0000000000970514
AUTHOR
J. Billowes
Model independent determination of the spin of theTa180naturally occurring isomer
The hyperfine structures of the 33715.27 ${\mathrm{cm}}^{\ensuremath{-}1}$ and 33706.47 ${\mathrm{cm}}^{\ensuremath{-}1}$ transitions from the ground state of singly ionized Ta have been measured by collinear laser spectroscopy. The structures were found to contain a large second order contribution. From fitting the observed hyperfine components for both $^{181}\mathrm{Ta}$ and the $^{180}\mathrm{Ta}$ naturally occurring isomer it was possible to determine the first and second order hyperfine structure coefficients. As no model independent determination of the nuclear spin of the $^{180}\mathrm{Ta}$ isomer has been performed, fitting was attempted for a range of spins. A clear chi-squared m…
First on-line laser spectroscopy of radioisotopes of a refractory element
The first fully on-line isotope shift measurement of a radioactive refractory element is reported. Collinear laser-induced fluorescence measurements were made on the radioactive isotopes ${}^{170,172,173,174}\mathrm{Hf}$ produced with a flux of $2--3\ifmmode\times\else\texttimes\fi{}{10}^{3}$ ions per second from an ion-guide fed isotope separator. The method may be applied to all elements and isomers with lifetimes as short as 1 ms. The systematics of the new charge radii measurements are well reproduced by theory, with the maximum deformation in the chain occurring significantly below the midshell.
Evidence for Increased neutron and proton excitations between 51−63 Mn
The hyperfine structures of the odd-even 51−63Mnatoms (N=26 −38) were measured using bunched beam collinear laser spectroscopy at ISOLDE, CERN. The extracted spins and magnetic dipole moments have been compared to large-scale shell-model calculations using different model spaces and effective interactions. In the case of 61,63Mn, the results show the increasing importance of neutron excitations across the N=40subshell closure, and of proton excitations across the Z=28shell gap. These measurements provide the first direct proof that proton and neutron excitations across shell gaps are playing an important role in the ground state wave functions of the neutron-rich Mn isotopes. publisher: Els…
The Collinear Resonance Ionization Spectroscopy (CRIS) experimental setup at CERN-ISOLDE
The CRIS setup at CERN-ISOLDE is a laser spectroscopy experiment dedicated to the high-resolution study of the spin, hyperfine structure and isotope shift of radioactive nuclei with low production rates (a few per second). It combines the Doppler-free resolution of the in-flight collinear geometry with the high detection efficiency of resonant ionisation. A recent commissioning campaign has demonstrated a 1% experimental efficiency, and as low as a 0.001% non-resonant ionisation. The current status of the experiment and its recent achievements with beams of francium isotopes are reported. The first identified systematic effects are discussed. publisher: Elsevier articletitle: The Collinear …
Isomer shift and magnetic moment of the long-lived 1/2$^{+}$ isomer in $^{79}_{30}$Zn$_{49}$: signature of shape coexistence near $^{78}$Ni
Collinear laser spectroscopy has been performed on the $^{79}_{30}$Zn$_{49}$ isotope at ISOLDE-CERN. The existence of a long-lived isomer with a few hundred milliseconds half-life was confirmed, and the nuclear spins and moments of the ground and isomeric states in $^{79}$Zn as well as the isomer shift were measured. From the observed hyperfine structures, spins $I = 9/2$ and $I = 1/2$ are firmly assigned to the ground and isomeric states. The magnetic moment $\mu$ ($^{79}$Zn) = $-$1.1866(10) $\mu_{\rm{N}}$, confirms the spin-parity $9/2^{+}$ with a $\nu g_{9/2}^{-1}$ shell-model configuration, in excellent agreement with the prediction from large scale shell-model theories. The magnetic mo…
Resonance ionization schemes for high resolution and high efficiency studies of exotic nuclei at the CRIS experiment
© 2019 This paper presents an overview of recent resonance ionization schemes used at the Collinear Resonance Ionization Spectroscopy (CRIS) setup located at ISOLDE, CERN. The developments needed to reach high spectral resolution and efficiency will be discussed. Besides laser ionization efficiency and high resolving power, experiments on rare isotopes also require low-background conditions. Ongoing developments that aim to deal with beam-related sources of background are presented. ispartof: Nuclear Instruments & Methods In Physics Research Section B-Beam Interactions With Materials And Atoms vol:463 pages:398-402 ispartof: location:SWITZERLAND, CERN, Geneva status: published
Evolution of nuclear structure in neutron-rich odd-Zn isotopes and isomers
Collinear laser spectroscopy was performed on Zn (Z=30) isotopes at ISOLDE, CERN. The study of hyperfine spectra of nuclei across the Zn isotopic chain, N=33–49, allowed the measurement of nuclear spins for the ground and isomeric states in odd-A neutron-rich nuclei up to N=50. Exactly one long-lived (&
Laser and decay spectroscopy of the short-lived isotope Fr214 in the vicinity of the N=126 shell closure
Measurement and microscopic description of odd-even staggering of charge radii of exotic copper isotopes
Isotopes with an odd number of neutrons are usually slightly smaller in size than their even-neutron neighbours. In charge radii of short-lived copper isotopes, a reduction of this effect is observed when the neutron number approaches fifty. The mesoscopic nature of the atomic nucleus gives rise to a wide array of macroscopic and microscopic phenomena. The size of the nucleus is a window into this duality: while the charge radii globally scale as $A^{1/3}$, their evolution across isotopic chains reveals unanticipated structural phenomena [1-3]. The most ubiquitous of these is perhaps the Odd-Even Staggering (OES) [4]: isotopes with an odd number of neutrons are usually smaller in size than …
New measurement of the 242Pu(n,γ) cross section at n-TOF-EAR1 for MOX fuels: Preliminary results in the RRR
The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with 238U to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. The use of MOX fuels in thermal and fast reactors requires accurate capture and fission cross sections. For the particular case of 242Pu, the previous neutron capture cross section measurements were made in the 70’s, providing an uncertainty of about 35% in the keV region. In this context, the Nuclear Energy Agency recommends in its “High Priority Request List” and its report WPEC-26 that the capture cross section of 242Pu…
Laser Spectroscopy of Neutron-Rich Hg207,208 Isotopes: Illuminating the Kink and Odd-Even Staggering in Charge Radii across the N=126 Shell Closure
The mean-square charge radii of $^{207,208}$Hg ($Z=80, N=127,128$) have been studied for the first time and those of $^{202,203,206}$Hg ($N=122,123,126$) remeasured by the application of in-source resonance-ionization laser spectroscopy at ISOLDE (CERN). The characteristic \textit{kink} in the charge radii at the $N=126$ neutron shell closure has been revealed, providing the first information on its behavior below the $Z=82$ proton shell closure. A theoretical analysis has been performed within relativistic Hartree-Bogoliubov and non-relativistic Hartree-Fock-Bogoliubov approaches, considering both the new mercury results and existing lead data. Contrary to previous interpretations, it is d…
Precision measurements of the charge radii of potassium isotopes
International audience; Precision nuclear charge radii measurements in the light-mass region are essential for understanding the evolution of nuclear structure, but their measurement represents a great challenge for experimental techniques. At the Collinear Resonance Ionization Spectroscopy (CRIS) setup at ISOLDE-CERN, a laser frequency calibration and monitoring system was installed and commissioned through the hyperfine spectra measurement of $^{38–47}$K. It allowed for the extraction of the hyperfine parameters and isotope shifts with better than 1 MHz precision. These results are in excellent agreement with available literature values and they demonstrate the suitability of the CRIS tec…
Quadrupole moment of Fr 203
The spectroscopic electric quadrupole moment of the neutron-deficient francium isotope 203Fr was measured by using high-resolution collinear resonance ionization spectroscopy (CRIS) at the CERN Isotope Separation On-Line Device (ISOLDE)facility. A remeasurement of the 207Fr quadrupole momentwas also performed, resulting in a departure from the established literature value. A sudden increase in magnitude of the 203Fr quadrupole moment, with respect to the general trend in the region, points to an onset of static deformation at N =116 in the 87Fr isotopic chain. Calculation of the static and total deformation parameters show that the increase in static deformation only cannot account for the o…
7Be(n,α) and 7Be(n,p) cross-section measurement for the cosmological lithium problem at the n-TOF facility at CERN
One of the most puzzling problems in Nuclear Astrophysics is the “Cosmological Lithium Problem”, i.e the discrepancy between the primordial abundance of \(^{7}\)Li observed in metal poor halo stars (Asplund et al. in Astrophys J 644:229–259, 2006, [1]), and the one predicted by Big Bang Nucleosynthesis (BBN). One of the reactions that could have an impact on the problem is \(^{7}\)Be(n,p)\(^{7}\)Li. Despite of the importance of this reaction in BBN, the cross-section has never been directly measured at the energies of interest for BBN. Taking advantage of the innovative features of the second experimental area at the n\(\_\)TOF facility at CERN (Sabate-Gilarte et al. in Eur Phys J A 53:210,…
Nuclear mean-square charge radii of63,64,66,68−82Ga nuclei: No anomalous behavior atN=32
Collinear laser spectroscopy was performed on the ${}^{63,64,66,68\ensuremath{-}82}$Ga isotopes with neutron numbers from $N=32$ to $N=51$. These measurements were carried out at the ISOLDE radioactive ion beam facility at CERN. Here we present the nuclear mean-square charge radii extracted from the isotope shifts and, for the lighter isotopes, new spin and moment values. New ground-state nuclear spin and moments were extracted from the hyperfine spectra of ${}^{63,70}$Ga, measured on an atomic transition in the neutral atom. The ground-state spin of ${}^{63}$Ga is determined to be $I=3/2$. Analysis of the trend in the change in mean-square charge radii of the gallium isotopes demonstrates …
Nuclear moments put a new spin on the structure of 131In
Abstract In spite of the high-density and strongly correlated nature of the atomic nucleus, experimental and theoretical evidence suggests that around particular 'magic' numbers of nucleons, nuclear properties are governed by a single unpaired nucleon1,2. A microscopic understanding of the extent of this behaviour and its evolution in neutron-rich nuclei remains an open question in nuclear physics 3-5. A textbook example is the electromagnetic moments of indium (Z = 49) 6, which are dominated by a hole with respect to the proton magic number Z = 50 nucleus. They exhibit a remarkably constant behaviour over a large range of odd-mass isotopes, previously interpreted as pure "single-particle b…
Development of a laser ion source at IGISOL
FURIOS, the Fast Universal laser IOn Source, is under development at the IGISOL (Ion Guide Isotope Separator On-Line) mass separator facility in Jyvaskyla, Finland. This new laser ion source will combine a state-of-the-art solid state laser system together with a dye laser system, for the selective and efficient production of exotic radioactive species without compromising the universality and fast release inherent in the IGISOL system. The motivation for, and development of, this ion source is discussed in relation to the programme of research ongoing at this mass separator facility.
