0000000000716686

AUTHOR

Karin Everschor-sitte

showing 33 related works from this author

The promise of spintronics for unconventional computing

2021

Novel computational paradigms may provide the blueprint to help solving the time and energy limitations that we face with our modern computers, and provide solutions to complex problems more efficiently (with reduced time, power consumption and/or less device footprint) than is currently possible with standard approaches. Spintronics offers a promising basis for the development of efficient devices and unconventional operations for at least three main reasons: (i) the low-power requirements of spin-based devices, i.e., requiring no standby power for operation and the possibility to write information with small dynamic energy dissipation, (ii) the strong nonlinearity, time nonlocality, and/o…

Computer scienceFOS: Physical sciencesApplied Physics (physics.app-ph)02 engineering and technology01 natural sciencesQuantum nonlocalityAffordable and Clean EnergyBlueprintMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencescond-mat.mes-hallElectronic engineeringHardware_ARITHMETICANDLOGICSTRUCTURESStandby powerApplied Physics010302 applied physicsSpintronicsCondensed Matter - Mesoscale and Nanoscale PhysicsMechanical EngineeringReservoir computingPhysics - Applied PhysicsMaterials EngineeringPhysik (inkl. Astronomie)Dissipation021001 nanoscience & nanotechnologyCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCMOS integrated circuits; Computation theory; Energy dissipation; Green computing; Spin fluctuations; Spintronics; Tunnel junctionsCMOS0210 nano-technologyUnconventional computingphysics.app-ph
researchProduct

Reliability of genomic variants across different next-generation sequencing platforms and bioinformatic processing pipelines

2021

Abstract Background Next Generation Sequencing (NGS) is the fundament of various studies, providing insights into questions from biology and medicine. Nevertheless, integrating data from different experimental backgrounds can introduce strong biases. In order to methodically investigate the magnitude of systematic errors in single nucleotide variant calls, we performed a cross-sectional observational study on a genomic cohort of 99 subjects each sequenced via (i) Illumina HiSeq X, (ii) Illumina HiSeq, and (iii) Complete Genomics and processed with the respective bioinformatic pipeline. We also repeated variant calling for the Illumina cohorts with GATK, which allowed us to investigate the e…

Aginglcsh:QH426-470lcsh:BiotechnologyLongevity610 MedizinGATK ; Next-generation sequencing (NGS) technologies ; Illumina ; Longevity ; Complete genomics ; Healthy aging ; Wellderly ; Aging ; Platform-biasesPlatform-biasesPolymorphism Single Nucleotide570 Life sciencesIlluminaNext-generation sequencing (NGS) technologieslcsh:TP248.13-248.65610 Medical sciences620 Engineering and allied operationsHumansComputational BiologyHigh-Throughput Nucleotide SequencingReproducibility of ResultsGATKGenomicsPhysik (inkl. Astronomie)620 Ingenieurwissenschaften und MaschinenbauWellderlylcsh:GeneticsCross-Sectional StudiesHealthy agingComplete genomics570 BiowissenschaftenResearch Article
researchProduct

Large surface magnetization in noncentrosymmetric antiferromagnets

2020

Thin-film antiferromagnets (AFs) with Rashba spin-orbit coupling are theoretically investigated. We demonstrate that the relativistic Dzyaloshinskii-Moriya interaction (DMI) produces a large surface magnetization and a boundary-driven twist state in the antiferromagnetic N\' eel vector. We predict a magnetization on the order of $2.3\cdot 10^4$~A/m, which is comparable to the magnetization of ferromagnetic semiconductors. Importantly, the magnetization is characterized by ultra-fast terahertz dynamics and provides new approaches for efficiently probing and controlling the spin dynamics of AFs as well as detecting the antiferromagnetic DMI. Notably, the magnetization does not lead to any str…

PhysicsCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsTerahertz radiationMagnetic monopoleMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesOrder (ring theory)02 engineering and technologyPhysik (inkl. Astronomie)021001 nanoscience & nanotechnologyCoupling (probability)01 natural sciencesMagnetic fieldMagnetizationMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsTwist010306 general physics0210 nano-technologyPhysical Review B
researchProduct

Physically-inspired computational tools for sharp detection of material inhomogeneities in magnetic imaging

2019

Detection of material inhomogeneities is an important task in magnetic imaging and plays a significant role in understanding physical processes. For example, in spintronics, the sample heterogeneity determines the onset of current-driven magnetization motion. While often a significant effort is made in enhancing the resolution of an experimental technique to obtain a deeper insight into the physical properties, here we want to emphasize that an advantageous data analysis has the potential to provide a lot more insight into given data set, in particular when being close to the resolution limit where the noise becomes at least of the same order as the signal. In this work, we introduce two to…

