0000000000877739
AUTHOR
Jérôme Bayardon
P-Chirogenic Triazole-Based Phosphine: Synthesis, Coordination Chemistry, and Asymmetric Catalysis
Modular P-Chirogenic Phosphine-Sulfide Ligands: Clear Evidence for Both Electronic Effect and P-Chirality Driving Enantioselectivity in Palladium-Catalyzed Allylations
Using the ephedrine methodology, modular stereoselective syntheses of a new class of P-chirogenic phosphines bearing a sulfur-chelating arm (P*,S-hybrid ligand) are described. A first series of syntheses based on a Fries-like rearrangement of P-chirogenic phosphinite-boranes, which are prepared from 2-bromobenzyl or 2-bromophenethyl alcohol and are mediated by metal–halide exchange, have been performed. This rearrangement affords phosphine-boranes stereospecifically with an o-hydroxyalkylphenyl substituent. The latter residue is subsequently converted into a sulfur-containing group. In a second series, the stereoselective syntheses were achieved according to a new strategy involving a react…
Ferrocenyl glycopeptides as electrochemical probes to detect autoantibodies in multiple sclerosis patients' será
Abstract Glycopeptide analogues of CSF114(Glc), modified at N-terminus with new ferrocenyl carboxylic acid and a new ferrocenyl-thiphosphino amino acid, were used to implement a new electrochemical biosensor for autoantibody detection in multiple sclerosis. The ferrocenyl moiety of these "electrochemical probes" did not affect autoantibody recognition both in SP-ELISA and in inhibition experiments. By electrochemical monitoring the interactions of the modified peptides Fc-CSF114(Glc) and 4-FcPhP(S)Abu-CSF114(Glc) with the autoantibodies, we demonstrated that autoantibodies could be detected with a sensitivity comparable to ELISA method. The new electrochemical probes can be proposed to char…
Stereoselective synthesis of unsaturated and functionalized L-NHBoc amino acids, using Wittig reaction under mild phase-transfer conditions.
The stereoselective synthesis of a new amino acid phosphonium salt was described by quaternization of melting triphenylphosphine with the γ-iodo NHBoc-amino ester, derived from L-aspartic acid. The deprotection of the carboxylic acid function to afford the phosphonium salt with a free carboxylic acid group was achieved by a palladium-catalyzed desallylation reaction. This phosphonium salt was used in the Wittig reaction with aromatic or aliphatic aldehydes and trifluoroacetophenone, under solid-liquid phase-transfer conditions in chlorobenzene and in the presence of K(3)PO(4) as weak base, to afford the corresponding unsaturated amino acids without racemization. Thus, the reaction with subs…
Efficient Stereoselective Synthesis of o-Functionalized P-Chirogenic Phosphines Applied to Asymmetric Catalysis
The stereoselective synthesis of P-chirogenic o-halogenophenylphosphines and their use for the preparation of o-functionalized derivatives are reported. The key step of this synthesis is based on t...
Stereoselective Synthesis of P-Chirogenic Dibenzophosphole-Boranes via Aryne Intermediates
A new aryne-mediated tandem cross-coupling/P-cyclization sequence starting from tertiary phosphine-boranes and 1,2-dibromobenzenes is reported. P-chirogenic dibenzophospholes become accessible in a regio-, chemo-, and diastereoselective way.
Modular Phosphole-Methano-Bridged-Phosphine(Borane) Ligands. Application to Rhodium-Catalyzed Reactions
The synthesis of the phospholyl(phosphinoborane)methane air- and moisture-stable hybrid ligands 4a–f, starting from 1-phenylphospholes 1a–d, was performed via P–C bond coupling on the methano bridge. Two strategies were investigated, according to the phospholyl moiety used as a nucleophilic or an electrophilic reagent. In the first pathway, the phospholyl anions react with the easily available (chloromethyl)diphenylphosphine–borane 3 to afford ligands 4a–d in 29–67% isolated yields. In the second pathway, the phospholyl(dicyclohexylphosphinoborane)methane ligands 4e,f were synthesized in 18–23% yields, through a nucleophilic substitution on the cyanophosphole. Removal of the BH3 moiety on 4…
Enantioselective Hydrogenation Catalysis Aided by a σ-Bonded Calix[4]arene to a P-Chirogenic Aminophosphane Phosphinite Rhodium Complex
The first P-chirogenic aminophosphane−phosphinite (AMP*P) ligand (4a) supported on the upper rim of a calix[4]arene moiety was synthesized in two steps using the ephedrine methodology. Ligand 4a wa...