Isotope shifts in natural cerium
High resolution crossed beam resonance fluorescence laser spectroscopy has been performed on an atomic beam of naturally occurring cerium, and isotope shifts have been measured in several transitions. Changes in mean square charge radius, δ〈r 2〉, have been extracted using the King plot technique and show the characteristic increase at the N = 82 neutron shell closure. The measurements form the basis for further investigations of radioactive isotopes and isomers on both sides of the shell closure.
On-line laser spectroscopy of refractory radioisotopes at the JYFL IGISOL facility
A major objective of the laser-IGISOL program has been realized with the first ever on-line observation of collinear laser induced fluorescence from an ion of a refractory element. The measurements demonstrate that the IGISOL can be operated in a mode that produces ion beams of good emittance with reasonable extraction efficiency. The technique has been used to study the neutron-deficient Hf isotopes.
GEANT4 simulation of the neutron background of the C6D6 set-up for capture studies at n_TOF
The neutron sensitivity of the C6D6 detector setup used at n_TOF facility for capture measurements has been studied by means of detailed GEANT4 simulations. A realistic software replica of the entire n_TOF experimental hall, including the neutron beam line, sample, detector supports and the walls of the experimental area has beeni mplemented in the simulations. The simulations have been analyzed in the same manner as experimental data, in particular by applying the Pulse Height Weighting Technique. The simulations have been validated against a measurement of the neutron background performed with anatC sample, showing an excellent agreement above 1 keV. At lower energies, an additional compo…
Laser Spectroscopy of Neutron-Rich $^{207,208}$Hg Isotopes: Illuminating the Kink and Odd-Even Staggering in Charge Radii across the $N=126$ Shell Closure
The mean-square charge radii of $^{207,208}$Hg ($Z=80, N=127,128$) have been studied for the first time and those of $^{202,203,206}$Hg ($N=122,123,126$) remeasured by the application of in-source resonance-ionization laser spectroscopy at ISOLDE (CERN). The characteristic \textit{kink} in the charge radii at the $N=126$ neutron shell closure has been revealed, providing the first information on its behavior below the $Z=82$ proton shell closure. A theoretical analysis has been performed within relativistic Hartree-Bogoliubov and non-relativistic Hartree-Fock-Bogoliubov approaches, considering both the new mercury results and existing lead data. Contrary to previous interpretations, it is d…
The n_TOF facility: Neutron beams for challenging future measurements at CERN
The CERN n TOF neutron beam facility is characterized by a very high instantaneous neutron flux, excellent TOF resolution at the 185 m long flight path (EAR-1), low intrinsic background and coverage of a wide range of neutron energies, from thermal to a few GeV. These characteristics provide a unique possibility to perform high-accuracy measurements of neutron-induced reaction cross-sections and angular distributions of interest for fundamental and applied Nuclear Physics. Since 2001, the n TOF Collaboration has collected a wealth of high quality nuclear data relevant for nuclear astrophysics, nuclear reactor technology, nuclear medicine, etc. The overall efficiency of the experimental prog…
A dedicated decay-spectroscopy station for the collinear resonance ionization experiment at ISOLDE
A newdecay-spectroscopystation(DSS)has been developed to be coupled to the collinear resonance ionization spectroscopy (CRIS) beam line at CERN-ISOLDE. The system uses a rotatable wheel with ten 20 mg=cm2 carbon foils as beam implantation sites for the efficient measurement of charged decay products. Silicon detectors are placed on either side of the carbon foil in an optimal geometry to cover a large solid angle for detecting these charged particles. In addition to the silicon detectors at the on-beam axis position, a second pair of off-beam axis detectors are placed at the wheel position 108 deg. away, allowing longer-lived species to be studied. Up to three high purity germanium detector…
A compact linear Paul trap cooler buncher for CRIS
A gas-filled linear Paul trap for the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at ISOLDE, CERN is currently under development. The trap is designed to accept beam from both ISOLDE target stations and the CRIS stable ion source. The motivation for the project along with the current design, simulations and future plans, will be outlined. peerReviewed
CRIS: A new method in isomeric beam production
The Collinear Resonance Ionization Spectroscopy (CRIS) experiment at ISOLDE, CERN, uses laser radiation to stepwise excite and ionize an atomic beam for the purpose of ultra-sensitive detection of rare isotopes, and hyperfine-structure measurements. The technique also offers the ability to purify an ion beam that is heavily contaminated with radioactive isobars, including the ground state of an isotope from its isomer, allowing decay spectroscopy on nuclear isomeric states to be performed. The isomeric ion beam is selected by resonantly exciting one of its hyperfine structure levels, and subsequently ionizing it. This selectively ionized beam is deflected to a decay spectroscopy station (DS…
An ion cooler-buncher for high-sensitivity collinear laser spectroscopy at ISOLDE
International audience; A gas-filled segmented linear Paul trap has been installed at the focal plane of the high-resolution separator (HRS) at CERN-ISOLDE. As well as providing beams with a reduced transverse emittance, this device is also able to accumulate the ions and release the sample in bunches with a well-defined time structure. This has recently permitted collinear laser spectroscopy with stable and radioactive bunched beams to be demonstrated at ISOLDE. Surface-ionized 39, 44, 46K and 85Rb beams were accelerated to 30keV, mass separated and injected into the trap for subsequent extraction and delivery to the laser setup. The ions were neutralized in a charge exchange cell and exci…
Nuclear Spins and Magnetic Moments ofCu71,73,75: Inversion ofπ2p3/2andπ1f5/2Levels inCu75
We report the first confirmation of the predicted inversion between the pi2p3/2 and pi1f5/2 nuclear states in the nu(g)9/2 midshell. This was achieved at the ISOLDE facility, by using a combination of in-source laser spectroscopy and collinear laser spectroscopy on the ground states of 71,73,75Cu, which measured the nuclear spin and magnetic moments. The obtained values are mu(71Cu)=+2.2747(8)mu(N), mu(73Cu)=+1.7426(8)mu(N), and mu(75Cu)=+1.0062(13)mu(N) corresponding to spins I=3/2 for 71,73Cu and I=5/2 for 75Cu. The results are in fair agreement with large-scale shell-model calculations.
