0000000000796261

AUTHOR

Jukka Jaatinen

showing 10 related works from this author

Results on radiation hardness of black silicon induced junction photodetectors from proton and electron radiation

2020

Abstract The stability of black silicon induced junction photodetectors under high-energy irradiation was tested with 11 MeV protons and 12 MeV electrons using fluence of 1 ⋅ 10 10 protons/cm2 and dose of 67 krad(Si) for protons and electrons, respectively. The energies and dose levels were selected to test radiation levels relevant for space applications. The degradation was evaluated through dark current and external quantum efficiency changes during (within 1 h after each step) and after (some days after) full irradiation sequences. Furthermore, the black silicon photodetectors were compared to planar silicon induced junction and planar silicon pn-junction photodetectors to assess the co…

Nuclear and High Energy PhysicsPassivationSiliconPhysics::Instrumentation and Detectorschemistry.chemical_element02 engineering and technology01 natural scienceschemistry.chemical_compound0103 physical sciencesRadiation damageElectron beam processingIrradiationInstrumentationPhysics010308 nuclear & particles physicsbusiness.industryBlack silicontechnology industry and agricultureequipment and supplies021001 nanoscience & nanotechnologySemiconductorchemistryOptoelectronicsQuantum efficiency0210 nano-technologybusinessNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Semi-Empirical Model for SEGR Prediction

2013

The underlying physical mechanisms in single event gate rupture (SEGR) are not known precisely. SEGR is expected to occur when the energy deposition due to a heavy ion strike exceeds a certain threshold simultaneously with sufficient electric field across the gate dielectric. Typically the energy deposition is described by using the linear energy transfer (LET) of the given ion. Previously the LET has been demonstrated not to describe the SEGR sufficiently. The work presented here introduces a semi-empirical model for the SEGR prediction based on statistical variations in the energy deposition which are described theoretically.

Nuclear and High Energy PhysicsEngineeringWork (thermodynamics)ta114business.industryGate dielectricLinear energy transferMechanicsIonNuclear Energy and EngineeringElectric fieldDeposition (phase transition)Electrical and Electronic EngineeringbusinessEvent (particle physics)Energy (signal processing)SimulationIEEE Transactions on Nuclear Science
researchProduct

SEGR in SiO<inf>2</inf>-Si<inf>3</inf>N<inf>4</inf> stacks

2013

Materials sciencebusiness.industryElectronic engineeringOptoelectronicsbusiness2013 14th European Conference on Radiation and Its Effects on Components and Systems (RADECS)
researchProduct

SEU characterization of commercial and custom-designed SRAMs based on 90 nm technology and below

2020

International audience; The R2E project at CERN has tested a few commercial SRAMs and a custom-designed SRAM, whose data are complementary to various scientific publications. The experimental data include low- and high-energy protons, heavy ions, thermal, intermediate- and high-energy neutrons, high-energy electrons and high-energy pions.

high-energy protonsCOTS[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]käyttömuistitNuclear TheoryElectronHardware_PERFORMANCEANDRELIABILITY01 natural sciences7. Clean energyIonelektroniikkakomponentitNuclear physicsCross section (physics)Pion0103 physical sciencesNeutronionisoimaton säteilyStatic random-access memory010306 general physicsheavy ionsNuclear Experimentlow-energy protonsPhysicsLarge Hadron Collidercross section010308 nuclear & particles physicsionisoiva säteilyelectronsneutronsmuistit (tietotekniikka)SRAMCharacterization (materials science)säteilyfysiikkapionsSEU
researchProduct

SEGR in SiO${}_2$–Si$_3$N$_4$ Stacks

2014

Abstract. This work presents experimental Single Event Gate Rupture (SEGR) data for Metal–Insulator–Semiconductor (MIS) devices, where the gate dielectrics are made of stacked SiO2–Si3N4 structures. A semi-empirical model for predicting the critical gate voltage in these structures under heavy-ion exposure is first proposed. Then interrelationship between SEGR cross- section and heavy-ion induced energy deposition probability in thin dielectric layers is discussed. Qualitative connection between the energy deposition in the dielectric and the SEGR is proposed. peerReviewed

PhysicsNuclear and High Energy Physicsta114Condensed matter physicsbusiness.industrymodelingDielectricMOSGate voltageSingle Event Gate Rupture (SEGR)Nuclear Energy and EngineeringOptoelectronicsElectrical and Electronic Engineeringbusinesssemi-empiricalDeposition (law)IEEE Transactions on Nuclear Science
researchProduct