P‐Chiral Ligands
Phenoxyamidine Zn and Al Complexes: Synthesis, Characterization, and Use in the Ring-Opening Polymerization of Lactide
International audience; Herein we report the synthesis of new ditopic ligands, which consist of a phenoxy group and N,N,N'trisubstituted amidines linked by a methylene spacer (L1-L4). Their coordination chemistry has been studied/investigated with Zn(II) and Al(III). Alkane elimination route between the phenol-amidine proligands (L1H-L4H) and Et2Zn led to dinuclear complexes [(L1-L4)ZnEt]2 (1a-4a) in which the Zn centers are chelated by phenoxyamidine ligands and bridged through the oxygen atom of the phenoxy groups. Salt metathesis reaction between two equivalents of the sodium amidine phenate L1Na and ZnCl2 led to a bis-chelate chiral spiro-complex (L12Zn) 1a'. Analogous alkane eliminatio…
[60]Fullerene l -Amino Acids and Peptides: Synthesis under Phase-Transfer Catalysis Using a Phosphine–Borane Linker. Electrochemical Behavior
International audience; A new method to link amino acid and peptide derivatives to [60]fullerene is described. It uses hydrophosphination with a secondary phosphine borane. First, the stereoselective synthesis of secondary phosphine borane amino acid derivatives was achieved by alkylation of phenylphosphine borane with gamma-iodo-alpha-amino ester reagents under phase transfer catalysis (PTC). Second, a sec-phosphine borane amino ester was saponified and coupled with alpha,gamma-diamino esters to afford the corresponding dipeptide derivatives in good yields. Finally, the hydrophosphination reaction of [60]fullerene by the sec-phosphine borane compounds was performed under PTC to obtain C-60…
P-Chirogenic Phosphines Supported by Calix[4]arene: New Insight into Palladium-Catalyzed Asymmetric Allylic Substitution
The first P-chirogenic mono- and diphosphine ligands supported on the upper rim of a calix[4]arene moiety were synthesized using the ephedrine methodology. The lithiated calix[4]arene mono- and dianions both react with the oxazaphospholidine–borane, prepared from ephedrine, to afford regio- and stereoselectively the corresponding calix[4]arenyl aminophosphine–boranes, by cleavage of the heterocyclic ring at the P–O bond position. Subsequent reactions with HCl and then organolithium reagent and finally decomplexation with DABCO lead to the corresponding calix[4]arenyl mono- or diphosphines. Both enantiomers of the calix[4]arenyl phosphines were obtained either by using (+)- or (−)-ephedrine …
Efficient Synthesis of (P-Chirogenic) o-Boronated Phosphines from sec-Phosphine Boranes
An efficient synthesis of boronated phosphines with an o-phenylene-bridge prepared from sec-phosphine boranes and using benzyne chemistry is reported. Successive reactions of sec-phosphine boranes with n-BuLi and 1,2-dibromobenzene, and then with boron reagents, afford the o-boronatophenylphosphine derivatives in 71% yields. The use of P-chirogenic sec-phosphine boranes leads to the free boronated phosphines with retention of configuration at the P-center after decomplexation. The reaction of P-chirogenic o-boronatophenylphosphine with KHF2 affords the corresponding trifluoroborated phosphine with ee >98%.
P-C Cross-Coupling Onto Enamides: Versatile Synthesis of α-Enamido Phosphane Derivatives
We report herein the Pd-catalyzed P–C cross-coupling reac- tion between enol phosphates and secondary phosphane–bor- ane complexes or phosphane oxides. The reaction was per- formed under mild conditions, owing to Pd activation of the P–H bonds of the phosphane–boranes (or phosphane oxides) and to the powerful enol phosphate coupling reagents. New useful chiral and achiral α - β -alkenylphosphane derivatives bearing an amido group in the α -position to the P center were obtained in yields up to 70 %.
Enantiodivergent synthesis of P-chirogenic phosphines
International audience; Several approaches for the enantiodivergent synthesis of P-chirogenic mono- and diphosphines are described, using ephedrine methodology and phosphine borane chemistry. Firstly, both enantiomers of a tertiary phosphine can be obtained starting from the same oxazaphospholidine borane complex, prepared from (+)-ephedrine, when changing the order of addition of the organolithium reagents during the synthetic pathway. The second approach is based on the chlorophosphine boranes, which react with an organolithium reagent, to afford the corresponding phosphines with inversion of configuration. In the case where the chlorophosphine borane reacts with the t-butyl lithium reage…
Stereoselective synthesis of o-bromo (or iodo)aryl P-chirogenic phosphines based on aryne chemistry.