Ground-state spins and moments of72,74,76,78Ga nuclei
Laser spectroscopy was performed on the ${}^{72,74,76,78}$Ga isotopes at On-Line Isotope Mass Separator (ISOLDE) facility, CERN. Ground-state nuclear spins and moments were extracted from the measured hyperfine spectra. The results are compared to shell-model calculations, which provide a detailed probe of the nuclear wave function. The spin is established from the shape of the hyperfine structure and the parity inferred from a comparison of shell-model calculations with the measured nuclear moments. The ground states of ${}^{76,78}$Ga are both assigned a spin and parity of ${I}^{\ensuremath{\pi}}={2}^{\ensuremath{-}}$, while ${}^{74}$Ga is tentatively assigned as ${I}^{\ensuremath{\pi}}={3…
Tin resonance-ionization schemes for atomic- And nuclear-structure studies
This paper presents high-precision spectroscopic measurements of atomic tin using five different resonance-ionization schemes performed with the collinear resonance-ionization spectroscopy technique. Isotope shifts were measured for the stable tin isotopes from the $5{s}^{2}5{p}^{2}\phantom{\rule{0.28em}{0ex}}^{3}{P}_{0,1,2}$ and ${}^{1}{S}_{0}$ to the $5{s}^{2}5p6s\phantom{\rule{0.28em}{0ex}}^{1}{P}_{1},^{3}{P}_{1,2}$ and $5{s}^{2}5p7s{\phantom{\rule{0.28em}{0ex}}}^{1}{P}_{1}$ atomic levels. The magnetic dipole hyperfine constants ${A}_{\mathrm{hf}}$ have been extracted for six atomic levels with electron angular momentum $Jg0$ from the hyperfine structures of nuclear spin $I=1/2$ tin isot…
Collinear laser spectroscopy of neutron-rich cerium isotopes near theN= 88 shape transition
Laser spectroscopy has been used to measure the isotope shifts of 146Ce and 148Ce relative to 144Ce, Z = 58. The new data, in combination with existing optical data on the stable isotopes and radioactive 144Ce isotope, permits a study of charge radii variations for the even-N Ce nuclei from N = 78 to N = 90. This range covers both the N = 82 shell closure and the N = 88 shape transition region. A marked increase in deformation occurs at N = 88 for elements with Z ≥ 60 but not for those with Z ≤ 56. The new data for Ce (Z = 58) show an intermediate behaviour, resulting in a smooth increase in deformation with Z in the N = 88, 90 region.
Laser spectroscopy of francium isotopes at the borders of the region of reflection asymmetry
The magnetic dipole moments and changes in mean-square charge radii of the neutron-rich $^{218m,219,229,231}\text{Fr}$ isotopes were measured with the newly-installed Collinear Resonance Ionization Spectroscopy (CRIS) beam line at ISOLDE, CERN, probing the $7s~^{2}S_{1/2}$ to $8p~^{2}P_{3/2}$ atomic transition. The $\delta\langle r^{2}\rangle^{A,221}$ values for $^{218m,219}\text{Fr}$ and $^{229,231}\text{Fr}$ follow the observed increasing slope of the charge radii beyond $N~=~126$. The charge radii odd-even staggering in this neutron-rich region is discussed, showing that $^{220}\text{Fr}$ has a weakly inverted odd-even staggering while $^{228}\text{Fr}$ has normal staggering. This sugges…
Measurement of the a ratio and (n,¿) cross section of U 235 from 0.2 to 200 eV at n_TOF
We measured the neutron capture-to-fission cross-section ratio (a ratio) and the capture cross section of 235U between 0.2 and 200 eV at the n_TOF facility at CERN. The simultaneous measurement of neutron-induced capture and fission rates was performed by means of the n_TOF BaF2 Total Absorption Calorimeter (TAC), used for detection of ¿ rays, in combination with a set of micromegas detectors used as fission tagging detectors. The energy dependence of the capture cross section was obtained with help of the 6 Li(n,t) standard reaction determining the n_TOF neutron fluence; the well-known integral of the 235U(n, f ) cross section between 7.8 and 11 eV was then used for its absolute normalizat…
Upgrade and yields of the IGISOL facility
The front end of the Jyvaskyla IGISOL facility was upgraded in 2003 by increasing its pumping capacity and by improving the radiation shielding. In late 2005, the skimmer electrode of the mass separator was replaced by a sextupole ion guide, which improved the mass separator efficiency up to an order of magnitude. The current design of the facility is described. The updated yield data, achieved with and without the additional JYFLTRAP purification, using both fusion evaporation reactions and particle induced fission is presented to give an overview of the capability of the facility. These data have been determined either by radioactivity measurements or by direct ion counting after the Penn…
Laser spectroscopy of neutron deficient zirconium isotopes
The first optical measurements of the neutron deficient isotopes, 87-89Zr, and also the two long-lived isomers, 87m,89mZr, have been performed using the new technique of collinear laser spectroscopy of cooled, bunched ion beams. Nuclear mean-square charge radii, spins, magnetic moments and quadrupole moments spanning the N = 50 shell closure are reported. The \"kink\" in the charge radii trends at the neutron shell closure is the most pronounced obsd. for any element in the region. [on SciFinder (R)]
Dipole and quadrupole moments of $^{73-78}$Cu as a test of the robustness of the $Z=28$ shell closure near $^{78}$Ni
Nuclear spins and precise values of the magnetic dipole and electric quadrupole moments of the ground states of neutron-rich Cu73–78 isotopes were measured using the Collinear Resonance Ionization Spectroscopy (CRIS) experiment at the CERN On-Line Isotope Mass Separator (ISOLDE) facility. The nuclear moments of the less exotic Cu73,75 isotopes were remeasured with similar precision, yielding values that are consistent with earlier measurements. The moments of the odd-odd isotopes, and 2978Cu (N=49) in particular, are used to investigate excitations of the assumed doubly magic Ni78 core through comparisons with large-scale shell-model calculations. Despite the narrowing of the Z=28 shell gap…
Charge radii, moments, and masses of mercury isotopes across the N=126 shell closure
Combining laser spectroscopy in a Versatile Arc Discharge and Laser Ion Source, with Penning-trap mass spectrometry at the CERN-ISOLDE facility, this work reports on mean-square charge radii of neutron-rich mercury isotopes across the $N = 126$ shell closure, the electromagnetic moments of $^{207}$Hg and more precise mass values of $^{206-208}$Hg. The odd-even staggering (OES) of the mean square charge radii and the kink at $N = 126$ are analyzed within the framework of covariant density functional theory (CDFT), with comparisons between different functionals to investigate the dependence of the results on the underlying single-particle structure. The observed features are defined predomina…
High-resolution laser spectroscopy with the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN-ISOLDE
The Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN has achieved high-resolution resonance ionisation laser spectroscopy with a full width at half maximum linewidth of 20(1) MHz for 219;221Fr, and has measured isotopes as short lived as 5 ms with 214Fr. This development allows for greater precision in the study of hyperfine structures and isotope shifts, as well as a higher selectivity of singleisotope, even single-isomer, beams. These achievements are linked with the development of a new laser laboratory and new data-acquisition systems. publisher: Elsevier articletitle: High-resolution laser spectroscopy with the Collinear Resonance Ionisation Spectroscopy (CRIS) exp…
Investigating the large deformation of the 5/2+ isomeric state in Zn73 : An indicator for triaxiality
Nuclear moments, charge radii and spins of the ground and isomeric states in175Yb and177Yb
This paper reports static moments and changes in mean-square charge radii of 175, 177, 177mYb measured using collinear laser spectroscopy at the IGISOL facility. The moments are compared to predictions made using the Nilsson model to determine the purity of the multi-quasiparticle T1/2 = 11.4 s, Iπ = 8− state of 176Yb and the ground state of 177Yb. The ground-state spins of 175, 177Yb and the T1/2 = 6.41 s, E = 331.5 keV isomeric state in 177Yb, have been measured from the hyperfine structure to be 7/2, 9/2 and 1/2 respectively.
Be7(n,α)He4Reaction and the Cosmological Lithium Problem: Measurement of the Cross Section in a Wide Energy Range at n_TOF at CERN
The energy-dependent cross section of the (7)Bed(n,alpha)He-4 reaction, of interest for the so-called cosmological lithium problem in big bang nucleosynthesis, has been measured for the first time from 10 meV to 10 keV neutron energy. The challenges posed by the short half-life of Be-7 and by the low reaction cross section have been overcome at n_TOF thanks to an unprecedented combination of the extremely high luminosity and good resolution of the neutron beam in the new experimental area (EAR2) of the n_TOF facility at CERN, the availability of a sufficient amount of chemically pure Be-7, and a specifically designed experimental setup. Coincidences between the two alpha particles have been…
Neutron capture cross section measurement ofU238at the CERN n_TOF facility in the energy region from 1 eV to 700 keV
The aim of this work is to provide a precise and accurate measurement of the U238(n,γ) reaction cross section in the energy region from 1 eV to 700 keV. This reaction is of fundamental importance for the design calculations of nuclear reactors, governing the behavior of the reactor core. In particular, fast reactors, which are experiencing a growing interest for their ability to burn radioactive waste, operate in the high energy region of the neutron spectrum. In this energy region most recent evaluations disagree due to inconsistencies in the existing measurements of up to 15%. In addition, the assessment of nuclear data uncertainty performed for innovative reactor systems shows that the u…
Shape staggering of midshell mercury isotopes from in-source laser spectroscopy compared with density-functional-theory and Monte Carlo shell-model calculations
Neutron-deficient Hg177-185 isotopes were studied using in-source laser resonance-ionization spectroscopy at the CERN-ISOLDE radioactive ion-beam facility in an experiment combining different detection methods tailored to the studied isotopes. These include either α-decay tagging or multireflection time-of-flight gating for isotope identification. The endpoint of the odd-even nuclear shape staggering in mercury was observed directly by measuring for the first time the isotope shifts and hyperfine structures of Hg177-180. Changes in the mean-square charge radii for all mentioned isotopes, magnetic dipole, and electric quadrupole moments of the odd-A isotopes and arguments in favor of I=7/2 s…
The shape transition in the neutron-rich yttrium isotopes and isomers
Abstract Laser spectroscopy has been used to study 86–90,92–102Y and isomeric states of 87–90,93,96,97,98Y. Nuclear charge radii differences, magnetic dipole and electric quadrupole moments have been obtained. Information on the nature of the Z ≈ 40 , N ≈ 60 sudden onset of deformation has been derived from all three parameters. It is seen that with increasing neutron number from the N = 50 shell closure that the nuclear deformation becomes increasingly oblate and increasingly soft. At N = 60 a transition to a strongly deformed rigid prolate shape occurs but prior to this, although the nuclear deformation is increasing with N, a proportionate increase in softness is also observed.
