent findings from the analysis of Ic…

Atmospheric ScienceAstrophysics::High Energy Astrophysical PhenomenaAerospace EngineeringCosmic rayAstrophysicsPhysics and Astronomy(all)7. Clean energy01 natural sciencesIceCube Neutrino ObservatoryIceCubecosmic raysObservatory0103 physical sciencesNeutrinos010303 astronomy & astrophysicsCosmic raysPhysicsMuon010308 nuclear & particles physicsGamma rayAstrophysics::Instrumentation and Methods for AstrophysicsneutrinosAstronomyAstronomy and AstrophysicsGeophysicsCosmic rays; IceCube; Neutrinos; Aerospace Engineering; Space and Planetary ScienceNeutrino detector13. Climate actionSpace and Planetary SciencePhysique des particules élémentairesGeneral Earth and Planetary SciencesNeutrinoNeutrino astronomy
researchProduct

Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data

2014

A search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2012 provided the first evidence for a high-energy neutrino flux of extraterrestrial origin. Results from an analysis using the same methods with a third year (2012-2013) of data from the complete IceCube detector are consistent with the previously reported astrophysical flux in the 100 TeV - PeV range at the level of $10^{-8}\, \mathrm{GeV}\, \mathrm{cm}^{-2}\, \mathrm{s}^{-1}\, \mathrm{sr}^{-1}$ per flavor and reject a purely atmospheric explanation for the combined 3-year data at $5.7 \sigma$. The data are consistent with expectations for equal fluxes of all three neutrino flavors and with isotrop…

FLUXACTIVE GALACTIC NUCLEICosmology and Nongalactic Astrophysics (astro-ph.CO)TELESCOPESolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaGeneral Physics and AstronomyFOS: Physical sciencesAstrophysics01 natural sciences7. Clean energyIceCubeIceCube Neutrino ObservatoryHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)SEARCH0103 physical sciencesddc:550010303 astronomy & astrophysicsGAMMA-RAY BURSTSPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsGlashow resonanceHigh Energy Physics::PhenomenologyASTRONOMYAstronomySolar neutrino problemBLAZARSPhysics and AstronomyNeutrino detector13. Climate actionLEPTONSJETSMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrinoNeutrino astronomyEMISSIONAstrophysics - High Energy Astrophysical PhenomenaphysicsAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review Letters
researchProduct

First Observation of PeV-Energy Neutrinos with IceCube

2013

We report on the observation of two neutrino-induced events which have an estimated deposited energy in the IceCube detector of 1.04 $\pm$ 0.16 and 1.14 $\pm$ 0.17 PeV, respectively, the highest neutrino energies observed so far. These events are consistent with fully contained particle showers induced by neutral-current $\nu_{e,\mu,\tau}$ ($\bar\nu_{e,\mu,\tau}$) or charged-current $\nu_{e}$ ($\bar\nu_{e}$) interactions within the IceCube detector. The events were discovered in a search for ultra-high energy neutrinos using data corresponding to 615.9 days effective livetime. The expected number of atmospheric background is $0.082 \pm 0.004 \text{(stat)}^{+0.041}_{-0.057} \text{(syst)}$. T…

SELECTIONParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)ATMOSPHERIC MUONAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Physics and AstronomyFluxCosmic rayddc:500.201 natural sciencesCHARMIceCube Neutrino Observatory0103 physical sciencesddc:550SCATTERING010303 astronomy & astrophysicsCharged currentHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSPECTRUMNeutral current010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyICEGlashow resonancePERFORMANCE3. Good healthPhysics and AstronomyHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaSYSTEMAstrophysics - Cosmology and Nongalactic AstrophysicsBar (unit)
researchProduct

The IceCube realtime alert system

2016

Following the detection of high-energy astrophysical neutrinos in 2013, their origin is still unknown. Aiming for the identification of an electromagnetic counterpart of a rapidly fading source, we have implemented a realtime analysis framework for the IceCube neutrino observatory. Several analyses selecting neutrinos of astrophysical origin are now operating in realtime at the detector site in Antarctica and are producing alerts to the community to enable rapid follow-up observations. The goal of these observations is to locate the astrophysical objects responsible for these neutrino signals. This paper highlights the infrastructure in place both at the South Pole detector site and at IceC…