The efficient synthesis of chiral or achiral tertiary phosphines bearing an o-bromo (or iodo)aryl substituent is described. The key step of this synthesis is based on the reaction of a secondary phosphine borane with the 1,2-dibromo (or diiodo)arene, owing to the formation in situ of an aryne species in the presence of n-butyllithium. When P-chirogenic secondary phosphine boranes were used, the corresponding o-halogeno-arylphosphine boranes were obtained without racemization in moderate to good yields and with ee up to 99%. The stereochemistry of the reaction, with complete retention of the configuration at the P atom, has been established by X-ray structures of P-chirogenic o-halogenopheny…
Synthesis of organometallic glycopeptides and electrochemical studies to detect autoantibodies in multiple sclerosis patients' sera
Feliciana Real-Fernandez, Amelie Chamois-Colson, Jerome Bayardon, Francesca Nuti, Elisa Peroni, Maria R. Moncelli, Rita Meunier-Prest, Sylvain Juge and Anna Maria Papini Laboratory of Peptide & Protein Chemistry & Biology, Polo Scientifico, University of Florence, I-50019 Sesto Fiorentino (FI), Italy; Laboratoire de Synthese et d’Electrosynthese Organometalliques (LSEO), Universite de Bourgogne, 21068, Dijon, France
Designing P-Chirogenic 1,2-Diphosphinobenzenes at Both P-Centers Using P(III)-Phosphinites
International audience; A new enantiodivergent synthesis of P-chirogenic 1,2-diphosphinobenzenes (DP*B) bearing the chirality on one or both phosphorus centers is reported using aryne chemistry. The principle is based on successive reactions of 1,2-dibromobenzene with sec-phosphide boranes, then DABCO to remove the borane, and finally with chlorophosphines or P(III)-chirogenic phosphinites. The efficiency of this synthesis was demonstrated by the stereoselective preparation of (S,S)-1,2-bis(o-anisylphenylphosphino)benzene. A comparison of DIPAMP and homochiral DP*B ligands in asymmetric Rh- or Pd-catalyzed reactions was reported.
Phospholylmethano P-chirogenic-phosphine-borane as P-(η2-BH3)-chelating ligands of rhodium (I): Synthesis, characterization and asymmetric hydrogenation
International audience; The stereoselective synthesis of new phospholylmethano P-chirogenic-phosphine-borane was achieved by P-C bond formation of the bridge, using electrophilic or nucleophilic P*-building blocks. These P1CH2P2*.BH3 ligands behaved as chelating (κ1-P1)-(η2-BH3) entities towards the cationic rhodium(I) centre. The resulting chiral rhodium complexes were tested in asymmetric rhodium catalyzed hydrogenation of methyl 2-(acetamido)acrylate.
Asymmetric Hydrogenation of Nonfunctionalized Olefins in Propylene Carbonate—Kinetic or Thermodynamic Control?
Iridium-catalyzed hydrogenations of nonfunctionalized olefins in propylene carbonate as the solvent allow efficient catalysis with much higher enantioselectivities in comparison with dichloromethane which is usually employed for these reactions. Experimental and computational studies of the hydrogenation of 1-methylene-1,2,3,4-tetrahydronaphthalene have been performed to understand the limitation for this reaction.
Influence of Phase Modifiers on the Degradation of Tri-n-octylamine/dodecane Extracting Mixture by an Acidic Solution of Vanadium (V)
The kinetics of degradation of a mixture of tri-n-octylamine (extractant) and various alcoholic phase modifiers in n-dodecane in contact with acidic aqueous sulfate solutions containing vanadium (V) has been investigated. The nature of the modifier influences the kinetics of degradation and an improvement of the resistance against the chemical degradation is obtained when secondary alcohol (2-nonanol) or tertiary alcohols such as 9-octyl-9-heptadecanol are used as phase modifiers instead of 1-tridecanol. For instance, the kinetic constant of degradation is divided by one half when 9-octyl-9-heptadecanol is used as phase modifier instead of 1-tridecanol. On the contrary, the alcohols contain…
Synthesis of P-Chirogenic Diphosphinotriazoles and Their Use in Asymmetric Catalysis
International audience; The stereoselective synthesis of P-chirogenic diphosphinotriazoles using ephedrine methodology was described. The coordination behavior of these compounds as P,P-ligands has been demonstrated by the preparation as well as the spectroscopic and X-ray crystallographic analyses of a palladium complex. The efficiency of these new P-chirogenic diphosphines in the palladiumcatalyzed asymmetric allylic substitution reaction was also evaluated.