Spins and magnetic moments of 58;60;62;64Mn ground states and isomers
The odd-odd 54;56;58;60;62;64Mn isotopes (Z = 25) were studied using bunched-beam collinear laser spectroscopy at ISOLDE, CERN. From the measured hyperfine spectra the spins and magnetic moments of Mn isotopes up to N = 39 were extracted. The previous tentative ground state spin assignments of 58;60;62;64Mn are now firmly determined to be I = 1 along with an I = 4 assignment for the isomeric states in 58;60;62Mn. The I = 1 magnetic moments show a decreasing trend with increasing neutron number while the I = 4 moments remain quite constant between N = 33 and N = 37. The results are compared to large-scale shell-model calculations using the GXPF1A and LNPS effective interactions. The excellen…
Ground state properties of manganese isotopes across the N=28 shell closure
Abstract The first optical study of the N = 28 shell closure in manganese is reported. Mean-square charge radii and quadrupole moments, obtained for ground and isomeric states in 50–56 Mn, are extracted using new calculations of atomic factors. The charge radii show a well defined shell closure at the magic number. The behaviour of the charge radii is strikingly different to that of the neutron separation energies where no shell effect can be observed. The nuclear parameters can be successfully described by large scale shell model calculations using the GXPF1A interaction.
Spins and magnetic moments ofMn58,60,62,64ground states and isomers
The odd-odd $^{54,56,58,60,62,64}\mathrm{Mn}$ isotopes ($Z=25$) were studied using bunched-beam collinear laser spectroscopy at ISOLDE, CERN. From the measured hyperfine spectra the spins and magnetic moments of Mn isotopes up to $N=39$ were extracted. The previous tentative ground state spin assignments of $^{58,60,62,64}\mathrm{Mn}$ are now firmly determined to be $I=1$ along with an $I=4$ assignment for the isomeric states in $^{58,60,62}\mathrm{Mn}$. The $I=1$ magnetic moments show a decreasing trend with increasing neutron number while the $I=4$ moments remain quite constant between $N=33$ and $N=37$. The results are compared to large-scale shell-model calculations using the GXPF1A and…
Analytic response relativistic coupled-cluster theory: the first application to indium isotope shifts
With increasing demand for accurate calculation of isotope shifts of atomic systems for fundamental and nuclear structure research, an analytic energy derivative approach is presented in the relativistic coupled-cluster theory framework to determine the atomic field shift and mass shift factors. This approach allows the determination of expectation values of atomic operators, overcoming fundamental problems that are present in existing atomic physics methods, i.e. it satisfies the Hellmann-Feynman theorem, does not involve any non-terminating series, and is free from choice of any perturbative parameter. As a proof of concept, the developed analytic response relativistic coupled-cluster the…
The Nuclear astrophysics program at n_TOF (CERN)
An important experimental program on Nuclear Astrophysics is being carried out at the n_TOF since several years, in order to address the still open issues in stellar and primordial nucleosynthesis. Several neutron capture reactions relevant to s-process nucleosynthesis have been measured so far, some of which on important branching point radioisotopes. Furthermore, the construction of a second experimental area has recently opened the way to challenging measurements of (n, charged particle) reactions on isotopes of short half-life. The Nuclear Astrophysics program of the n_TOF Collaboration is here described, with emphasis on recent results relevant for stellar nucleosynthesis, stellar neut…
Dipole and quadrupole moments of Cu73–78 as a test of the robustness of the Z=28 shell closure near Ni78
Nuclear spins and precise values of the magnetic dipole and electric quadrupole moments of the ground-states of neutron-rich $^{76-78}$Cu isotopes were measured using the Collinear Resonance Ionization Spectroscopy (CRIS) experiment at ISOLDE, CERN. The nuclear moments of the less exotic $^{73,75}$Cu isotopes were re-measured with similar precision, yielding values that are consistent with earlier measurements. The moments of the odd-odd isotopes, and $^{78}_{29}$Cu ($N=49$) in particular, are used to investigate excitations of the assumed doubly-magic $^{78}$Ni core through comparisons with large-scale shell-model calculations. Despite the narrowing of the $Z=28$ shell gap between $N\sim45…
Radium ionization scheme development: The first observed autoionizing states and optical pumping effects in the hot cavity environment
© 2018 The Authors This paper reports on resonance ionization scheme development for the production of exotic radium ion beams with the Resonance Ionization Laser Ion Source (RILIS) of the CERN-ISOLDE radioactive ion beam facility. During the study, autoionizing states of atomic radium were observed for the first time. Three ionization schemes were identified, originating from the 7s2 1S0 atomic ground state. The optimal of the identified ionization schemes involves five atomic transitions, four of which are induced by three resonantly tuned lasers. This is the first hot cavity RILIS ionization scheme to employ optical pumping effects. The details of the spectroscopic studies are described …
First collinear laser spectroscopy measurements of radioisotopes from an IGISOL ion source
Abstract The standard Doppler-free technique of collinear laser spectroscopy has been successfully applied to radioisotopes from the ion-guide isotope separator (IGISOL) at the University of Jyvaskyla. The laser resonance fluorescence signals for the 140,142,144 Ba radioisotopes show that the ion beam energy spread is less than 6 eV, allowing the laser technique to have both high resolution and a sensitivity comparable with the best obtained at conventional facilities.
Charge radii of exotic potassium isotopes challenge nuclear theory and the magic character of N = 32
Nuclear charge radii are sensitive probes of different aspects of the nucleon-nucleon interaction and the bulk properties of nuclear matter; thus, they provide a stringent test and challenge for nuclear theory. The calcium region has been of particular interest, as experimental evidence has suggested a new magic number at $N = 32$ [1-3], while the unexpectedly large increases in the charge radii [4,5] open new questions about the evolution of nuclear size in neutron-rich systems. By combining the collinear resonance ionization spectroscopy method with $\beta$-decay detection, we were able to extend the charge radii measurement of potassium ($Z =19$) isotopes up to the exotic $^{52}$K ($t_{1…
Nuclear spin determination of100mY by collinear laser spectroscopy of optically pumped ions
The nuclear spin of the τ1/2 = 0.94 s isomer in 100Y has been determined by collinear laser spectroscopy of optically pumped yttrium fission fragments at the IGISOL facility, JYFL. The isotopes 96, 98, 99, 100Y were produced by the proton-induced fission of natural uranium, and studied on the 4d5s 3D2 (1045 cm−1) → 4d5p 3P1 (32 124 cm−1) transition at 321.67 nm. Enhancement of the population of the metastable 3D2 level was achieved by optically pumping the ground state population via the 5s2 1S0 → 4d5p 1P1 transition at 363.31 nm while the ions were stored in a linear Paul trap. These data, when combined with previous spectroscopic results, give sufficient information for the nuclear spin o…
Laser spectroscopy of niobium fission fragments: first use of optical pumping in an ion beam cooler buncher.
A new method of optical pumping in an ion beam cooler buncher has been developed to selectively enhance ionic metastable state populations. The technique permits the study of elements previously inaccessible to laser spectroscopy and has been applied here to the study of Nb. Model independent mean-square charge radii and nuclear moments have been studied for $^{90,90\text{ }\mathrm{m},91,91\text{ }\mathrm{m},92,93,99,101,103}\mathrm{Nb}$ to cover the region of the $N=50$ shell closure and $N\ensuremath{\approx}60$ sudden onset of deformation. The increase in mean-square charge radius is observed to be less than that for Y, with a substantial degree of $\ensuremath{\beta}$ softness observed …
On-Line Ion Cooling and Bunching for Collinear Laser Spectroscopy
A new method has been developed for increasing the sensitivity of collinear laser spectroscopy. The method utilizes an ion-trapping technique in which a continuous low-energy ion beam is cooled and accumulated in a linear Paul trap and subsequently released as a short ( $10--20\ensuremath{\mu}\mathrm{s}$) bunch. In collinear laser measurements the signal-to-noise ratio has been improved by a factor of $2\ifmmode\times\else\texttimes\fi{}{10}^{4}$, allowing spectroscopic measurements to be made with ion-beam fluxes of $\ensuremath{\sim}50\mathrm{ions}{\mathrm{s}}^{\ensuremath{-}1}$. The bunching method has been demonstrated in an on-line isotope shift and hyperfine structure measurement on r…
The 33S(n,α)30Si cross section measurement at n TOF-EAR2 (CERN): From 0.01 eV to the resonance region
The 33S(n,α)30Si cross section measurement, using 10B(n,α) as reference, at the n TOF Experimental Area 2 (EAR2) facility at CERN is presented. Data from 0.01 eV to 100 keV are provided and, for the first time, the cross section is measured in the range from 0.01 eV to 10 keV. These data may be used for a future evaluation of the cross section because present evaluations exhibit large discrepancies. The 33S(n,α)30Si reaction is of interest in medical physics because of its possible use as a cooperative target to boron in Neutron Capture Therapy (NCT).