HIGH-ENERGY NEUTRINOSTELESCOPEAstrophysics::High Energy Astrophysical PhenomenaMulti-messenger astronomy; Neutrino astronomy; Neutrino detectors; Transient sources; Astronomy and AstrophysicspoleFOS: Physical sciences01 natural sciencesIceCubelaw.inventionIceCube Neutrino ObservatoryTelescopeSEARCHESCORE-COLLAPSE SUPERNOVAElawObservatory0103 physical sciencesMulti-messenger astronomysiteNeutrino detectors010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsbackgroundEvent (computing)Astrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstronomy and AstrophysicsPERFORMANCEsensitivityTransient sourcesobservatoryIdentification (information)electromagneticPhysics and AstronomyNeutrino detectorNeutrino astronomyddc:540High Energy Physics::ExperimentNeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsFOLLOW-UPAstroparticle Physics
researchProduct

Neutrino oscillation studies with IceCube-DeepCore

2016

IceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle and performance, the method used to make…

Physics::Instrumentation and DetectorsSolar neutrinopoleinteraction [neutrino nucleon]PINGU01 natural sciences7. Clean energyneutrino nucleon: interactionIceCubeenergy: thresholdAstronomi astrofysik och kosmologineutrino: atmosphereAstronomy Astrophysics and Cosmologydetector [neutrino]Physicsneutrino: energy spectrumoscillation [neutrino]Astrophysics::Instrumentation and Methods for Astrophysicsatmosphere [neutrino]threshold [energy]mass difference [neutrino]Cosmic neutrino backgroundneutrino: detectorNeutrino detectorPhysique des particules élémentairesMeasurements of neutrino speedNeutrinoperformanceNuclear and High Energy PhysicsParticle physicsAstrophysics::High Energy Astrophysical Phenomenaneutrino: mass differenceddc:500.2530neutrino: energySOUTH-POLE0103 physical sciencesddc:530010306 general physicsNeutrino oscillation010308 nuclear & particles physicsICEenergy spectrum [neutrino]Solar neutrino problemneutrino: mixing anglePhysics and Astronomyenergy [neutrino]High Energy Physics::Experimentneutrino: oscillationNeutrino astronomyMATTERSYSTEMmixing angle [neutrino]experimental results
researchProduct

A search for time-dependent astrophysical neutrino emission with IceCube data from 2012 to 2017

2020

Abstract High-energy neutrinos are unique messengers of the high-energy universe, tracing the processes of cosmic ray acceleration. This paper presents analyses focusing on time-dependent neutrino point-source searches. A scan of the whole sky, making no prior assumption about source candidates, is performed, looking for a space and time clustering of high-energy neutrinos in data collected by the IceCube Neutrino Observatory between 2012 and 2017. No statistically significant evidence for a time-dependent neutrino signal is found with this search during this period, as all results are consistent with the background expectation. Within this study period, the blazar 3C 279, showed strong var…

010504 meteorology & atmospheric sciencesHigh-energy astronomyAstrophysics::High Energy Astrophysical Phenomenamedia_common.quotation_subjectmodel [emission]FOS: Physical sciencesCosmic rayAstrophysics01 natural scienceslaw.inventionIceCube Neutrino ObservatoryIceCubeblazarlawemission [gamma ray]0103 physical sciencesCosmic ray sources; High-energy astrophysics; Particle astrophysicsenergy: high [neutrino]Blazar010303 astronomy & astrophysics0105 earth and related environmental sciencesmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEAstroparticle physicsPhysicsbackgroundAstronomy and AstrophysicsCosmic ray sourcesUniverseHigh-energy astrophysicsmessengerobservatorySpace and Planetary Scienceddc:520time dependenceacceleration [cosmic radiation]NeutrinoAstrophysics - High Energy Astrophysical PhenomenaParticle astrophysicsFlare
researchProduct