Organic carbonates as alternative solvents for asymmetric hydrogenation
Organic carbonates like propylene carbonate (PC) or butylene carbonate (BC) belong to the class of aprotic, highly dipolar solvents (AHD). Interestingly, their potential as solvents for asymmetric catalysis has been overlooked for a long time. The aim of this work is to evaluate organic carbonates and other organic solvents like THF, CH2Cl2, and acetonitrile as well as members of the AHD-family (DMF, DMSO, etc.) as media for homogeneous asymmetric hydrogenation. For this reason cationic Rh-complexes based on chiral phosphine ligands were tested in the hydrogenation of typical benchmark substrates. In several trials, significant advantages of organic carbonates were found. In contrast to DMS…
P-chirogenic organocatalysts: application to the aza-Morita–Baylis–Hillman (aza-MBH) reaction of ketimines
The P-chirogenic organocatalysts were found to promote the enantioselective aza-Morita-Baylis-Hillman reaction of ketimines derived from acyclic α-keto esters. In the P-chirogenic organocatalyzed aza-MBH reactions, α,α-disubstituted α-amino acid derivatives were obtained in high yields with high enantioselectivities (up to 97% ee).
Design of P-Chirogenic Aminophosphine-Phosphinite Ligands at Both Phosphorus Centers: Origin of Enantioselectivities in Pd-Catalyzed Allylic Reactions.
International audience; We have recently patented an unprecedented stereospecific N→O phosphinyl migration process which transforms P-chirogenic aminophosphines into phosphinites. A fine design of aminophosphine phosphinite ligands (AMPP*) derived from ephedrine and bearing a P-chirogenic center either at the aminophosphine or phosphinite moiety, was performed. The synthesis of AMPP* ligands with P-chirogenic aminophosphine moiety was based on the well-established stereospecific reaction of oxazaphospholidine-borane with organolithium reagents, followed by trapping with a chlorophosphine and borane decomplexation. Concurrently, the preparation of AMPP* ligands with P-chirogenic phosphinite …
CCDC 1868748: Experimental Crystal Structure Determination
Related Article: Florian Chotard, Rosita Lapenta, Anaëlle Bolley, Audrey Trommenschlager, Cédric Balan, Jérôme Bayardon, Raluca Malacea-Kabbara, Quentin Bonnin, Ewen Bodio, Hélène Cattey, Philippe Richard, Stefano Milione, Alfonso Grassi, Samuel Dagorne, Pierre Le Gendre|2019|Organometallics|38|4147|doi:10.1021/acs.organomet.9b00501
CCDC 1982653: Experimental Crystal Structure Determination
Related Article: Antonin Jaillet, Christophe Darcel, Jérôme Bayardon, Adrien Schlachter, Christine Salomon, Yoann Rousselin, Pierre Harvey, Sylvain Jugé|2020|J.Org.Chem.|85|14391|doi:10.1021/acs.joc.0c00536
CCDC 1982657: Experimental Crystal Structure Determination
Related Article: Antonin Jaillet, Christophe Darcel, Jérôme Bayardon, Adrien Schlachter, Christine Salomon, Yoann Rousselin, Pierre Harvey, Sylvain Jugé|2020|J.Org.Chem.|85|14391|doi:10.1021/acs.joc.0c00536
CCDC 1429795: Experimental Crystal Structure Determination
Related Article: Jérôme Bayardon, Milène Maronnat, Adam Langlois, Yoann Rousselin, Pierre D. Harvey and Sylvain Jugé|2015|Organometallics|34|4340|doi:10.1021/acs.organomet.5b00585
CCDC 1982651: Experimental Crystal Structure Determination
Related Article: Antonin Jaillet, Christophe Darcel, Jérôme Bayardon, Adrien Schlachter, Christine Salomon, Yoann Rousselin, Pierre Harvey, Sylvain Jugé|2020|J.Org.Chem.|85|14391|doi:10.1021/acs.joc.0c00536