Combined high-resolution laser spectroscopy and nuclear decay spectroscopy for the study of the low-lying states inFr206,At202, andBi198
High-resolution laser spectroscopy was performed on $^{206}\mathrm{Fr}$ with the collinear resonance ionization spectroscopy (CRIS) experiment at CERN-ISOLDE. The hyperfine structure and isotope shift of the ground, first isomeric and second isomeric states were measured. The hyperfine components were unambiguously assigned to each nuclear state by means of laser-assisted nuclear decay spectroscopy. The branching ratios in the $\ensuremath{\alpha}$ decay of $^{206}\mathrm{Fr}$ and $^{202}\mathrm{At}$ were also measured for the first time with isomerically purified beams. The extracted hindrance factors allow determination of the spin of the ground, first isomeric, and second isomeric states…
Laser spectroscopy of cooled zirconium fission fragments
The first on-line laser spectroscopy of cooled fission fragments is reported. The $^{\mathrm{96}\mathrm{--}\mathrm{102}}\mathrm{Z}\mathrm{r}$ ions, produced in uranium fission, were extracted and separated using an ion guide isotope separator. The ions were cooled and bunched for collinear laser spectroscopy by a gas-filled linear Paul trap. New results for nuclear mean-square charge radii, dipole, and quadrupole moments are reported across the $N=60$ shape change. The mean-square charge radii are found to be almost identical to those of the Sr isotones and previously offered modeling of the radial changes is critically reviewed.
Laser spectroscopy of radioactive Ti, Zr and Hf isotopes and isomers at the JYFL laser-IGISOL facility
Abstract The recent progress at the laser-ion guide isotope separator on-line facility, JYFL, is presented. At the facility new techniques for studying short-lived radioisotopes by laser spectroscopy have been developed and applied to the study of isotopes in refractory metal elements. In particular, recent results on the spectroscopy of cooled ion beams of radioactive Ti, Zr and Hf isotopes are discussed.
Use of a Continuous Wave Laser and Pockels Cell for Sensitive High-Resolution Collinear Resonance Ionization Spectroscopy
New technical developments have led to a 2 orders of magnitude improvement of the resolution of the collinear resonance ionization spectroscopy (CRIS) experiment at ISOLDE, CERN, without sacrificing the high efficiency of the CRIS technique. Experimental linewidths of 20(1) MHz were obtained on radioactive beams of francium, allowing us for the first time to determine the electric quadrupole moment of the short lived [t1/2=22.0(5) ms]219Fr Qs=−1.21(2) eb, which would not have been possible without the advantages offered by the new method. This method relies on a continuous-wave laser and an external Pockels cell to produce narrow-band light pulses, required to reach the high resolution in t…
Spectroscopy of short-lived radioactive molecules: A sensitive laboratory for new physics
The study of molecular systems provides exceptional opportunities for the exploration of the fundamental laws of nature and for the search for physics beyond the Standard Model of particle physics. Measurements of molecules composed of naturally occurring nuclei have provided the most stringent upper bounds to the electron electric dipole moment to date, and offer a route to investigate the violation of fundamental symmetries with unprecedented sensitivity. Radioactive molecules - where one or more of their atoms possesses a radioactive nucleus - can contain heavy and deformed nuclei, offering superior sensitivity for EDM measurements as well as for other symmetry-violating effects. Radium …
Off-line commissioning of the ISOLDE cooler
International audience; Among the multiple progresses in radioactive ion beam (RIB) manipulation for physics experiments, the beam cooling and bunching in gas-filled RF traps has become a widely used technique. It is particularly well adapted to precision experiments, such as Penning trap mass spectrometry or collinear laser spectroscopy. At ISOLDE, an rf quadrupole cooler and ion buncher (RFQCB) has been designed and developed to deliver radioactive beams of improved quality among most of the on-line experiments. The results of the first off-line tests have shown that high transmission efficiencies could be achieved with different RIBs of alkali metals, as it was expected. During the later…
Measurement of the Pu-242(n,gamma) cross section from thermal to 500 keV at the Budapest research reactor and CERN n_TOF-EAR1 facilities
The design and operation of innovative nuclear systems requires a better knowledge of the capture and fission cross sections of the Pu isotopes. For the case of capture on 242Pu, a reduction of the uncertainty in the fast region down to 8-12% is required. Moreover, aiming at improving the evaluation of the fast energy range in terms of average parameters, the OECD NEA High Priority Request List (HPRL) requests high-resolution capture measurements with improved accuracy below 2 keV. The current uncertainties also affect the thermal point, where previous experiments deviate from each other by 20%. A fruitful collaboration betwen JGU Mainz and HZ Dresden-Rossendorf within the EC CHANDA project…
Experimental neutron capture data of 58Ni from the CERN n_TOF facility
The $^{58}$Ni $(n,\gamma)$ cross section has been measured at the neutron time of flight facility n_TOF at CERN, in the energy range from 27 meV up to 400 keV. In total, 51 resonances have been analyzed up to 122 keV. Maxwellian averaged cross sections (MACS) have been calculated for stellar temperatures of kT$=$5-100 keV with uncertainties of less than 6%, showing fair agreement with recent experimental and evaluated data up to kT = 50 keV. The MACS extracted in the present work at 30 keV is 34.2$\pm$0.6$_\mathrm{stat}\pm$1.8$_\mathrm{sys}$ mb, in agreement with latest results and evaluations, but 12% lower relative to the recent KADoNIS compilation of astrophysical cross sections. When in…
On the decrease in charge radii of multi-quasi particle isomers
Abstract We report changes in mean-square charge radii, δ 〈 r 2 〉 , magnetic moments and quadrupole moments for three multi-quasi particle isomers; 97m2Y, 176mYb and 178m1Hf. All the isomers are observed to display a decrease in 〈 r 2 〉 compared to the lower-lying nuclear state on which the isomer is built. The decreases in 〈 r 2 〉 occur despite the isomers showing increases in quadrupole moment. Possible mechanisms for the effect, which is now seen for six multi-quasi particle isomers, are discussed.
Magnetic and quadrupole moments of neutron deficient 58-62Cu isotopes
Abstract This paper reports on the ground state nuclear moments measured in 58–62Cu using collinear laser spectroscopy at the ISOLDE facility. The quadrupole moments for 58–60Cu have been measured for the first time as Q ( Cu 58 ) = − 15 ( 3 ) efm 2 , Q ( Cu 59 ) = − 19.3 ( 19 ) efm 2 , Q ( Cu 60 ) = + 11.6 ( 12 ) efm 2 and with higher precision for 61,62Cu as Q ( Cu 61 ) = − 21.1 ( 10 ) efm 2 , Q ( Cu 62 ) = − 2.2 ( 4 ) efm 2 . The magnetic moments of 58,59Cu are measured with a higher precision as μ ( Cu 58 ) = + 0.570 ( 2 ) μ N and μ ( Cu 59 ) = + 1.8910 ( 9 ) μ N . The experimental nuclear moments are compared to large-scale shell-model calculations with the GXPF1 and GXPF1A effective i…
The nuclear magnetic moment of 208Bi and its relevance for a test of bound-state strong-field QED
Physics letters / B 779, 324 - 330 (2018). doi:10.1016/j.physletb.2018.02.024
Collinear Resonance Ionization Spectroscopy of Neutron-Deficient Francium Isotopes
The magnetic moments and isotope shifts of the neutron-deficient francium isotopes 202-205Fr were measured at ISOLDE-CERN with use of collinear resonance ionization spectroscopy. A production-to-detection efficiency of 1% was measured for 202Fr. The background from nonresonant and collisional ionization was maintained below one ion in 105 beam particles. Through a comparison of the measured charge radii with predictions from the spherical droplet model, it is concluded that the ground-state wave function remains spherical down to 205Fr, with a departure observed in 203Fr (N = 116). ispartof: Physical Review Letters vol:111 issue:21 pages:212501-4 ispartof: location:United States status: pub…
Character of an 8− isomer of 130Ba
Abstract The static moments and isomer shift of the J π = K π =8 − isomeric state in 130 56 Ba have been measured using the technique of collinear laser spectroscopy. The isomer has been found to have a magnetic dipole moment of −0.043(28) μ N and a static quadrupole moment of +2.77(30) b. These values have been used to assign the state as a two neutron 7 2 + [404]⊗ 9 2 − [514] configuration corresponding to a prolate shape. The half-life of the isomer has been confirmed as 9.54(14) ms. The change in the mean square charge radius was found to be 〈 r 2 〉 130m −〈 r 2 〉 130g–s =−0.0473(30) fm 2 .