PINGU: a vision for neutrino and particle physics at the South Pole

2017

The Precision IceCube Next Generation Upgrade (PINGU) is a proposed low-energy in-fill extension to the IceCube Neutrino Observatory. With detection technology modeled closely on the successful IceCube example, PINGU will provide a 6Mton effective mass for neutrino detection with an energy threshold of a few GeV. With an unprecedented sample of over 60,000 atmospheric neutrinos per year in this energy range, PINGU will make highly competitive measurements of neutrino oscillation parameters in an energy range over an order of magnitude higher than long-baseline neutrino beam experiments. PINGU will measure the mixing parameters $\theta_{\rm 23}$ and $\Delta m^2_{\rm 32}$, including the octan…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsmixing [neutrino]atmospheric neutrinos; IceCube Neutrino Observatory; neutrino oscillations; PINGU; Nuclear and High Energy Physicspole7. Clean energy01 natural sciencesPINGUIceCube Neutrino ObservatoryIceCubeHigh Energy Physics - ExperimentObservatoryPhysicssolar [WIMP]precision measurementAstrophysics::Instrumentation and Methods for Astrophysicsoscillation [neutrino]solar [dark matter]atmosphere [neutrino]threshold [energy]mass difference [neutrino]atmospheric neutrinosobservatoryHigh Energy Physics - PhenomenologyUpgradeNeutrino detectorupgradeNeutrinoKM3NETperformanceParticle physicsNuclear and High Energy Physicssupernova [neutrino]particle identification [neutrino/tau]Astrophysics::High Energy Astrophysical PhenomenaSUPERNOVA DETECTIONIceCube Neutrino Observatory0103 physical sciencesOSCILLATIONSmass: low [dark matter]unitarityddc:530010306 general physicsNeutrino oscillationneutrino oscillations010308 nuclear & particles physicsAstronomysensitivityKM3NeTPhysics and Astronomymass [neutrino]beam [neutrino]High Energy Physics::ExperimentgalaxyATMOSPHERIC NEUTRINOSMATTERSYSTEMLeptonmixing angle [neutrino]experimental results
researchProduct

Geodetic data analysis of VGOS experiments

2021

Very Long Baseline Interferometry (VLBI) serves as one of the common geodetic methods to define the global reference frames and monitor Earth's orientation variations. The technical upgrade of the VLBI method known as the VLBI Global Observing System (VGOS) includes a critical re-design of the observed frequencies from the dual band mode (S and X band, i.e. 2 GHz and 8 GHz) to observations in a broadband (2 – 14 GHz). Since 2019 the first VGOS experiments are available for the geodetic analysis in free access at the International VLBI service for Geodesy and Astrometry (IVS). Also regional-only subnetworks such as European VLBI stations have succeeded already in VGOS mode. Based on these br…

UpgradeVery-long-baseline interferometryBroadbandMode (statistics)X bandGeodetic datumAstrometryGeodesyGeologyReference frame2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS)
researchProduct

LeptonInjector and LeptonWeighter: A neutrino event generator and weighter for neutrino observatories

2021

We present a high-energy neutrino event generator, called LeptonInjector, alongside an event weighter, called LeptonWeighter. Both are designed for large-volume Cherenkov neutrino telescopes such as IceCube. The neutrino event generator allows for quick and flexible simulation of neutrino events within and around the detector volume, and implements the leading Standard Model neutrino interaction processes relevant for neutrino observatories: neutrino-nucleon deep-inelastic scattering and neutrino-electron annihilation. In this paper, we discuss the event generation algorithm, the weighting algorithm, and the main functions of the publicly available code, with examples.

Particle physicsPhysics::Instrumentation and DetectorsComputer scienceAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Physics and AstronomyCHERENKOV LIGHT YIELDWeighting01 natural sciencesHigh Energy Physics - Experiment010305 fluids & plasmasStandard ModelHigh Energy Physics - Experiment (hep-ex)Neutrino interactionHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsCherenkov radiationEvent generatorEvent generator; Neutrino generator; Neutrino interaction; Neutrino simulation; WeightingGenerator (computer programming)hep-exEvent (computing)ICEHigh Energy Physics::PhenomenologyDetectorhep-phComputational Physics (physics.comp-ph)Quantitative Biology::GenomicsHigh Energy Physics - Phenomenologyphysics.comp-phHardware and ArchitectureHigh Energy Physics::ExperimentNeutrino simulationNeutrino generatorEvent generatorNeutrinoPhysics - Computational PhysicsLeptonComputer Physics Communications
researchProduct

Measurement of Atmospheric Neutrino Oscillations at 6–56 GeV with IceCube DeepCore