Heavy-ion induced single event effects and latent damages in SiC power MOSFETs

2022

The advantages of silicon carbide (SiC) power MOSFETs make this technology attractive for space, avionics and high-energy accelerator applications. However, the current commercial technologies are still susceptible to Single Event Effects (SEEs) and latent damages induced by the radiation environment. Two types of latent damage were experimentally observed in commercial SiC power MOSFETs exposed to heavy-ions. One is observed at bias voltages just below the degradation onset and it involves the gate oxide. The other damage type is observed at bias voltages below the Single Event Burnout (SEB) limit, and it is attributed to alterations of the SiC crystal-lattice. Focused ion beam (FIB) and s…

Materials scienceScanning electron microscopeRadiationFocused ion beamelektroniikkakomponentitIonSEEschemistry.chemical_compoundstomatognathic systempuolijohteetGate oxideSilicon carbideSiC MOSFETsHeavy-ionDetectors and Experimental TechniquesElectrical and Electronic EngineeringPower MOSFETSafety Risk Reliability and Qualitybusiness.industryionisoiva säteilyCondensed Matter PhysicsLatent damageAtomic and Molecular Physics and OpticsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialssäteilyfysiikkachemistrytransistoritOptoelectronicsSiC MOSFETs; Heavy-ion; Latent damage; SEEsbusinessVoltageMicroelectronics Reliability
researchProduct

Low Energy Protons at RADEF - Application to Advanced eSRAMs

2014

A low energy proton facility has been developed at RADEF, Jyvskyl, Finland. The proton energy selection, calibration and dosimetry are described. The first experiment with external users was performed using two memory test vehicles fabricated with 28 nm technology. Examples of single event upset measurements in the test vehicles embedded SRAMs (eSRAMs) as a function of proton energy are provided.

PhysicsProtonta114ta213business.industryNuclear engineeringElectrical engineeringProton energySEE testLow energyLow energy proton facilitySingle event upsetCalibrationDosimetryMemory testbusiness
researchProduct

Methodologies for the Statistical Analysis of Memory Response to Radiation

2016

International audience; Methodologies are proposed for in-depth statistical analysis of Single Event Upset data. The motivation for using these methodologies is to obtain precise information on the intrinsic defects and weaknesses of the tested devices, and to gain insight on their failure mechanisms, at no additional cost. The case study is a 65 nm SRAM irradiated with neutrons, protons and heavy ions. This publication is an extended version of a previous study.

Nuclear and High Energy PhysicsEngineeringHardware_PERFORMANCEANDRELIABILITYRadiation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesstatistical analysis0103 physical sciencesStatic testingElectronic engineeringmemory responseStatistical analysisSensitivity (control systems)Static random-access memoryElectrical and Electronic Engineeringstatic testCluster of bit-flipsdynamic test010302 applied physicsSingle event upset SEURandom access memoryta114ta213010308 nuclear & particles physicsbusiness.industrymultiple cell upset (MCU)säteilySRAMReliability engineeringradiationNuclear Energy and EngineeringSingle event upsetradiation effectsbusiness[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]Dynamic testing
researchProduct

Improved stability of black silicon detectors using aluminum oxide surface passivation

2021

Publisher Copyright: © 2021 ESA and CNES We have studied how high-energy electron irradiation (12 MeV, total dose 66 krad(Si)) and long term humidity exposure (75%, 75 °C, 500 hours) influence the induced junction black silicon or planar photodiode characteristics. In our case, the induced junction is formed using n-type silicon and atomic-layer deposited aluminum oxide (Al2O3), which contains a large negative fixed charge. We compare the results with corresponding planar pn-junction detectors passivated with either with silicon dioxide (SiO2) or Al2O3. The results show that the induced junction detectors remain stable as their responsivity remains nearly unaffected during the electron beam…

Materials sciencePassivationalumiinioksidi114 Physical scienceslaw.inventionelektroniikkakomponentitPhotodiodechemistry.chemical_compoundlawpuolijohteetphotodiodeIrradiationAluminum oxidebusiness.industryionisoiva säteilyBlack siliconDetectorblack siliconBlack siliconHumidityHumidityPhotodiodechemistrysäteilyfysiikkailmaisimetOptoelectronicsIrradiationbusinessilmankosteuspiidioksidi
researchProduct

Proton Direct Ionization in Sub-Micron Technologies : Test Methodologies and Modelling

2023

Two different low energy proton (LEP) test methods, one with quasi-monoenergetic and the other with very wide proton beam energy spectra, have been studied. The two test methodologies have been applied to devices that were suggested from prior heavy-ion tests to be sensitive to proton direct ionization (PDI). The advantages and disadvantages of the two test methods are discussed. The test method using quasi-monoenergetic beams requires device preparation and high energy resolution beams, but delivers results that can be interpreted directly and can be used in various soft error rate (SER) calculation methods. The other method, using a heavily degraded high energy proton beam, requires littl…

protonitprotonstestausmenetelmätsäteilyfysiikkalatticesrandom access memoryparticle beamsionisoiva säteilykäyttömuistitradiation effectssensitivityperformance evaluationelektroniikkakomponentit
researchProduct