Nuclear Data for the Thorium Fuel Cycle and the Transmutation of Nuclear Waste
Neutron-induced reaction cross sections play an important role in a wide variety of research fields, ranging from stellar nucleosynthesis, the investigation of nuclear level density studies, to applications of nuclear technology, including the transmutation of nuclear waste, accelerator-driven systems, and nuclear fuel cycle investigations. Simulations of nuclear technology applications largely rely on evaluated nuclear data libraries. These libraries are based both on experimental data and theoretical models. An outline of experimental nuclear data activities at CERN’s neutron time-of-flight facility, n_TOF, will be presented.
The 236U neutron capture cross-section measured at the n TOF CERN facility
International audience; The $^{236}$U isotope plays an important role in nuclear systems, both for future and currently operating ones. The actual knowledge of the capture reaction of this isotope is satisfactory in the thermal region, but it is considered insufficient for Fast Reactor and ADS applications. For this reason the $^{236} \text{U}(n, \gamma)$ reaction cross-section has been measured for the first time in the whole energy region from thermal energy up to 1 MeV at the n_TOF facility with two different detection systems: an array of C$_6$D$_6$ detectors, employing the total energy deposited method, and a 4$\pi$ total absorption calorimeter (TAC), made of 40 BaF$_2$ crystals. The t…
Erratum to ‘Simulation of the relative atomic populations of elements 1≤Z ≤89 following charge exchange tested with collinear resonance ionization spectroscopy of indium’ [Spectrochimica Acta Part B 153 (2019) 61–83]
High precision measurement of the radiative capture cross section of 238U at the n_TOF CERN facility
The importance of improving the accuracy on the capture cross-section of 238U has been addressed by the Nuclear Energy Agency, since its uncertainty significantly affects the uncertainties of key design parameters for both fast and thermal nuclear reactors. Within the 7th framework programme ANDES of the European Commission three different measurements have been carried out with the aim of providing the 238U(n,γ) cross-section with an accuracy which varies from 1 to 5%, depending on the energy range. Hereby the final results of the measurement performed at the n-TOF CERN facility in a wide energy range from 1 eV to 700 keV will be presented. © The Authors, published by EDP Sciences, 2017.
Nuclear Moments of Germanium Isotopes around $N$ = 40
Collinear laser spectroscopy measurements were performed on $^{69,71,73}$Ge isotopes ($Z = 32$) at ISOLDE-CERN. The hyperfine structure of the $4s^2 4p^2 \, ^3P_1 \rightarrow 4s^2 4p 5s \, ^3P_1^o$ transition of the germanium atom was probed with laser light of 269 nm, produced by combining the frequency-mixing and frequency-doubling techniques. The hyperfine fields for both atomic levels were calculated using state-of-the-art atomic relativistic Fock-space coupled-cluster calculations. A new $^{73}$Ge quadrupole moment was determined from these calculations and previously measured precision hyperfine parameters, yielding $Q_{\rm s}$ = $-$0.198(4) b, in excellent agreement with the literatu…
High-Precision Multiphoton Ionization of Accelerated Laser-Ablated Species
We demonstrate that the pulsed-time structure and high-peak ion intensity provided by the laser-ablation process can be directly combined with the high resolution, high efficiency, and low background offered by collinear resonance ionization spectroscopy. This simple, versatile, and powerful method offers new and unique opportunities for high-precision studies of atomic and molecular structures, impacting fundamental and applied physics research. We show that even for ion beams possessing a relatively large energy spread, high-resolution hyperfine-structure measurements can be achieved by correcting the observed line shapes with the time-of-flight information of the resonantly ionized ions.…
Fission fragment angular distribution of 232Th(n,f) at the CERN n TOF facility
The angular distribution of fragments emitted in neutron-induced fission of 232Th was measured in the white spectrum neutron beam at the n_TOF facility at CERN. A reaction chamber based on Parallel Plate Avalanche Counters (PPAC) was used, where the detectors and the targets have been tilted 45 degrees with respect to the neutron beam direction in order to cover the full angular range of the fission fragments. A GEANT4 simulation has been developed to study the setup efficiency. The data analysis and the preliminary results obtained for the 232Th(n,f) between fission threshold and 100 MeV are presented here.
Changes in nuclear structure along the Mn isotopic chain studied via charge radii
The hyperfine spectra of $^{51,53-64}$Mn were measured in two experimental runs using collinear laser spectroscopy at ISOLDE, CERN. Laser spectroscopy was performed on the atomic $3d^5\ 4s^2\ ^{6}\text{S}_{5/2}\rightarrow 3d^5\ 4s4p\ ^{6}\text{P}_{3/2}$ and ionic $3d^5\ 4s\ ^{5}\text{S}_2 \rightarrow 3d^5\ 4p\ ^{5}\text{P}_3$ transitions, yielding two sets of isotope shifts. The mass and field shift factors for both transitions have been calculated in the multiconfiguration Dirac-Fock framework and were combined with a King plot analysis in order to obtain a consistent set of mean-square charge radii which, together with earlier work on neutron-deficient Mn, allow the study of nuclear struc…
Radiative neutron capture on Pu242 in the resonance region at the CERN n_TOF-EAR1 facility
The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with uranium to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. However, an extensive use of MOX fuels, in particular in fast reactors, requires more accurate capture and fission cross sections for some Pu isotopes. In the case of Pu242 there are sizable discrepancies among the existing capture cross-section measurements included in the evaluations (all from the 1970s) resulting in an uncertainty as high as 35% in the fast energy region. Moreover, postirradiation experiments evaluat…
The measurement programme at the neutron time-of-flight facility n_TOF at CERN
Neutron-induced reaction cross sections are important for a wide variety of research fields ranging from the study of nuclear level densities, nucleosynthesis to applications of nuclear technology like design, and criticality and safety assessment of existing and future nuclear reactors, radiation dosimetry, medical applications, nuclear waste transmutation, accelerator-driven systems and fuel cycle investigations. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. CERN’s neutron time-of-flight facility n TOF has produced a considerabl…
Collinear laser spectroscopy of radioisotopes of zirconium
Isotope shifts and hyperfine structures have been measured for radioisotopes of ionic zirconium using on-line laser spectroscopy at the IGISOL facility in Jyvaskyla, where the installation of an ion beam cooler/buncher has significantly improved the experimental sensitivity. Measurements have been made on all the neutron-deficient isotopes from 87Zr to 90Zr, including the isomers 87m,89mZr, and the neutron-rich isotopes from 96Zr to 102Zr. The change in mean square charge radii between the isotopes and the nuclear moments of the odd isotopes have been extracted. The data show a sudden increase in the mean square charge radius at mass A = 100, consistent with an onset of nuclear deformation …
Development of the CRIS (Collinear Resonant Ionisation Spectroscopy) beam line
The CRIS (Collinear Resonant Ionisation Spectroscopy) beam line is a new experimental set up at the ISOLDE facility at CERN. CRIS is being constructed for highresolution laser spectroscopy measurements on radioactive isotopes. These measurements can be used to extract nuclear properties of isotopes far from stability. The CRIS beam line has been under construction since 2009 and testing of its constituent parts have been performed using stable and radioactive ion beams, in preparation for its first on-line run. This paper will present the current status of the CRIS experiment and highlight results from the recent tests. ispartof: pages:012070-6 ispartof: Journal of Physics: Conference Serie…
Nuclear charge radii of 62−80Zn and their dependence on cross-shell proton excitations
Nuclear charge radii of 62−80Zn have been determined using collinear laser spectroscopy of bunched ion beams at CERN-ISOLDE. The subtle variations of observed charge radii, both within one isotope and along the full range of neutron numbers, are found to be well described in terms of the proton excitations across the Z=28 shell gap, as predicted by large-scale shell model calculations. It comprehensively explains the changes in isomer-to-ground state mean square charge radii of 69−79Zn, the inversion of the odd-even staggering around N=40 and the odd-even staggering systematics of the Zn charge radii. With two protons above Z=28, the observed charge radii of the Zn isotopic chain show a cum…
Spectroscopy of short-lived radioactive molecules
Molecular spectroscopy offers opportunities for the exploration of the fundamental laws of nature and the search for new particle physics beyond the standard model1–4. Radioactive molecules—in which one or more of the atoms possesses a radioactive nucleus—can contain heavy and deformed nuclei, offering high sensitivity for investigating parity- and time-reversal-violation effects5,6. Radium monofluoride, RaF, is of particular interest because it is predicted to have an electronic structure appropriate for laser cooling6, thus paving the way for its use in high-precision spectroscopic studies. Furthermore, the effects of symmetry-violating nuclear moments are strongly enhanced5,7–9 in molecu…
Nuclear charge radii of neutron deficient titanium isotopes44Ti and45Ti
Optical isotope shifts of the unstable 44,45Ti isotopes, as well as those of stable 46−50Ti, have been investigated by collinear laser spectroscopy on fast ion beams using an ion guide isotope separator with a cooler-buncher. Changes in mean square charge radii across the neutron 1f7/2 shell are deduced. The evolution of the even-N Ti nuclear radii shows a generally increasing tendency with decreasing neutron number. This behaviour is significantly different to that of the neighbouring Ca isotopes which exhibit a symmetric parabolic behaviour across the shell. The trend of the Ti nuclear radii is consistent with the predictions of the relativistic mean-field theory. The charge radius of 44T…
Isotope Shifts of Radium Monofluoride Molecules
Isotope shifts of $^{223-226,228}$Ra$^{19}$F were measured for different vibrational levels in the electronic transition $A^{2}{}{\Pi}_{1/2}\leftarrow X^{2}{}{\Sigma}^{+}$. The observed isotope shifts demonstrate the particularly high sensitivity of radium monofluoride to nuclear size effects, offering a stringent test of models describing the electronic density within the radium nucleus. Ab initio quantum chemical calculations are in excellent agreement with experimental observations. These results highlight some of the unique opportunities that short-lived molecules could offer in nuclear structure and in fundamental symmetry studies.