2018

We present a measurement of the atmospheric neutrino oscillation parameters using three years of data from the IceCube Neutrino Observatory. The DeepCore infill array in the center of IceCube enables the detection and reconstruction of neutrinos produced by the interaction of cosmic rays in Earth's atmosphere at energies as low as ∼5 GeV. That energy threshold permits measurements of muon neutrino disappearance, over a range of baselines up to the diameter of the Earth, probing the same range of L/Eν as long-baseline experiments but with substantially higher-energy neutrinos. This analysis uses neutrinos from the full sky with reconstructed energies from 5.6 to 56 GeV. We measure Δm322=2.31…

interaction [cosmic radiation]Physics::Instrumentation and DetectorsSolar neutrinoGeneral Physics and Astronomy01 natural sciences7. Clean energyHigh Energy Physics - ExperimentIceCubeSubatomär fysikHigh Energy Physics - Experiment (hep-ex)ObservatorySubatomic PhysicsTOOLPhysicsoscillation [neutrino]Astrophysics::Instrumentation and Methods for Astrophysicsatmosphere [neutrino]threshold [energy]mass difference [neutrino]ddc:observatoryNeutrino detectorPhysique des particules élémentairesAstrophysics::Earth and Planetary AstrophysicsNeutrinoParticle physicscosmic radiation [neutrino]acceleratorAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesddc:500.2Physics and Astronomy(all)IceCube Neutrino ObservatoryPhysics and Astronomy (all)0103 physical sciencesneutrino/muddc:530energy: high [neutrino]010306 general physicsNeutrino oscillationAstroparticle physics010308 nuclear & particles physicsICEHigh Energy Physics::PhenomenologyAstronomySolar neutrino problemPhysics and Astronomy13. Climate actionmass [neutrino]High Energy Physics::ExperimentSYSTEMmixing angle [neutrino]experimental resultsPhysical Review Letters
researchProduct

Searches for small-scale anisotropies from neutrino point sources with three years of IceCube data

2015

Recently, IceCube found evidence for a diffuse signal of astrophysical neutrinos in an energy range of $60\,\mathrm{TeV}$ to the $\mathrm{PeV}$-scale. The origin of those events, being a key to understanding the origin of cosmic rays, is still an unsolved question. So far, analyses have not succeeded to resolve the diffuse signal into point-like sources. Searches including a maximum-likelihood-ratio test, based on the reconstructed directions and energies of the detected down- and up-going neutrino candidates, were also performed on IceCube data leading to the exclusion of bright point sources. In this paper, we present two methods to search for faint neutrino point sources in three years o…

J.2Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayScale (descriptive set theory)AstrophysicsIceCubelaw.inventionTelescopelawPoint (geometry)Anisotropyastro-ph.HE2pt-correlationHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsHigh Energy Physics::Phenomenology2pt-correlation; Astrophysical neutrinos; Extraterrestrial neutrinos; IceCube; Multipole analysis; Point sourcesAstrophysics::Instrumentation and Methods for AstrophysicsPoint sourcesAstronomyAstronomy and AstrophysicsMultipole analysis3. Good health85-05Astrophysical neutrinosddc:540Extraterrestrial neutrinosHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaMultipole expansionGamma-ray burstAstroparticle Physics
researchProduct

The IceProd framework: distributed data processing for the IceCube neutrino observatory

2015

IceCube is a one-gigaton instrument located at the geographic South Pole, designed to detect cosmic neutrinos, identify the particle nature of dark matter, and study high-energy neutrinos themselves. Simulation of the IceCube detector and processing of data require a significant amount of computational resources. This paper presents the first detailed description of IceProd, a lightweight distributed management system designed to meet these requirements. It is driven by a central database in order to manage mass production of simulations and analysis of data produced by the IceCube detector. IceProd runs as a separate layer on top of other middleware and can take advantage of a variety of c…

FOS: Computer and information sciencesMonitoringComputer scienceComputer Networks and CommunicationsDistributed computingData managementReal-time computingDistributed managementcomputer.software_genre01 natural sciencesData managementIceCube Neutrino ObservatoryTheoretical Computer ScienceIceCubeArtificial Intelligence0103 physical sciences010306 general physicsData processingData management; Distributed computing; Grid computing; Monitoring010308 nuclear & particles physicsbusiness.industryDistributed computingGrid computingComputer Science - Distributed Parallel and Cluster ComputingHardware and ArchitectureMiddleware (distributed applications)MiddlewareGrid computingParticleDistributed Parallel and Cluster Computing (cs.DC)Neutrinoddc:004businesscomputerSoftware
researchProduct

Gold-Catalyzed Tandem Hydroamination/Formal Aza-Diels-Alder Reaction of Homopropargyl Amino Esters: A Combined Computational and Experimental Mechani…

2015

A tandem gold-catalyzed hydroamination/formal aza-Diels-Alder reaction is described. This process, which employs quaternary homopropargyl amino ester substrates, leads to the formation of an intrincate tetracyclic framework and involves the generation of four bonds and five stereocenters in a highly diastereoselective manner. Theoretical calculations have allowed us to propose a suitable mechanistic rationalization for the tandem protocol. Additionally, by studying the influence of the ligands on the rate of the gold-catalyzed reactions, it was possible to establish optimum conditions in which to perform the process with a variety of substituents on the amino ester substrates. Notably, the …