Statistical Mechanics (cond-mat.stat-mech)FOS: Physical sciencesComputational Physics (physics.comp-ph)Physics - Computational PhysicsCondensed Matter - Statistical Mechanics
researchProduct

Current-Induced Dynamics of Chiral Magnetic Structures: Creation, Motion, and Applications

2021

Magnetic textures can be manipulated by electric currents via the mechanisms of spin-transfer and spin-orbit-torques. We review how these torques can be exploited to create chiral magnetic textures in magnets with broken inversion symmetries, including domain walls and skyrmions. These chiral textures can also be moved by (electric) currents and obey very rich dynamics. For example, magnetic domain walls feature the famous Walker breakdown, and magnetic whirls are subject to the skyrmion Hall effect, which is rooted in their real-space topology. These properties led to a variety of potential novel applications which we briefly overview.

PhysicsClassical mechanicsMagnetic domainHall effectMagnetSkyrmionHomogeneous spacePhysik (inkl. Astronomie)Electric current
researchProduct

Potential implementation of reservoir computing models based on magnetic skyrmions

2018

Reservoir Computing is a type of recursive neural network commonly used for recognizing and predicting spatio-temporal events relying on a complex hierarchy of nested feedback loops to generate a memory functionality. The Reservoir Computing paradigm does not require any knowledge of the reservoir topology or node weights for training purposes and can therefore utilize naturally existing networks formed by a wide variety of physical processes. Most efforts prior to this have focused on utilizing memristor techniques to implement recursive neural networks. This paper examines the potential of skyrmion fabrics formed in magnets with broken inversion symmetry that may provide an attractive phy…

Distributed computingMathematicsofComputing_NUMERICALANALYSISFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technologyMemristor01 natural scienceslaw.inventionlawMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences010306 general physicsTopology (chemistry)PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsArtificial neural networkHierarchy (mathematics)SkyrmionReservoir computingPhysik (inkl. Astronomie)021001 nanoscience & nanotechnologylcsh:QC1-999Recurrent neural networkNode (circuits)0210 nano-technologylcsh:PhysicsAIP Advances
researchProduct

Spin eigenexcitations of an antiferromagnetic skyrmion

2019

We theoretically predict and classify the localized modes of a skyrmion in a collinear uniaxial antiferromagnet and discuss how they can be excited. As a central result, we find two branches of skyrmion eigenmodes with distinct physical properties characterized by being low or high energy excitations. The frequency dependence of the low-energy modes scales as $R_0^{-2}$ for skyrmions with large radius $R_0$. Furthermore, we predict localized high-energy eigenmodes, which have no direct ferromagnetic counterpart. Except for the breathing mode, we find that all localized antiferromagnet skyrmion modes, both in the low and high-energy branch, are doubly degenerated in the absence of a magnetic…

PhysicsField (physics)Condensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)SkyrmionMagnonCenter (category theory)FOS: Physical sciences02 engineering and technologyRadiusPhysik (inkl. Astronomie)021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesCondensed Matter - Strongly Correlated ElectronsDomain wall (magnetism)0103 physical sciencesContinuum (set theory)010306 general physics0210 nano-technologySpin-½
researchProduct

Effective description of domain wall strings

2017

The analysis of domain wall dynamics is often simplified to one-dimensional physics. For domain walls in thin films, more realistic approaches require the description as two-dimensional objects. This includes the study of vortices and curvatures along the domain walls as well as the influence of boundary effects. Here we provide a theory in terms of soft modes that allows us to analytically study the physics of extended domain walls and their stability. By considering irregularly shaped skyrmions as closed domain walls, we analyze their plasticity and compare their dynamics with those of circular skyrmions. Our theory directly provides an analytical description of the excitation modes of ma…

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsSkyrmionFOS: Physical sciences02 engineering and technologySoft modesPhysik (inkl. Astronomie)021001 nanoscience & nanotechnology01 natural sciencesStability (probability)Domain (software engineering)VortexDomain wall (string theory)Classical mechanics0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physics0210 nano-technologyScalingExcitation
researchProduct

A magnetic skyrmion as a non-linear resistive element - a potential building block for reservoir computing