Optimising the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN-ISOLDE
© 2019 The CRIS experiment at CERN-ISOLDE is a dedicated laser spectroscopy setup for high-resolution hyperfine structure measurements of nuclear observables of exotic isotopes. Between 2015 and 2018 developments have been made to improve the background suppression, laser-atom overlap and automation of the beamline. Furthermore, a new ion source setup has been developed for offline studies. Here we present the latest technical developments and future perspectives for the experiment. ispartof: Nuclear Instruments & Methods In Physics Research Section B-Beam Interactions With Materials And Atoms vol:463 pages:384-389 ispartof: location:SWITZERLAND, CERN, Geneva status: published
Nuclear moments and charge radii of the171Hf ground state and isomer
The magnetic moment, quadrupole moment and mean-square charge radial changes, relative to 172Hf, have been measured for the 171Hf ground state and the ½-[521] isomeric state, using on-line laser spectroscopy. The magnetic moments of the isomer and ground states are found to be + 0.526(16)µn and -0.674(12)µn, respectively. The spectroscopic quadrupole moment of the ground state is found to be +3.463(27) b. No change in mean-square charge radius is observed between the ground state and isomeric state. The observation of an inversion in the odd-even staggering at 171Hf is consistent with the suggested deformation trends.
Discovery of a long-lived low-lying isomeric state in Ga-80
Collinear laser spectroscopy was performed on the $^{80}\mathrm{Ga}$ isotope at ISOLDE, CERN. A low-lying isomeric state with a half-life much greater than $200$ ms was discovered. The nuclear spins and moments of the ground and isomeric states and the isomer shift are discussed. Probable spins and parities are assigned to both long-lived states (${3}^{\ensuremath{-}}$ and ${6}^{\ensuremath{-}}$) deduced from a comparison of the measured moments to shell-model calculations.
COLLINEAR LASER SPECTROSCOPY ON NEUTRON-RICH Mn ISOTOPES APPROACHING N = 40
We have studied 51,53−64Mn (Z=25) via bunched-beam collinear laser spectroscopy at ISOLDE, CERN. Model-independent information on the ground- and isomeric state spins, as well as their g-factors is obtained from the measured hyperfine spectra. The spins are essential for further establishing the level schemes in the mass region, while the g-factors reveal the changing ground state wave functions in the Mn chain approaching N=40. ispartof: pages:699-702 ispartof: Acta Physica Polonica B vol:46 issue:3 pages:699-702 ispartof: location:Zakopane, Poland status: published
Electromagnetic moments of scandium isotopes and $N=28$ isotones in the distinctive $0f_{7/2}$ orbit
The electric quadrupole moment of $^{49}$Sc was measured by collinear laser spectroscopy at CERN-ISOLDE to be $Q_{\rm s}=-0.159(8)$ $e$b, and a nearly tenfold improvement in precision was reached for the electromagnetic moments of $^{47,49}$Sc. The single-particle behavior and nucleon-nucleon correlations are investigated with the electromagnetic moments of $Z=21$ isotopes and $N=28$ isotones as valence neutrons and protons fill the distinctive $0f_{7/2}$ orbit, respectively, located between magic numbers, 20 and 28. The experimental data are interpreted with shell-model calculations using an effective interaction, and ab-initio valence-space in-medium similarity renormalization group calcu…
Cu charge radii reveal a weak sub-shell effect at N=40
Collinear laser spectroscopy on Cu58-75 isotopes was performed at the CERN-ISOLDE radioactive ion beam facility. In this paper we report on the isotope shifts obtained from these measurements. State-of-the-art atomic physics calculations have been undertaken in order to determine the changes in mean-square charge radii δ(r2)A,A′ from the observed isotope shifts. A local minimum is observed in these radii differences at N=40, providing evidence for a weak N=40 sub-shell effect. However, comparison of δ(r2)A,A′ with a droplet model prediction including static deformation deduced from the spectroscopic quadrupole moments, points to the persistence of correlations at N=40.
RILIS-ionized mercury and tellurium beams at ISOLDE CERN
This paper presents the results of ionization scheme development for application at the ISOLDE Resonance Ionization Laser Ion Source (RILIS). Two new ionization schemes for mercury are presented: a three-step three-resonance ionization scheme, ionizing via an excitation to a Rydberg level and a three-step two-resonance ionization scheme, with a non-resonant final step to the ionization continuum that corresponded to a factor of four higher ionization efficiency. The efficiency of the optimal mercury ionization scheme was measured, together with the efficiency of a new three-step three resonance ionization scheme for tellurium. The efficiencies of the mercury and tellurium ionization schemes…
Nuclear charge radii and electromagnetic moments of radioactive scandium isotopes and isomers
International audience; Collinear laser spectroscopy experiments with the Sc + transition 3d4s 3 D 2 → 3d4p 3 F 3 at λ = 363.1 nm were performed on the 42−46 Sc isotopic chain using an ion guide isotope separator with a cooler-buncher. Nuclear magnetic dipole and electric quadrupole moments as well as isotope shifts were determined from the hyperfine structure for five ground states and two isomers. Extensive multi-configurational Dirac-Fock calculations were performed in order to evaluate the specific mass-shift, M SMS, and field-shift, F, parameters which allowed evaluation of the charge radii trend of the Sc isotopic sequence. The charge radii obtained show systematics more like the Ti r…
Characterization and First Test of an i-TED Prototype at CERN n_TOF
International audience; Neutron capture cross section measurements are of fundamental importance for the study of the slow process of neutron capture, so called s-process. This mechanism is responsible for the formation of most elements heavier than iron in the Universe. To this aim, installations and detectors have been developed, as total energy radiation C$_{6}$ D$_{6}$ detectors. However, these detectors can not distinguish between true capture gamma rays from the sample under study and neutron induced gamma rays produced in the surroundings of the setup. To improve this situation, we propose (Domingo Pardo in Nucl Instr Meth Phys Res A 825:78–86, 2016, [1]) the use of the Compton princ…
Cooling and bunching of ion beams for collinear laser spectroscopy
A greatly increased sensitivity in collinear laser spectroscopy experiments has been achieved by the application of new on-line ion cooling and bunching techniques. Cooling of a low-energy ion beam to low emittance and low velocity spread is shown to increase the peak efficiency while bunching the beam results in highly efficient background suppression.
First measurement of radioisotopes by collinear laser spectroscopy at an ion-guide separator
The first successful application of an ion-guide separator (IGISOL) for collinear laser spectroscopy of radioisotopes has achieved an efficiency comparable with the best obtained with catcher-ionizer facilities. The ion beam energy spread was determined to be less than 6 eV, allowing laser fluorescence resonance signals for the Ba-140,Ba-142,Ba-144 radioisotopes to be detected with high resolution and sensitivity. Applications of this technique to measuring nuclear properties of refractory elements and short lived isomers promises to be particularly advantageous.