Cascade reactionAmino estersTandemChemistryOrganic ChemistryOrganic chemistryAza-Diels–Alder reactionGeneral ChemistryHydroaminationCombinatorial chemistryCatalysisCatalysisStereocenterChemistry - A European Journal
researchProduct

Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube

2015

The IceCube Neutrino Observatory was designed primarily to search for high-energy (TeV--PeV) neutrinos produced in distant astrophysical objects. A search for $\gtrsim 100$~TeV neutrinos interacting inside the instrumented volume has recently provided evidence for an isotropic flux of such neutrinos. At lower energies, IceCube collects large numbers of neutrinos from the weak decays of mesons in cosmic-ray air showers. Here we present the results of a search for neutrino interactions inside IceCube's instrumented volume between 1~TeV and 1~PeV in 641 days of data taken from 2010--2012, lowering the energy threshold for neutrinos from the southern sky below 10 TeV for the first time, far bel…

HIGH-ENERGY NEUTRINOSNuclear and High Energy PhysicsParticle physicsAMANDAMesonSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaINDUCED CASCADESFOS: Physical sciencesCosmic rayAstrophysicsFLUX PREDICTIONS01 natural sciencesIceCube Neutrino ObservatoryIceCubeObservatorySEARCH0103 physical sciencesddc:530Blazar010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsASTRONOMYPERFORMANCEBLAZARSPROMPT LEPTONSGAMMA-RAYPhysics and AstronomyHigh Energy Physics::ExperimentNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical PhenomenaphysicsPhysical Review D
researchProduct

Characterization of the atmospheric muon flux in IceCube

2015

Muons produced in atmospheric cosmic ray showers account for the by far dominant part of the event yield in large-volume underground particle detectors. The IceCube detector, with an instrumented volume of about a cubic kilometer, has the potential to conduct unique investigations on atmospheric muons by exploiting the large collection area and the possibility to track particles over a long distance. Through detailed reconstruction of energy deposition along the tracks, the characteristics of muon bundles can be quantified, and individual particles of exceptionally high energy identified. The data can then be used to constrain the cosmic ray primary flux and the contribution to atmospheric …

Prompt leptonsleptonAtmospheric muons; Cosmic rays; Prompt leptons; Astronomy and AstrophysicsPhysics::Instrumentation and DetectorsHadronAtmospheric muonsprimary [cosmic radiation]PROTON01 natural sciencesIceCubesurface [detector]atmosphere [muon]NEUTRINO TELESCOPEproduction [muon]PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)ELEMENTAL GROUPSDetectormodel [interaction]Astrophysics::Instrumentation and Methods for AstrophysicsCOSMIC-RAY MUONSENERGY-SPECTRUMvector mesonstatisticsINTRINSIC CHARMddc:540Physique des particules élémentaireshigh [energy]Astrophysics - High Energy Astrophysical Phenomenaatmosphere [showers]Atmosperic muonsexceptionalairflux [muon]Astrophysics::High Energy Astrophysical Phenomenaspectrum [multiplicity]energy spectrumFOS: Physical sciencesCosmic rayatmosphere [cosmic radiation]Nuclear physicscosmic rays0103 physical sciencesARRIVAL DIRECTIONSVector meson010306 general physicsCosmic raysZenithANISOTROPYMuon010308 nuclear & particles physicsAstronomy and AstrophysicsSpectral componenttracksMODELPhysics and Astronomy13. Climate actionTEVspectralHigh Energy Physics::ExperimenthadronLepton
researchProduct

Synthesis of enantiopure pyrrolidine-derived peptidomimetics and oligo-beta-peptides via nucleophilic ring-opening of beta-lactams.