CCDC 1982662: Experimental Crystal Structure Determination
Related Article: Antonin Jaillet, Christophe Darcel, Jérôme Bayardon, Adrien Schlachter, Christine Salomon, Yoann Rousselin, Pierre Harvey, Sylvain Jugé|2020|J.Org.Chem.|85|14391|doi:10.1021/acs.joc.0c00536
CCDC 945143: Experimental Crystal Structure Determination
Related Article: Shinobu Takizawa, Emmanuelle Rémond, Fernando Arteaga Arteaga, Yasushi Yoshida, Vellaisamy Sridharan, Jérôme Bayardon, Sylvain Jugé, Hiroaki Sasai|2013|Chem.Commun.|49|8392|doi:10.1039/C3CC44549F
CCDC 1982660: Experimental Crystal Structure Determination
Related Article: Antonin Jaillet, Christophe Darcel, Jérôme Bayardon, Adrien Schlachter, Christine Salomon, Yoann Rousselin, Pierre Harvey, Sylvain Jugé|2020|J.Org.Chem.|85|14391|doi:10.1021/acs.joc.0c00536
CCDC 952665: Experimental Crystal Structure Determination
Related Article: Naima Khiri-Meribout, Etienne Bertrand, Jérôme Bayardon, Marie-Joëlle Eymin, Yoann Rousselin, Hélène Cattey, Daniel Fortin, Pierre D. Harvey, and Sylvain Jugé|2013|Organometallics|32|2827|doi:10.1021/om400229p
CCDC 1868745: Experimental Crystal Structure Determination
Related Article: Florian Chotard, Rosita Lapenta, Anaëlle Bolley, Audrey Trommenschlager, Cédric Balan, Jérôme Bayardon, Raluca Malacea-Kabbara, Quentin Bonnin, Ewen Bodio, Hélène Cattey, Philippe Richard, Stefano Milione, Alfonso Grassi, Samuel Dagorne, Pierre Le Gendre|2019|Organometallics|38|4147|doi:10.1021/acs.organomet.9b00501
CCDC 868765: Experimental Crystal Structure Determination
Related Article: Vincent Diemer, Anaïs Berthelot, Jérôme Bayardon, Sylvain Jugé, Frédéric R. Leroux, and Françoise Colobert|2012|J.Org.Chem.|77|6117|doi:10.1021/jo3009098
CCDC 1953273: Experimental Crystal Structure Determination
Related Article: Jérôme Bayardon, Benjamin Rousselle, Yoann Rousselin, Quentin Bonnin, Raluca Malacea-Kabbara|2020|Eur.J.Org.Chem.|2020|4723|doi:10.1002/ejoc.202000723
CCDC 1982650: Experimental Crystal Structure Determination
Related Article: Antonin Jaillet, Christophe Darcel, Jérôme Bayardon, Adrien Schlachter, Christine Salomon, Yoann Rousselin, Pierre Harvey, Sylvain Jugé|2020|J.Org.Chem.|85|14391|doi:10.1021/acs.joc.0c00536
CCDC 2039650: Experimental Crystal Structure Determination
Related Article: Jérôme Bayardon, Yoann Rousselin, Raluca Malacea‐Kabbara|2021|Chem. Sel.|6|2687|doi:10.1002/slct.202100617
CCDC 1982668: Experimental Crystal Structure Determination
Related Article: Antonin Jaillet, Christophe Darcel, Jérôme Bayardon, Adrien Schlachter, Christine Salomon, Yoann Rousselin, Pierre Harvey, Sylvain Jugé|2020|J.Org.Chem.|85|14391|doi:10.1021/acs.joc.0c00536
CCDC 868764: Experimental Crystal Structure Determination
Related Article: Vincent Diemer, Anaïs Berthelot, Jérôme Bayardon, Sylvain Jugé, Frédéric R. Leroux, and Françoise Colobert|2012|J.Org.Chem.|77|6117|doi:10.1021/jo3009098
CCDC 937024: Experimental Crystal Structure Determination
Related Article: Emmanuelle Rémond, Jérôme Bayardon, Shinobu Takizawa, Yoann Rousselin, Hiroaki Sasai, and Sylvain Jugé|2013|Org.Lett.|15|1870|doi:10.1021/ol400515e
CCDC 868766: Experimental Crystal Structure Determination
Related Article: Vincent Diemer, Anaïs Berthelot, Jérôme Bayardon, Sylvain Jugé, Frédéric R. Leroux, and Françoise Colobert|2012|J.Org.Chem.|77|6117|doi:10.1021/jo3009098
CCDC 1868749: Experimental Crystal Structure Determination
Related Article: Florian Chotard, Rosita Lapenta, Anaëlle Bolley, Audrey Trommenschlager, Cédric Balan, Jérôme Bayardon, Raluca Malacea-Kabbara, Quentin Bonnin, Ewen Bodio, Hélène Cattey, Philippe Richard, Stefano Milione, Alfonso Grassi, Samuel Dagorne, Pierre Le Gendre|2019|Organometallics|38|4147|doi:10.1021/acs.organomet.9b00501
CCDC 1492959: Experimental Crystal Structure Determination
Related Article: Jérôme Bayardon, Yoann Rousselin, Sylvain Jugé|2016|Org.Lett.|18|2930|doi:10.1021/acs.orglett.6b01275
CCDC 1982669: Experimental Crystal Structure Determination
Related Article: Antonin Jaillet, Christophe Darcel, Jérôme Bayardon, Adrien Schlachter, Christine Salomon, Yoann Rousselin, Pierre Harvey, Sylvain Jugé|2020|J.Org.Chem.|85|14391|doi:10.1021/acs.joc.0c00536
CCDC 868763: Experimental Crystal Structure Determination
Related Article: Vincent Diemer, Anaïs Berthelot, Jérôme Bayardon, Sylvain Jugé, Frédéric R. Leroux, and Françoise Colobert|2012|J.Org.Chem.|77|6117|doi:10.1021/jo3009098
CCDC 1429794: Experimental Crystal Structure Determination
Related Article: Jérôme Bayardon, Milène Maronnat, Adam Langlois, Yoann Rousselin, Pierre D. Harvey and Sylvain Jugé|2015|Organometallics|34|4340|doi:10.1021/acs.organomet.5b00585
CCDC 1982665: Experimental Crystal Structure Determination
Related Article: Antonin Jaillet, Christophe Darcel, Jérôme Bayardon, Adrien Schlachter, Christine Salomon, Yoann Rousselin, Pierre Harvey, Sylvain Jugé|2020|J.Org.Chem.|85|14391|doi:10.1021/acs.joc.0c00536
CCDC 1492957: Experimental Crystal Structure Determination
Related Article: Jérôme Bayardon, Yoann Rousselin, Sylvain Jugé|2016|Org.Lett.|18|2930|doi:10.1021/acs.orglett.6b01275
CCDC 1982667: Experimental Crystal Structure Determination
Related Article: Antonin Jaillet, Christophe Darcel, Jérôme Bayardon, Adrien Schlachter, Christine Salomon, Yoann Rousselin, Pierre Harvey, Sylvain Jugé|2020|J.Org.Chem.|85|14391|doi:10.1021/acs.joc.0c00536
CCDC 937026: Experimental Crystal Structure Determination
Related Article: Emmanuelle Rémond, Jérôme Bayardon, Shinobu Takizawa, Yoann Rousselin, Hiroaki Sasai, and Sylvain Jugé|2013|Org.Lett.|15|1870|doi:10.1021/ol400515e
CCDC 1982663: Experimental Crystal Structure Determination
Related Article: Antonin Jaillet, Christophe Darcel, Jérôme Bayardon, Adrien Schlachter, Christine Salomon, Yoann Rousselin, Pierre Harvey, Sylvain Jugé|2020|J.Org.Chem.|85|14391|doi:10.1021/acs.joc.0c00536
CCDC 937025: Experimental Crystal Structure Determination
Related Article: Emmanuelle Rémond, Jérôme Bayardon, Shinobu Takizawa, Yoann Rousselin, Hiroaki Sasai, and Sylvain Jugé|2013|Org.Lett.|15|1870|doi:10.1021/ol400515e
CCDC 1953272: Experimental Crystal Structure Determination
Related Article: Jérôme Bayardon, Benjamin Rousselle, Yoann Rousselin, Quentin Bonnin, Raluca Malacea-Kabbara|2020|Eur.J.Org.Chem.|2020|4723|doi:10.1002/ejoc.202000723
CCDC 1982654: Experimental Crystal Structure Determination
Related Article: Antonin Jaillet, Christophe Darcel, Jérôme Bayardon, Adrien Schlachter, Christine Salomon, Yoann Rousselin, Pierre Harvey, Sylvain Jugé|2020|J.Org.Chem.|85|14391|doi:10.1021/acs.joc.0c00536
CCDC 1868747: Experimental Crystal Structure Determination
Related Article: Florian Chotard, Rosita Lapenta, Anaëlle Bolley, Audrey Trommenschlager, Cédric Balan, Jérôme Bayardon, Raluca Malacea-Kabbara, Quentin Bonnin, Ewen Bodio, Hélène Cattey, Philippe Richard, Stefano Milione, Alfonso Grassi, Samuel Dagorne, Pierre Le Gendre|2019|Organometallics|38|4147|doi:10.1021/acs.organomet.9b00501
CCDC 1429796: Experimental Crystal Structure Determination
Related Article: Jérôme Bayardon, Milène Maronnat, Adam Langlois, Yoann Rousselin, Pierre D. Harvey and Sylvain Jugé|2015|Organometallics|34|4340|doi:10.1021/acs.organomet.5b00585
CCDC 1982658: Experimental Crystal Structure Determination
Related Article: Antonin Jaillet, Christophe Darcel, Jérôme Bayardon, Adrien Schlachter, Christine Salomon, Yoann Rousselin, Pierre Harvey, Sylvain Jugé|2020|J.Org.Chem.|85|14391|doi:10.1021/acs.joc.0c00536
CCDC 1053706: Experimental Crystal Structure Determination
Related Article: Jérôme Bayardon , Julie Bernard , Emmanuelle Rémond , Yoann Rousselin , Raluca Malacea-Kabbara , and Sylvain Jugé|2015|Org.Lett.|17|1216|doi:10.1021/acs.orglett.5b00167
CCDC 937023: Experimental Crystal Structure Determination
Related Article: Emmanuelle Rémond, Jérôme Bayardon, Shinobu Takizawa, Yoann Rousselin, Hiroaki Sasai, and Sylvain Jugé|2013|Org.Lett.|15|1870|doi:10.1021/ol400515e
CCDC 1982659: Experimental Crystal Structure Determination
Related Article: Antonin Jaillet, Christophe Darcel, Jérôme Bayardon, Adrien Schlachter, Christine Salomon, Yoann Rousselin, Pierre Harvey, Sylvain Jugé|2020|J.Org.Chem.|85|14391|doi:10.1021/acs.joc.0c00536
CCDC 1937786: Experimental Crystal Structure Determination
Related Article: Florian Chotard, Rosita Lapenta, Anaëlle Bolley, Audrey Trommenschlager, Cédric Balan, Jérôme Bayardon, Raluca Malacea-Kabbara, Quentin Bonnin, Ewen Bodio, Hélène Cattey, Philippe Richard, Stefano Milione, Alfonso Grassi, Samuel Dagorne, Pierre Le Gendre|2019|Organometallics|38|4147|doi:10.1021/acs.organomet.9b00501
CCDC 1053707: Experimental Crystal Structure Determination
Related Article: Jérôme Bayardon , Julie Bernard , Emmanuelle Rémond , Yoann Rousselin , Raluca Malacea-Kabbara , and Sylvain Jugé|2015|Org.Lett.|17|1216|doi:10.1021/acs.orglett.5b00167
CCDC 1982666: Experimental Crystal Structure Determination
Related Article: Antonin Jaillet, Christophe Darcel, Jérôme Bayardon, Adrien Schlachter, Christine Salomon, Yoann Rousselin, Pierre Harvey, Sylvain Jugé|2020|J.Org.Chem.|85|14391|doi:10.1021/acs.joc.0c00536
CCDC 2039652: Experimental Crystal Structure Determination
Related Article: Jérôme Bayardon, Yoann Rousselin, Raluca Malacea‐Kabbara|2021|Chem. Sel.|6|2687|doi:10.1002/slct.202100617
CCDC 1982661: Experimental Crystal Structure Determination
Related Article: Antonin Jaillet, Christophe Darcel, Jérôme Bayardon, Adrien Schlachter, Christine Salomon, Yoann Rousselin, Pierre Harvey, Sylvain Jugé|2020|J.Org.Chem.|85|14391|doi:10.1021/acs.joc.0c00536
CCDC 952664: Experimental Crystal Structure Determination
Related Article: Naima Khiri-Meribout, Etienne Bertrand, Jérôme Bayardon, Marie-Joëlle Eymin, Yoann Rousselin, Hélène Cattey, Daniel Fortin, Pierre D. Harvey, and Sylvain Jugé|2013|Organometallics|32|2827|doi:10.1021/om400229p
CCDC 1868750: Experimental Crystal Structure Determination
Related Article: Florian Chotard, Rosita Lapenta, Anaëlle Bolley, Audrey Trommenschlager, Cédric Balan, Jérôme Bayardon, Raluca Malacea-Kabbara, Quentin Bonnin, Ewen Bodio, Hélène Cattey, Philippe Richard, Stefano Milione, Alfonso Grassi, Samuel Dagorne, Pierre Le Gendre|2019|Organometallics|38|4147|doi:10.1021/acs.organomet.9b00501
CCDC 1492958: Experimental Crystal Structure Determination
Related Article: Jérôme Bayardon, Yoann Rousselin, Sylvain Jugé|2016|Org.Lett.|18|2930|doi:10.1021/acs.orglett.6b01275
CCDC 1982664: Experimental Crystal Structure Determination
Related Article: Antonin Jaillet, Christophe Darcel, Jérôme Bayardon, Adrien Schlachter, Christine Salomon, Yoann Rousselin, Pierre Harvey, Sylvain Jugé|2020|J.Org.Chem.|85|14391|doi:10.1021/acs.joc.0c00536
CCDC 868767: Experimental Crystal Structure Determination
Related Article: Vincent Diemer, Anaïs Berthelot, Jérôme Bayardon, Sylvain Jugé, Frédéric R. Leroux, and Françoise Colobert|2012|J.Org.Chem.|77|6117|doi:10.1021/jo3009098
CCDC 868769: Experimental Crystal Structure Determination
Related Article: Vincent Diemer, Anaïs Berthelot, Jérôme Bayardon, Sylvain Jugé, Frédéric R. Leroux, and Françoise Colobert|2012|J.Org.Chem.|77|6117|doi:10.1021/jo3009098
CCDC 1053708: Experimental Crystal Structure Determination
Related Article: Jérôme Bayardon , Julie Bernard , Emmanuelle Rémond , Yoann Rousselin , Raluca Malacea-Kabbara , and Sylvain Jugé|2015|Org.Lett.|17|1216|doi:10.1021/acs.orglett.5b00167
CCDC 1868746: Experimental Crystal Structure Determination
Related Article: Florian Chotard, Rosita Lapenta, Anaëlle Bolley, Audrey Trommenschlager, Cédric Balan, Jérôme Bayardon, Raluca Malacea-Kabbara, Quentin Bonnin, Ewen Bodio, Hélène Cattey, Philippe Richard, Stefano Milione, Alfonso Grassi, Samuel Dagorne, Pierre Le Gendre|2019|Organometallics|38|4147|doi:10.1021/acs.organomet.9b00501
CCDC 1868743: Experimental Crystal Structure Determination
Related Article: Florian Chotard, Rosita Lapenta, Anaëlle Bolley, Audrey Trommenschlager, Cédric Balan, Jérôme Bayardon, Raluca Malacea-Kabbara, Quentin Bonnin, Ewen Bodio, Hélène Cattey, Philippe Richard, Stefano Milione, Alfonso Grassi, Samuel Dagorne, Pierre Le Gendre|2019|Organometallics|38|4147|doi:10.1021/acs.organomet.9b00501
CCDC 1429797: Experimental Crystal Structure Determination
Related Article: Jérôme Bayardon, Milène Maronnat, Adam Langlois, Yoann Rousselin, Pierre D. Harvey and Sylvain Jugé|2015|Organometallics|34|4340|doi:10.1021/acs.organomet.5b00585
CCDC 952663: Experimental Crystal Structure Determination
Related Article: Naima Khiri-Meribout, Etienne Bertrand, Jérôme Bayardon, Marie-Joëlle Eymin, Yoann Rousselin, Hélène Cattey, Daniel Fortin, Pierre D. Harvey, and Sylvain Jugé|2013|Organometallics|32|2827|doi:10.1021/om400229p
CCDC 2039651: Experimental Crystal Structure Determination
Related Article: Jérôme Bayardon, Yoann Rousselin, Raluca Malacea‐Kabbara|2021|Chem. Sel.|6|2687|doi:10.1002/slct.202100617
CCDC 1982656: Experimental Crystal Structure Determination
Related Article: Antonin Jaillet, Christophe Darcel, Jérôme Bayardon, Adrien Schlachter, Christine Salomon, Yoann Rousselin, Pierre Harvey, Sylvain Jugé|2020|J.Org.Chem.|85|14391|doi:10.1021/acs.joc.0c00536
CCDC 952662: Experimental Crystal Structure Determination
Related Article: Naima Khiri-Meribout, Etienne Bertrand, Jérôme Bayardon, Marie-Joëlle Eymin, Yoann Rousselin, Hélène Cattey, Daniel Fortin, Pierre D. Harvey, and Sylvain Jugé|2013|Organometallics|32|2827|doi:10.1021/om400229p
CCDC 868768: Experimental Crystal Structure Determination
Related Article: Vincent Diemer, Anaïs Berthelot, Jérôme Bayardon, Sylvain Jugé, Frédéric R. Leroux, and Françoise Colobert|2012|J.Org.Chem.|77|6117|doi:10.1021/jo3009098
CCDC 1982652: Experimental Crystal Structure Determination
Related Article: Antonin Jaillet, Christophe Darcel, Jérôme Bayardon, Adrien Schlachter, Christine Salomon, Yoann Rousselin, Pierre Harvey, Sylvain Jugé|2020|J.Org.Chem.|85|14391|doi:10.1021/acs.joc.0c00536