Measurement of the 241Am neutron capture cross section at the n-TOF facility at CERN
New neutron cross section measurements of minor actinides have been performed recently in order to reduce the uncertainties in the evaluated data, which is important for the design of advanced nuclear reactors and, in particular, for determining their performance in the transmutation of nuclear waste. We have measured the 241 Am(n,γ) cross section at the n TOF facility between 0.2 eV and 10 keV with a BaF2 Total Absorption Calorimeter, and the analysis of the measurement has been recently concluded. Our results are in reasonable agreement below 20 eV with the ones published by C. Lampoudis et al. in 2013, who reported a 22% larger capture cross section up to 110 eV compared to experimental …
Investigating the large deformation of the 5/2(+) isomeric state in Zn-73: An indicator for triaxiality
Recently reported nuclear spins and moments of neutron-rich Zn isotopes measured at ISOLDE-CERN [C. Wraith et al., Phys. Lett. B 771, 385 (2017)PYLBAJ0370-269310.1016/j.physletb.2017.05.085] show an uncommon behavior of the isomeric state in Zn73. Additional details relating to the measurement and analysis of the Zn73m hyperfine structure are addressed here to further support its spin-parity assignment 5/2+ and to estimate its half-life. A systematic investigation of this 5/2+ isomer indicates that significant collectivity appears due to proton/neutron E2 excitations across the proton Z = 28 and neutron N = 50 shell gaps. This is confirmed by the good agreement of the observed quadrupole mo…
Laser assisted decay spectroscopy at the CRIS beam line at ISOLDE
A new collinear resonant ionization spectroscopy (Cris)beam line has recently been installed at Isolde, Cern utilising lasers to combine collinear laser spectroscopy and resonant ionization spectroscopy. The combined technique offers the ability to purify an ion beam that is heavily contaminated with radioactive isobars, including the ground state of an isotope from its isomer, allowing sensitive secondary experiments to be performed. A new programme aiming to use the Cris technique for the separation of nuclear isomeric states for decay spectroscopy will commence in 2011. A decay spectroscopy station, consisting of a rotating wheel implantation system for alpha decay spectroscopy, and thre…
Nuclear data activities at the n_TOF facility at CERN
International audience; Nuclear data in general, and neutron-induced reaction cross sections in particular, are important for a wide variety of research fields. They play a key role in the safety and criticality assessment of nuclear technology, not only for existing power reactors but also for radiation dosimetry, medical applications, the transmutation of nuclear waste, accelerator-driven systems, fuel cycle investigations and future reactor systems as in Generation IV. Applications of nuclear data are also related to research fields as the study of nuclear level densities and stellar nucleosynthesis. Simulations and calculations of nuclear technology applications largely rely on evaluate…
Nuclear spins, magnetic moments, and quadrupole moments of Cu isotopes fromN=28toN=46: Probes for core polarization effects
Measurements of the ground-state nuclear spins and magnetic and quadrupole moments of the copper isotopes from $^{61}\mathrm{Cu}$ up to $^{75}\mathrm{Cu}$ are reported. The experiments were performed at the CERN online isotope mass separator (ISOLDE) facility, using the technique of collinear laser spectroscopy. The trend in the magnetic moments between the $N=28$ and $N=50$ shell closures is reasonably reproduced by large-scale shell-model calculations starting from a $^{56}\mathrm{Ni}$ core. The quadrupole moments reveal a strong polarization of the underlying Ni core when the neutron shell is opened, which is, however, strongly reduced at $N=40$ due to the parity change between the $\mat…
Charge radius of the short-lived $^{68}$Ni and correlation with the dipole polarizability
We present the first laser spectroscopic measurement of the neutron-rich nucleus $^{68}$Ni at the \mbox{$N=40$} subshell closure and extract its nuclear charge radius. Since this is the only short-lived isotope for which the dipole polarizability $\alpha_{\rm D}$ has been measured, the combination of these observables provides a benchmark for nuclear structure theory. We compare them to novel coupled-cluster calculations based on different chiral two- and three-nucleon interactions, for which a strong correlation between the charge radius and dipole polarizability is observed, similar to the stable nucleus $^{48}$Ca. Three-particle--three-hole correlations in coupled-cluster theory substant…
Simulation of the relative atomic populations of elements 1 ≤ Z ≤89 following charge exchange tested with collinear resonance ionization spectroscopy of indium
© 2019 The Authors Calculations of the neutralisation cross-section and relative population of atomic states were performed for ions beams (1 ≤ Z ≤ 89) at 5 and 40 keV incident on free sodium and potassium atoms. To test the validity of the calculations, the population distribution of indium ions incident on a vapour of sodium was measured at an intermediate energy of 20 keV. The relative populations of the 5s 2 5p 2 P 1/2 and 5s 2 5p 2 P 3/2 states in indium were measured using collinear resonance ionization spectroscopy and found to be consistent with the calculations. Charge exchange contributions to high-resolution lineshapes were also investigated and found to be reproduced by the calc…
Characterization of the shape-staggering effect in mercury nuclei
In rare cases, the removal of a single proton (Z) or neutron (N) from an atomic nucleus leads to a dramatic shape change. These instances are crucial for understanding the components of the nuclear interactions that drive deformation. The mercury isotopes (Z = 80) are a striking example1,2: their close neighbours, the lead isotopes (Z = 82), are spherical and steadily shrink with decreasing N. The even-mass (A = N + Z) mercury isotopes follow this trend. The odd-mass mercury isotopes 181,183,185Hg, however, exhibit noticeably larger charge radii. Due to the experimental difficulties of probing extremely neutron-deficient systems, and the computational complexity of modelling such heavy nucl…
Nuclear moments of indium isotopes reveal abrupt change at magic number 82
In spite of the high-density and strongly correlated nature of the atomic nucleus, experimental and theoretical evidence suggests that around particular 'magic' numbers of nucleons, nuclear properties are governed by a single unpaired nucleon1,2. A microscopic understanding of the extent of this behaviour and its evolution in neutron-rich nuclei remains an open question in nuclear physics3-5. The indium isotopes are considered a textbook example of this phenomenon6, in which the constancy of their electromagnetic properties indicated that a single unpaired proton hole can provide the identity of a complex many-nucleon system6,7. Here we present precision laser spectroscopy measurements perf…
A thirty second isomer in Hf
An isomer has been detected in Hf-171 with a half-life of T-1/2 = 29.5(9) s. The state was populated in the Yb-170(alpha,3n)Hf-171m reaction at a beam energy of E-alpha = 50 MeV in an on-line ion guide isotope separator. The isomeric Hf-17lm(+) beam was extracted from the ion guide, mass-analysed and implanted in the surface of a microchannel-plate. The half-life of the collected activity was measured from the decay of the microchannel-plate count rate. We associate the isomer with the first excited slate in Hf-171 with spin 1/2(-) at an excitation energy of 22(2) keV.
Blurring the boundaries between ion sources: The application of the RILIS inside a FEBIAD type ion source at ISOLDE
For the first time, the laser resonance photo-ionization technique has been applied inside a FEBIAD-type ion source at an ISOL facility. This was achieved by combining the ISOLDE RILIS with the ISOLDE variant of the FEBIAD ion source (the VADIS) in a series of off-line and on-line tests at CERN. The immediate appli- cations of these developments include the coupling of the RILIS with molten targets at ISOLDE and the introduction of two new modes of FEBIAD operation: an element selective RILIS mode and a RILIS + VADIS mode for increased efficiency compared to VADIS mode operation alone. This functionality has been demonstrated off-line for gallium and barium and on-line for mercury and cadmi…
Laser spectroscopy of gallium isotopes beyond N = 50
The installation of an ion-beam cooler-buncher at the ISOLDE, CERN facility has provided increased sensitivity for collinear laser spectroscopy experiments. A migration of single-particle states in gallium and in copper isotopes has been investigated through extensive measurements of ground state and isomeric state hyperfine structures. Lying beyond the N = 50 shell closure, 82Ga is the most exotic nucleus in the region to have been studied by optical methods, and is reported here for the first time. ispartof: pages:012071-6 ispartof: Journal of Physics: Conference Series vol:381 issue:1 pages:012071-6 ispartof: Rutherford Centennial Conference on Nuclear Physics location:Manchester, UK dat…
Quadrupole moments and mean-square charge radii in the bismuth isotope chain
Abstract Isotope shifts and hyperfine structures of the 205,206,208,210,210m,212,213 Bi isotopes have been studied on the 306.7 nm line using gas cell laser spectroscopy. The neutron-rich isotopes are the first isotones of Pb to be measured immediately above the N = 126 shell closure. The ground state quadrupole moments of the even- N isotopes increase as neutrons are added or removed from the N = 126 shell, but no corresponding increase is observed in the charge radii.
Collinear laser spectroscopy of ZrII
A new technique involving collinear laser spectroscopy of ion bunches has been used to study the radio-isotopes 87,87m,88,89,89m Zr.
Nuclear moments and charge radii of bismuth isotopes
Isotope shifts and hyperfine structures have been measured on the 306.7 nm line in bismuth isotopes with A = 205-210, 210m, 212 and 213 by gas cell laser spectroscopy. More precise measurements were made for the A = 207-209 isotopes in atomic beam measurements. Nuclear magnetic and quadrupole moments were deduced. A detailed comparison of the nuclear charge radii systematics has been made in the region using a King plot technique.
Charge Radius of the Short-Lived Ni68 and Correlation with the Dipole Polarizability
We present the first laser spectroscopic measurement of the neutron-rich nucleus ^{68}Ni at the N=40 subshell closure and extract its nuclear charge radius. Since this is the only short-lived isotope for which the dipole polarizability α_{D} has been measured, the combination of these observables provides a benchmark for nuclear structure theory. We compare them to novel coupled-cluster calculations based on different chiral two- and three-nucleon interactions, for which a strong correlation between the charge radius and dipole polarizability is observed, similar to the stable nucleus ^{48}Ca. Three-particle-three-hole correlations in coupled-cluster theory substantially improve the descrip…
Collinear laser spectroscopy at ISOLDE: new methods and highlights
Over three and a half decades of collinear laser spectroscopy and the COLLAPS setup have played a major role in the ISOLDE physics programme. Based on a general experimental principle and diverse approaches towards higher sensitivity, it has provided unique access to basic nuclear properties such as spins, magnetic moments and electric quadrupole moments as well as isotopic variations of nuclear mean square charge radii. While previous methods of outstanding sensitivity were restricted to selected chemical elements with special atomic properties or nuclear decay modes, recent developments have yielded a breakthrough in sensitivity for nuclides in wide mass ranges. These developments include…