2006

The synthesis of the two enantiomers of pyrrolidine-derived spiro beta-lactams by resolution with D- and L-Boc phenylalanine is described. The potential of these optically active spiro beta-lactams on the synthesis of peptidomimetics as analogues of melanostatin is evaluated. Theoretical studies of several models, at the Becke3LYP/6-31+G* level of theory, together with previous experimental evidences from our group, gathered by NMR, allow us to design structures that can efficiently mimic some biologically active peptide-type molecules. On the other hand, the spiro beta-lactams have shown their utility in the preparation of beta-peptides. As an example, a homo-tetra-beta-peptide was synthes…

Models MolecularMagnetic Resonance SpectroscopyPyrrolidinesPeptidomimeticStereochemistryStereoisomerismRing (chemistry)beta-LactamsChemical synthesisPyrrolidinechemistry.chemical_compoundNucleophileβ lactamschemistry.chemical_classificationOrganic ChemistryMolecular MimicryStereoisomerismNuclear magnetic resonance spectroscopyGeneral MedicineMSH Release-Inhibiting HormoneAmino acidEnantiopure drugchemistryDrug DesignLactamOligopeptidesThe Journal of organic chemistry
researchProduct

Diels-Alder Reactions of 2-Azabutadienes with Aldehydes: Ab Initio and Density Functional Theoretical Study of the Reaction Mechanism, Regioselectivi…

1997

The Diels−Alder reaction of 2-azabutadiene with aldehydes has been studied using high level ab initio molecular orbital and density functional methods. Multiconfigurational calculations were carried out on the concerted and stepwise mechanisms. At the CASPT2F/6-31G*//CASSCF/6-31G* level of theory, the [π4s + π2s]-cycloaddition of 2-azabutadiene with formaldehyde is predicted to be a concerted reaction, in good agreement with the experimental evidence. The regio- and stereoselectivity of the reaction was studied at the HF/6-31G*, MP2/6-31G*, and Becke3LYP/6-31G* levels of theory. The density functional calculations appears to give a good description of the basic features of the reaction. The…

Reaction mechanismAcid catalysisChemistryConcerted reactionComputational chemistryOrganic ChemistryAb initioRegioselectivityStereoselectivityLewis acids and basesLewis acid catalysis
researchProduct

A Convolutional Neural Network based Cascade Reconstruction for the IceCube Neutrino Observatory

2021

Continued improvements on existing reconstruction methods are vital to the success of high-energy physics experiments, such as the IceCube Neutrino Observatory. In IceCube, further challenges arise as the detector is situated at the geographic South Pole where computational resources are limited. However, to perform real-time analyses and to issue alerts to telescopes around the world, powerful and fast reconstruction methods are desired. Deep neural networks can be extremely powerful, and their usage is computationally inexpensive once the networks are trained. These characteristics make a deep learning-based approach an excellent candidate for the application in IceCube. A reconstruction …

FOS: Computer and information sciencesComputer Science - Machine LearningAstrophysics::High Energy Astrophysical Phenomenacs.LGData analysisFOS: Physical sciencesFitting methods01 natural sciencesConvolutional neural networkCalibration; Cluster finding; Data analysis; Fitting methods; Neutrino detectors; Pattern recognitionHigh Energy Physics - ExperimentIceCube Neutrino ObservatoryMachine Learning (cs.LG)High Energy Physics - Experiment (hep-ex)Pattern recognition0103 physical sciencesNeutrino detectors010303 astronomy & astrophysicsInstrumentationMathematical Physics010308 nuclear & particles physicsbusiness.industryhep-exDeep learningCluster findingDetectorNeutrino detectorComputer engineeringOrders of magnitude (time)13. Climate actionCascadeCalibrationPattern recognition (psychology)Artificial intelligencebusiness
researchProduct

Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

2010

Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, 6 x 10(19) eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1 degrees from the position of an active galactic nucleus within 75 Mpc (using the Veron-Cetty and Veron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating…

AstronomyAstrophysicsUltra High Energy Cosmic ray01 natural scienceslaw.inventionObservatorylawAnisotropy010303 astronomy & astrophysicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]UHECRAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryGZKAnisotropíaGALAXIESNEUTRINOSGreisen–Zatsepin–Kuz’minComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaACTIVE GALACTIC NUCLEIHIPASS CATALOG[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Active galactic nucleusRadiación Cósmicamedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsTelescope0103 physical sciencesCosmic raysCiencias ExactasAstrophysics::Galaxy AstrophysicsPierre Auger ObservatorySPECTRUM010308 nuclear & particles physicsAstronomyFísicaAstronomy and AstrophysicsCosmic rayGalaxyCorrelation with astrophysical sourcesCosmic rays; UHECR; Anisotropy; Pierre Auger Observatory; Extra-galactic; GZKSkyExperimental High Energy PhysicsAnisotropyExtra-galactic
researchProduct