2017

Inspired by the human brain, there is a strong effort to find alternative models of information processing capable of imitating the high energy efficiency of neuromorphic information processing. One possible realization of cognitive computing are reservoir computing networks. These networks are built out of non-linear resistive elements which are recursively connected. We propose that a skyrmion network embedded in frustrated magnetic films may provide a suitable physical implementation for reservoir computing applications. The significant key ingredient of such a network is a two-terminal device with non-linear voltage characteristics originating from single-layer magnetoresistive effects,…

MagnetoresistanceGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyMagnetic skyrmionTopology01 natural sciencesCondensed Matter - Strongly Correlated Electrons0103 physical sciences010306 general physicsBlock (data storage)PhysicsResistive touchscreenStrongly Correlated Electrons (cond-mat.str-el)SkyrmionReservoir computingDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksPhysik (inkl. Astronomie)021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter - Other Condensed MatterNeuromorphic engineering0210 nano-technologyRealization (systems)Other Condensed Matter (cond-mat.other)
researchProduct

The 2020 skyrmionics roadmap

2020

The notion of non-trivial topological winding in condensed matter systems represents a major area of present-day theoretical and experimental research. Magnetic materials offer a versatile platform that is particularly amenable for the exploration of topological spin solitons in real space such as skyrmions. First identified in non-centrosymmetric bulk materials, the rapidly growing zoology of materials systems hosting skyrmions and related topological spin solitons includes bulk compounds, surfaces, thin films, heterostructures, nano-wires and nano-dots. This underscores an exceptional potential for major breakthroughs ranging from fundamental questions to applications as driven by an inte…

DYNAMICSELECTRODYNAMICSAcoustics and UltrasonicsMagnetoresistanceNuclear TheoryMOTIONMagnetismFOS: Physical sciences02 engineering and technology01 natural sciencesNuclear Theory (nucl-th)Condensed Matter - Strongly Correlated ElectronsHigh Energy Physics - Phenomenology (hep-ph)Lattice (order)0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Spin transferMAGNETORESISTANCEddc:530010306 general physicsComputingMilieux_MISCELLANEOUSPhysics[PHYS]Physics [physics]spintronicsSpintronics[PHYS.PHYS]Physics [physics]/Physics [physics]Strongly Correlated Electrons (cond-mat.str-el)Condensed Matter - Mesoscale and Nanoscale PhysicsELECTRICAL DETECTIONSkyrmionPhysicsPhysik (inkl. Astronomie)DRIVEN021001 nanoscience & nanotechnologyCondensed Matter PhysicsEngineering physicsExperimental researchSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialsddc:LATTICEHigh Energy Physics - PhenomenologyskyrmionROOM-TEMPERATUREmagnetismTEMPERATURE MAGNETIC SKYRMIONS0210 nano-technologyAND gateGENERATION
researchProduct

Effect of boundary-induced chirality on magnetic textures in thin films

2018

In the quest for miniaturizing magnetic devices, the effects of boundaries and surfaces become increasingly important. Here we show how the recently predicted boundary-induced Dzyaloshinskii-Moriya interaction (DMI) affects the magnetization of ferromagnetic films with a $C_{\infty v}$ symmetry and a perpendicular magnetic anisotropy. For an otherwise uniformly magnetized film, we find a surface twist when the magnetization in the bulk is canted by an in-plane external field. This twist at the surfaces caused by the boundary-induced DMI differs from the common canting caused by internal DMI observed at the edges of a chiral magnet. Further, we find that the surface twist due to the boundary…

Condensed Matter - Materials ScienceMaterials scienceCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsSkyrmionPhysicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologyRadiusPhysik (inkl. Astronomie)021001 nanoscience & nanotechnology01 natural sciencesSymmetry (physics)MagnetizationDomain wall (magnetism)FerromagnetismMagnetMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesTwist010306 general physics0210 nano-technology
researchProduct

Spin-transfer torque driven motion, deformation, and instabilities of magnetic skyrmions at high currents

2020

In chiral magnets, localized topological magnetic whirls, magnetic skyrmions, can be moved by spin polarized electric currents. Upon increasing the current strength, with prospects for high-speed skyrmion motion for spintronics applications in mind, isolated skyrmions deform away from their typical circular shape. We analyze the influence of spin-transfer torques on the shape of a single skyrmion, including its stability upon adiabatically increasing the strength of the applied electric current. For rather compact skyrmions at uniaxial anisotropies well above the critical anisotropy for domain wall formation, we find for high current densities that the skyrmion assumes a non-circular shape …

Condensed Matter::Quantum GasesPhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsSpintronicsSkyrmionHigh Energy Physics::PhenomenologySpin-transfer torqueFOS: Physical sciences02 engineering and technologyPhysik (inkl. Astronomie)Condensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter - Strongly Correlated ElectronsDomain wall (magnetism)MagnetMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesElectric current010306 general physics0210 nano-technologyAnisotropySpin-½Physical Review B
researchProduct

A deeper look into natural sciences with physics-based and data-driven measures

2021

Summary With the development of machine learning in recent years, it is possible to glean much more information from an experimental data set to study matter. In this perspective, we discuss some state-of-the-art data-driven tools to analyze latent effects in data and explain their applicability in natural science, focusing on two recently introduced, physics-motivated computationally cheap tools—latent entropy and latent dimension. We exemplify their capabilities by applying them on several examples in the natural sciences and show that they reveal so far unobserved features such as, for example, a gradient in a magnetic measurement and a latent network of glymphatic channels from the mous…

0301 basic medicineDynamical systems theory02 engineering and technologyMachine learningcomputer.software_genreData-drivenSet (abstract data type)03 medical and health sciencesArtificial IntelligenceEntropy (information theory)Dimension (data warehouse)lcsh:ScienceApplied PhysicsMultidisciplinarybusiness.industryPhysicsPerspective (graphical)MagnetismExperimental dataPhysik (inkl. Astronomie)021001 nanoscience & nanotechnology030104 developmental biologyPerspectiveComputer Sciencelcsh:QRelaxation (approximation)Artificial intelligence0210 nano-technologybusinesscomputeriScience
researchProduct

The 2020 magnetism roadmap

2020

Following the success and relevance of the 2014 and 2017 Magnetism Roadmap articles, this 2020 Magnetism Roadmap edition takes yet another timely look at newly relevant and highly active areas in magnetism research. The overall layout of this article is unchanged, given that it has proved the most appropriate way to convey the most relevant aspects of today's magnetism research in a wide variety of sub-fields to a broad readership. A different group of experts has again been selected for this article, representing both the breadth of new research areas, and the desire to incorporate different voices and viewpoints. The latter is especially relevant for thistype of article, in which one's fi…

Acoustics and UltrasonicsResearch areasComputer science02 engineering and technology01 natural sciences530novel applications of magnetism0103 physical sciencesSelection (linguistics)Relevance (information retrieval)applied magnetism010306 general physicsFELIX Condensed Matter Physics[PHYS]Physics [physics]Field (Bourdieu)500 Naturwissenschaften und Mathematik::530 Physik::530 PhysikNoveltyNovel applications ofmagnetismPhysik (inkl. Astronomie)magnetic phenomena021001 nanoscience & nanotechnologyCondensed Matter PhysicsViewpointsData scienceSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsVariety (cybernetics)Applied magnetism; Magnetic materials; Magnetic phenomena; Novel applications ofmagnetismmagnetic materials0210 nano-technologyYet another
researchProduct

Roles of chiral renormalization on magnetization dynamics in chiral magnets

2018

In metallic ferromagnets, the interaction between local magnetic moments and conduction electrons renormalizes parameters of the Landau-Lifshitz-Gilbert equation such as the gyromagnetic ratio and the Gilbert damping, and makes them dependent on the magnetic configurations. Although the effects of the renormalization for nonchiral ferromagnets are usually minor and hardly detectable, we show that the renormalization does play a crucial role for chiral magnets. Here the renormalization is chiral and as such we predict experimentally identifiable effects on the phenomenology of magnetization dynamics. In particular, our theory for the self-consistent magnetization dynamics of chiral magnets a…

PhysicsMagnetization dynamicsCondensed Matter - Materials ScienceMagnetic momentCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsGyromagnetic ratioHigh Energy Physics::LatticeMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologyElectronPhysik (inkl. Astronomie)021001 nanoscience & nanotechnologyThermal conduction01 natural sciences3. Good healthRenormalizationFerromagnetismMagnet0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Condensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technology
researchProduct

Perspective on unconventional computing using magnetic skyrmions

2023

Learning and pattern recognition inevitably requires memory of previous events, a feature that conventional CMOS hardware needs to artificially simulate. Dynamical systems naturally provide the memory, complexity, and nonlinearity needed for a plethora of different unconventional computing approaches. In this perspective article, we focus on the unconventional computing concept of reservoir computing and provide an overview of key physical reservoir works reported. We focus on the promising platform of magnetic structures and, in particular, skyrmions, which potentially allow for low-power applications. Moreover, we discuss skyrmion-based implementations of Brownian computing, which has rec…

FOS: Computer and information sciencesEmerging Technologies (cs.ET)Condensed Matter - Mesoscale and Nanoscale PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)FOS: Physical sciencesComputer Science - Emerging Technologies
researchProduct

Asymmetric skyrmion Hall effect in systems with a hybrid Dzyaloshinskii-Moriya interaction

2018

We examine the current-induced dynamics of a skyrmion that is subject to both structural and bulk inversion asymmetry. There arises a hybrid type of Dzyaloshinskii-Moriya interaction (DMI) which is in the form of a mixture of interfacial and bulk DMIs. Examples include crystals with symmetry classes C$_n$ as well as magnetic multilayers composed of a ferromagnet with a noncentrosymmetric crystal and a nonmagnet with strong spin-orbit coupling. As a striking result, we find that, in systems with a hybrid DMI, the spin-orbit-torque-induced skyrmion Hall angle is asymmetric for the two different skyrmion polarities ($\pm 1$ given by out-of-plane core magnetization), even allowing one of them t…

PhysicsCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsmedia_common.quotation_subjectSkyrmionMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologyPhysik (inkl. Astronomie)Condensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesAsymmetryMagnetizationFerromagnetismHall effectMagnetMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesAntiferromagnetismSymmetry breaking010306 general physics0210 nano-technologymedia_commonPhysical Review B
researchProduct

Skyrmion pinning energetics in thin film systems

2022

AbstractA key issue for skyrmion dynamics and devices are pinning effects present in real systems. While posing a challenge for the realization of conventional skyrmionics devices, exploiting pinning effects can enable non-conventional computing approaches if the details of the pinning in real samples are quantified and understood. We demonstrate that using thermal skyrmion dynamics, we can characterize the pinning of a sample and we ascertain the spatially resolved energy landscape. To understand the mechanism of the pinning, we probe the strong skyrmion size and shape dependence of the pinning. Magnetic microscopy imaging demonstrates that in contrast to findings in previous investigation…

Condensed Matter - Materials ScienceMultidisciplinaryroom-temperatureCondensed Matter - Mesoscale and Nanoscale Physics530 PhysicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyGeneral ChemistrydynamicsPhysik (inkl. Astronomie)530 PhysikCondensed Matter::Mesoscopic Systems and Quantum Hall EffectGeneral Biochemistry Genetics and Molecular BiologymotionCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)Hardware_INTEGRATEDCIRCUITS
researchProduct

Characterizing breathing dynamics of magnetic skyrmions and antiskyrmions within the Hamiltonian formalism

2019

We derive an effective Hamiltonian system describing the low-energy dynamics of circular magnetic skyrmions and antiskyrmions. Using scaling and symmetry arguments, we model (anti)skyrmion dynamics through a finite set of coupled, canonically conjugated, collective coordinates. The resulting theoretical description is independent of both micromagnetic details as well as any specificity in the ansatz of the skyrmion profile. Based on the Hamiltonian structure, we derive a general description for breathing dynamics of (anti)skyrmions in the limit of radius much larger than the domain wall width. The effective energy landscape reveals two qualitatively different types of breathing behavior. Fo…

PhysicsHamiltonian mechanicsCondensed Matter::Quantum GasesSkyrmionDynamics (mechanics)Motion (geometry)02 engineering and technologySpin structurePhysik (inkl. Astronomie)021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesNonlinear systemsymbols.namesakeClassical mechanics0103 physical sciencessymbolsVariety (universal algebra)010306 general physics0210 nano-technologySignature (topology)
researchProduct

Stability and dynamics of in-plane skyrmions in collinear ferromagnets

2019

We study the emergence and dynamics of in-plane skyrmions in collinear ferromagnetic heterostructures. We present a minimal energy model for this class of magnetic textures, determine the crystal symmetries compatible with it and propose material candidates, based on symmetries only, for the observation of these topological solitons. We calculate exact solutions of the energy model for in-plane skyrmions in the absence of dipolar interactions at critical coupling, the latter defined by the relations $H = K$ and $D = \sqrt{AK}$ for the strength of the external magnetic field and the Dzyaloshinskii coupling constant, respectively, with $K$ and $A$ being the anisotropy constant and the exchang…

PhysicsCoupling constantCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsSkyrmionFOS: Physical sciences02 engineering and technologyPhysik (inkl. Astronomie)021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesMagnetic fieldMagnetizationDipoleMagnetic anisotropyFerromagnetism0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physics0210 nano-technologyMagnetic impurity
researchProduct

Reservoir Computing with Random Skyrmion Textures

2020

The Reservoir Computing (RC) paradigm posits that sufficiently complex physical systems can be used to massively simplify pattern recognition tasks and nonlinear signal prediction. This work demonstrates how random topological magnetic textures present sufficiently complex resistance responses for the implementation of RC as applied to A/C current pulses. In doing so, we stress how the applicability of this paradigm hinges on very general dynamical properties which are satisfied by a large class of physical systems where complexity can be put to computational use. By harnessing the complex resistance response exhibited by random magnetic skyrmion textures and using it to demonstrate pattern…

PhysicsSpintronicsCondensed Matter - Mesoscale and Nanoscale PhysicsSkyrmionMathematicsofComputing_NUMERICALANALYSISReservoir computingPhysical systemFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technologyMagnetic skyrmionPhysik (inkl. Astronomie)021001 nanoscience & nanotechnologyTopology01 natural sciencesMagnetizationNonlinear systemMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesPattern recognition (psychology)010306 general physics0210 nano-technology
researchProduct

Unidirectional Magnon-Driven Domain Wall Motion Due to the Interfacial Dzyaloshinskii-Moriya Interaction

2018

We demonstrate a unidirectional motion of a quasiparticle without an explicit symmetry breaking along the space-time coordinate of the particle motion. This counterintuitive behavior originates from a combined action of two intrinsic asymmetries in the other two directions. We realize this idea with the magnon-driven motion of a magnetic domain wall in thin films with interfacial asymmetry. Contrary to previous studies, the domain wall moves along the same direction regardless of the magnon-flow direction. Our general symmetry analysis and numerical simulation reveal that the odd order contributions from the interfacial asymmetry is unidirectional, which is dominant over bidirectional contr…

PhysicsCondensed Matter - Materials ScienceMagnetic domainCondensed Matter - Mesoscale and Nanoscale Physicsmedia_common.quotation_subjectMagnonGeneral Physics and AstronomyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesPhysik (inkl. Astronomie)01 natural sciencesAsymmetrySymmetry (physics)Explicit symmetry breakingDomain wall (string theory)Classical mechanics0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Quasiparticle010306 general physicsMagnetosphere particle motionmedia_common
researchProduct

Facilitating domain wall injection in magnetic nanowires by electrical means

2020

We investigate how to facilitate the injection of domain walls in chiral ferromagnetic nanowires by electrical means. We calculate the critical current density above which domain walls are injected into the nanowire depending on the material parameters and the source of interaction including spin-transfer torques as well as spin-orbit torques. We demonstrate that the Dzyaloshinskii-Moriya interaction can significantly reduce the required critical current to inject the types of domain walls favored by the Dzyaloshinskii-Moriya interaction. We find that in chiral magnets it is only possible to shed a single domain wall by means of spin-orbit torques, as they modify the ground state orientatio…

Materials scienceCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsNanowireFOS: Physical sciences02 engineering and technologyPhysik (inkl. Astronomie)021001 nanoscience & nanotechnology01 natural sciencesDomain (software engineering)Domain wall (string theory)Orientation (geometry)MagnetMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesTorqueCondensed Matter::Strongly Correlated ElectronsSingle domain010306 general physics0210 nano-technologyGround state
researchProduct

Perspective: Magnetic skyrmions—Overview of recent progress in an active research field

2018

Within a decade, the field of magnetic skyrmionics has developed from a niche prediction to a huge and active research field. Not only do magnetic skyrmions—magnetic whirls with a unique topology—reveal fundamentally new physics, but they have also risen to prominence as up-and-coming candidates for next-generation high-density efficient information encoding. Within a few years, it has been possible to efficiently create, manipulate, and destroy nanometer-size skyrmions in device-compatible materials at room-temperature by all electrical means. Despite the incredibly rapid progress, several challenges still remain to obtain fully functional and competitive skyrmion devices, as discussed in …

Computer scienceSkyrmion0103 physical sciencesPerspective (graphical)General Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology010306 general physics0210 nano-technology01 natural sciencesData scienceField (computer science)Journal of Applied Physics
researchProduct

古典波動現象のトポロジーによる特徴付け; 静磁スピン波表面モードのトポロジカルな起源

2019

We propose a topological characterization of Hamiltonians describing classical waves. Applying it to the magnetostatic surface spin waves that are important in spintronics applications, we settle the speculation over their topological origin. For a class of classical systems that includes spin waves driven by dipole-dipole interactions, we show that the topology is characterized by vortex lines in the Brillouin zone in such a way that the symplectic structure of Hamiltonian mechanics plays an essential role. We define winding numbers around these vortex lines and identify them to be the bulk topological invariants for a class of semimetals. Exploiting the bulk-edge correspondence appropriat…

Hamiltonian mechanicsSurface (mathematics)PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsSpintronicsFOS: Physical sciencesGeneral Physics and AstronomyPhysik (inkl. Astronomie)Topology01 natural sciencesVortexBrillouin zonesymbols.namesakeSpin waveMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencessymbols010306 general physicsTopology (chemistry)Symplectic geometryPhysical review letters
researchProduct

Twists in Ferromagnetic Monolayers With Trigonal Prismatic Symmetry

2018

Two-dimensional materials such as graphene or hexagonal boron nitride are indispensable in industry. The recently discovered 2D ferromagnetic materials also promise to be vital for applications. In this work, we develop a phenomenological description of non-centrosymmetric 2D ferromagnets with trigonal prismatic crystal structure. We chose to study this special symmetry group since these materials do break inversion symmetry and therefore, in principle, allow for chiral spin structures such as magnetic helices and skyrmions. However, unlike all non-centrosymmetric magnets known so far, we show that the symmetry of magnetic trigonal prismatic monolayers neither allow for an internal relativi…

PhysicsCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsFOS: Physical sciences02 engineering and technologySymmetry groupPhysik (inkl. Astronomie)021001 nanoscience & nanotechnologyTrigonal prismatic molecular geometry01 natural sciencesSymmetry (physics)VDP::Teknologi: 500MagnetizationCondensed Matter::Materials ScienceFerromagnetismMagnetMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesWave vectorCondensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologySpin-½
researchProduct

Spin texture motion in antiferromagnetic and ferromagnetic nanowires

2017

We propose a Hamiltonian dynamics formalism for the current and magnetic field driven dynamics of ferromagnetic and antiferromagnetic domain walls in one dimensional systems. To demonstrate the power of this formalism, we derive Hamilton equations of motion via Poisson brackets based on the Landau-Lifshitz-Gilbert phenomenology, and add dissipative dynamics via the evolution of the energy. We use this approach to study current induced domain wall motion and compute the drift velocity. For the antiferromagnetic case, we show that a nonzero magnetic moment is induced in the domain wall, which indicates that an additional application of a magnetic field would influence the antiferromagnetic do…

Hamiltonian mechanicsPhysicsDrift velocityCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsMagnetic momentFOS: Physical sciences02 engineering and technologyPhysik (inkl. Astronomie)021001 nanoscience & nanotechnology01 natural sciencesMagnetic fieldTransverse planePoisson bracketsymbols.namesakeFerromagnetism0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)symbolsAntiferromagnetismCondensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technology
researchProduct

Berry curvature for magnetoelastic waves

2020

The Berry curvature for magnons in ferromagnetic films gives rise to new phenomena such as thermal Hall effect and a shift of a magnon wave packet at the reflection at the edge of the magnetic film. In this paper, we calculate the Berry curvature of magnetoelastic waves in ferromagnets. In order to calculate the Berry curvature, we first formulate the eigenvalue equation into a Hermitian form from the dynamical equation of motion. We find that the Berry curvature of the magnetoelastic waves shows a peak at the crossing point of the dispersions of magnons and elastic waves, and its peak value is dependent on the hybridization gap at the crossing point. In addition, the behavior of the Berry …

PhysicsCondensed matter physicsWave packetMagnonThermal Hall effectEquations of motion02 engineering and technologyPhysik (inkl. Astronomie)Condensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter::Materials ScienceDipoleFerromagnetism0103 physical sciencesReflection (physics)Condensed Matter::Strongly Correlated ElectronsBerry connection and curvature010306 general physics0210 nano-technologyPhysical Review B
researchProduct

Nonlinear Dynamics of Topological Ferromagnetic Textures for Frequency Multiplication

2020

We propose that the non-linear radio-frequency dynamics and nanoscale size of topological magnetic structures associated to their well-defined internal modes advocate for their use as in-materio scalable frequency multipliers for spintronic systems. Frequency multipliers allow for frequency conversion between input and output frequencies, and thereby significantly increase the range of controllably accessible frequencies. In particular, we explore the excitation of eigenmodes of topological magnetic textures by fractions of the corresponding eigenfrequencies. We show via micromagnetic simulations that low-frequency perturbations to the system can efficiently excite bounded modes with a high…

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsSpintronicsTexture (cosmology)SkyrmionFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technologyPhysik (inkl. Astronomie)021001 nanoscience & nanotechnologyTopology01 natural sciencesVortexNonlinear systemAmplitudeFerromagnetismMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences010306 general physics0210 nano-technologyExcitationPhysical Review Applied
researchProduct

Current-driven periodic domain wall creation in ferromagnetic nanowires

2016

We predict the electrical generation and injection of domain walls into a ferromagnetic nano-wire without the need of an assisting magnetic field. Our analytical and numerical results show that above a critical current $j_{c}$ domain walls are injected into the nano-wire with a period $T \sim (j-j_{c})^{-1/2}$. Importantly, domain walls can be produced periodically even in a simple exchange ferromagnet with uniaxial anisotropy, without requiring any standard "twisting" interaction like Dzyaloshinskii-Moriya or dipole-dipole interactions. We show analytically that this process and the period exponents are universal and do not depend on the peculiarities of the microscopic Hamiltonian. Finall…

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsNanowireFOS: Physical sciences02 engineering and technologyPhysik (inkl. Astronomie)021001 nanoscience & nanotechnology01 natural sciencesMagnetic fieldCondensed Matter::Materials Sciencesymbols.namesakeFerromagnetismFerromagnetic nanowiresMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencessymbolsCritical current010306 general physics0210 nano-technologyAnisotropyHamiltonian (quantum mechanics)Physical Review B
researchProduct

New Boundary-Driven Twist States in Systems with Broken Spatial Inversion Symmetry

2017

A full description of a magnetic sample includes a correct treatment of the boundary conditions (BCs). This is in particular important in thin film systems, where even bulk properties might be modified by the properties of the boundary of the sample. We study generic ferromagnets with broken spatial inversion symmetry and derive the general micromagnetic BCs of a system with Dzyaloshinskii-Moriya interaction (DMI). We demonstrate that the BCs require the full tensorial structure of the third-rank DMI tensor and not just the antisymmetric part, which is usually taken into account. Specifically, we study systems with $C_{\infty v}$ symmetry and explore the consequences of the DMI. Interesting…

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsMagnetoresistanceField (physics)Condensed matter physicsAntisymmetric relationFOS: Physical sciencesGeneral Physics and AstronomyBoundary (topology)02 engineering and technologyPhysik (inkl. Astronomie)021001 nanoscience & nanotechnology01 natural sciencesSymmetry (physics)Mesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesTensorBoundary value problemTwist010306 general physics0210 nano-technologyPhysical Review Letters
researchProduct

Spin-Wave Driven Bidirectional Domain Wall Motion in Kagome Antiferromagnets

2021

We predict a mechanism to controllably manipulate domain walls in kagome antiferromagnets via a single linearly polarized spin-wave source. We show by means of atomistic spin dynamics simulations of antiferromagnets with kagome structure that the speed and direction of the domain wall motion can be regulated by only tuning the frequency of the applied spin-wave. Starting from microscopics, we establish an effective action and derive the corresponding equations of motion for the spin-wave-driven domain wall. Our analytical calculations reveal that the coupling of two spin-wave modes inside the domain wall explains the frequency-dependent velocity of the spin texture. Such a highly tunable sp…

CouplingPhysicsCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsLinear polarizationMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyEquations of motionPhysik (inkl. Astronomie)Domain wall (string theory)Spin waveMesoscale and Nanoscale Physics (cond-mat.mes-hall)Domain (ring theory)AntiferromagnetismCondensed Matter::Strongly Correlated ElectronsSpin-½
researchProduct

Current-induced H-shaped-skyrmion creation and their dynamics in the helical phase

2021

Abstract Inevitable for the basic principles of skyrmion racetrack-like applications is not only their confined motion along one-dimensional channels but also their controlled creation and annihilation. Helical magnets have been suggested to naturally confine the motion of skyrmions along the tracks formed by the helices, which also allow for high-speed skyrmion motion. We propose a protocol to create topological magnetic structures in a helical background. We furthermore analyse the stability and current-driven motion of the skyrmions in a helical background with in-plane uniaxial anisotropy fixing the orientation of the helices.

PhysicsQuantitative Biology::BiomoleculesAnnihilationCondensed Matter - Mesoscale and Nanoscale PhysicsAcoustics and UltrasonicsCondensed matter physicsSkyrmionDynamics (mechanics)Phase (waves)Motion (geometry)FOS: Physical sciencesPhysik (inkl. Astronomie)Condensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOrientation (geometry)MagnetMesoscale and Nanoscale Physics (cond-mat.mes-hall)Anisotropy
researchProduct