Measurement of the AtmosphericνeSpectrum with IceCube

2015

We present a measurement of the atmospheric $\nu_e$ spectrum at energies between 0.1 TeV and 100 TeV using data from the first year of the complete IceCube detector. Atmospheric $\nu_e$ originate mainly from the decays of kaons produced in cosmic-ray air showers. This analysis selects 1078 fully contained events in 332 days of livetime, then identifies those consistent with particle showers. A likelihood analysis with improved event selection extends our previous measurement of the conventional $\nu_e$ fluxes to higher energies. The data constrain the conventional $\nu_e$ flux to be $1.3^{+0.4}_{-0.3}$ times a baseline prediction from a Honda's calculation, including the knee of the cosmic-…

AMANDANuclear and High Energy PhysicsParticle physicsAstrophysics::High Energy Astrophysical PhenomenaHadronCASCADES01 natural sciences7. Clean energyPower lawIceCubeNuclear physicsFlux (metallurgy)DESIGNLikelihood analysisDIGITIZATION0103 physical sciencesNEUTRINO FLUX010306 general physicsDETECTORPhysics010308 nuclear & particles physicsICEHigh Energy Physics::PhenomenologySpectrum (functional analysis)DetectorPERFORMANCEENERGY-SPECTRUMEvent selectionPhysics and AstronomyHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaphysicsSYSTEMPhysical Review D
researchProduct

Constraints on neutrino emission from nearby galaxies using the 2MASS redshift survey and IceCube

2020

The distribution of galaxies within the local universe is characterized by anisotropic features. Observatories searching for the production sites of astrophysical neutrinos can take advantage of these features to establish directional correlations between a neutrino dataset and overdensities in the galaxy distribution in the sky. The results of two correlation searches between a seven-year time-integrated neutrino dataset from the IceCube Neutrino Observatory, and the 2MASS Redshift Survey (2MRS) catalog are presented here. The first analysis searches for neutrinos produced via interactions between diffuse intergalactic Ultra-High Energy Cosmic Rays (UHECRs) and the matter contained within …

Astrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]FOS: Physical sciencesanisotropyAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesIceCubeIceCube Neutrino Observatoryneutrino astronomyneutrino experiments0103 physical sciencessiteAstrophysics::Galaxy Astrophysicsastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)densityneutrino astronomy; neutrino detectors; neutrino experiments010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and Astrophysicsflux [neutrino]redshiftRedshift surveyGalaxyRedshiftobservatoryNeutrino detectorPhysics and Astronomymultiplet13. Climate actioncorrelationPhysique des particules élémentairesIntergalactic travelHigh Energy Physics::ExperimentgalaxyNeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical Phenomenaneutrino detectors
researchProduct

Neutrinos below 100 TeV from the southern sky employing refined veto techniques to IceCube data

2020

Many Galactic sources of gamma rays, such as supernova remnants, are expected to produce neutrinos with a typical energy cutoff well below 100 TeV. For the IceCube Neutrino Observatory located at the South Pole, the southern sky, containing the inner part of the Galactic plane and the Galactic Center, is a particularly challenging region at these energies, because of the large background of atmospheric muons. In this paper, we present recent advancements in data selection strategies for track-like muon neutrino events with energies below 100 TeV from the southern sky. The strategies utilize the outer detector regions as veto and features of the signal pattern to reduce the background of atm…

background [atmosphere]Physics::Instrumentation and Detectorsmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenapoleFOS: Physical sciences01 natural sciencesHigh Energy Physics - ExperimentIceCube Neutrino ObservatoryIceCubecharged currentHigh Energy Physics - Experiment (hep-ex)Neutrinos; Point sources; Veto techniquesSEARCHTRACK RECONSTRUCTION0103 physical sciencessupernovaMuon neutrinoatmosphere [muon]Neutrinos010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsneutrino muonMuon010308 nuclear & particles physicsICEGalactic CenterHigh Energy Physics::PhenomenologyVeto techniquesAstronomyPoint sourcesAstronomy and Astrophysicsflux [neutrino]Galactic planeobservatorySupernovaPhysics and AstronomySkyenergy [neutrino]gamma rayddc:540spectralHigh Energy Physics::ExperimentgalaxyNeutrinoAstrophysics - High Energy Astrophysical Phenomena
researchProduct

IceCube Search for High-Energy Neutrino Emission from TeV Pulsar Wind Nebulae

2020

Pulsar wind nebulae (PWNe) are the main gamma-ray emitters in the Galactic plane. They are diffuse nebulae that emit nonthermal radiation. Pulsar winds, relativistic magnetized outflows from the central star, shocked in the ambient medium produce a multiwavelength emission from the radio through gamma-rays. Although the leptonic scenario is able to explain most PWNe emission, a hadronic contribution cannot be excluded. A possible hadronic contribution to the high-energy gamma-ray emission inevitably leads to the production of neutrinos. Using 9.5 yr of all-sky IceCube data, we report results from a stacking analysis to search for neutrino emission from 35 PWNe that are high-energy gamma-ray…

010504 meteorology & atmospheric sciencesHigh-energy astronomyAstrophysics::High Energy Astrophysical PhenomenaNeutrino astronomy; High energy astrophysicsFOS: Physical sciencesCosmic rayAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences7. Clean energyPulsar0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEAstronomy and AstrophysicsGalactic planeCOSMIC-RAYSCRAB-NEBULACrab NebulaPhysics and AstronomyNeutrino astronomy13. Climate actionSpace and Planetary ScienceGALACTIC SOURCESDISCOVERYPhysique des particules élémentairesHigh Energy Physics::ExperimentNeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical PhenomenaHigh energy astrophysicsGAMMA-RAY EMISSIONLepton
researchProduct

Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data

2014

We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 GeV and 100 GeV, where a strong disappearance signal is expected. The detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscilla…

Nuclear and High Energy PhysicsParticle physicsPhysics - Instrumentation and DetectorsTELESCOPEPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)TRACK RECONSTRUCTIONMuon neutrinoddc:530Neutrino oscillationPhysicsHigh Energy Physics::PhenomenologyInstrumentation and Detectors (physics.ins-det)Solar neutrino problemPERFORMANCENeutrino detectorPhysics and AstronomyMeasurements of neutrino speedHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsNeutrinoNeutrino astronomySYSTEM
researchProduct

SARS-CoV-2 infection and venous thromboembolism after surgery: an international prospective cohort study

2021

SARS-CoV-2 has been associated with an increased rate of venous thromboembolism in critically ill patients. Since surgical patients are already at higher risk of venous thromboembolism than general populations, this study aimed to determine if patients with peri-operative or prior SARS-CoV-2 were at further increased risk of venous thromboembolism. We conducted a planned sub-study and analysis from an international, multicentre, prospective cohort study of elective and emergency patients undergoing surgery during October 2020. Patients from all surgical specialties were included. The primary outcome measure was venous thromboembolism (pulmonary embolism or deep vein thrombosis) within 30 da…

Malepulmonary embolismInternationalitySettore MED/18 - CHIRURGIA GENERALEDeep veinVascular damage Radboud Institute for Health Sciences [Radboudumc 16]infectious diseasesCardiovascularSARS‐CoV‐2surgeryCOVID-19 ; SARS-CoV-2 ; deep vein thrombosis ; pulmonary embolism ; venous thromboembolismCohort StudiesPostoperative ComplicationsAnesthesiologyMedicine and Health SciencesProspective Studies610 Medicine & healthProspective cohort studyLung11 Medical and Health SciencesConfoundingHematologyMiddle AgedThrombosis17 Psychology and Cognitive SciencesCOVID-19; deep vein thrombosis; pulmonary embolism; SARS-CoV-2; venous thromboembolismPulmonary embolismCOVID-19; SARS-CoV-2; deep vein thrombosis; pulmonary embolism; venous thromboembolism.medicine.anatomical_structureCohortCOVID-19/complicationsPostoperative Complications/etiologyOriginal ArticleFemalePatient SafetyLife Sciences & BiomedicineCOVID-19; SARS-CoV-2; deep vein thrombosis; pulmonary embolism; venous thromboembolismHumanAdultmedicine.medical_specialtyAdolescentClinical Sciencesvenous thromboembolism610 Medicine & healthGlobalSurg CollaborativeVenous Thromboembolism/etiologydeep vein thrombosisNOCOVIDSurg CollaborativeYoung AdultMedicine General & InternalAge DistributionClinical ResearchCOVID‐19General & Internal MedicinemedicineHumansSex DistributionAgedScience & Technologybusiness.industrySARS-CoV-2PreventionNeurosciencesdeep vein thrombosiCOVID-19PneumoniaOdds ratioOriginal Articlesmedicine.diseaseSurgeryReconstructive and regenerative medicine Radboud Institute for Health Sciences [Radboudumc 10]Prospective StudieGood Health and Well BeingAnesthesiology and Pain MedicineHuman medicinePostoperative ComplicationCohort StudiebusinessVenous thromboembolism[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct